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Abstract—Program execution traces (simply “traces” for short)
contain data/control dependency information, and are indispens-
able to novel kinds of debugging such as back-in-time debugging.
However, traces easily become large and complicated. For a
practical use, maintainers need to be able to interactively invoke
an analysis process when required and obtain rapid feedback.
To this end, the authors develop an approach for efficient
macroscopic analysis of traces of large sizes with complex data
structures. We propose an approach that involves storing graphs
in a database that reduces the number of attributes in the
main memory during dependency analysis. We also introduce a
criterion for the application of this approach that can maximize
its effectiveness. Finally, we conduct experiments to assess its
effectiveness for efficient dependency analysis.

Keywords–Dynamic Dependency Analysis; Back-in-time Debug-
ger; Debugging Support; Graph Database; Graph Search; Java.

I. INTRODUCTION

The examination of runtime states and their dependencies
are indispensable to program debugging [1] [2]. Debuggers
that are currently in use allow maintainers to suspend program
execution at specified break points and examine the runtime
states at these points. However, such debuggers do not have
a provision for maintainers to examine states prior to the
designated points for the suspension of execution. Therefore,
they cannot trace backwards to detect causes of erroneous
states by following the dependency of statements [3].

In the last decade, the so-called Back-in-time debuggers
have emerged as a new kind of debugging supporting tools.
These debuggers use traces containing dependency informa-
tion [4]–[6]. Such debuggers analyze dependencies to deter-
mine the operation that assigns value to a referenced vari-
able [4], to examine the reasons for why a given statement is
or is not executed [5], and what happens during the execution
of a method that has already been successfully invoked [6].
This kind of dependency analysis is useful for the examination
of a particular instruction.

The scalability of process traces containing dependency
information has been discussed in the literature [3]. We believe
that the recent, rapid developments in hardware and software
technologies have made it possible to process the traces of
a certain scale of software products. In previous work [7],
we demonstrated two kinds of dynamic dependency analysis
(simply called dependency analysis in this paper) that detect

symptoms of an infection caused by defects in the application
of the Java framework application [8].

Although our previous study has raised the prospect of a
solution to the scalability problem, yet implementation of our
dependency analysis remains inefficient. The main cause of
the inefficiency is the richness of data in the model of our
traces. The design of our trace proposed here aims not only
at the requirements of symptom detection [7], but also at the
analysis of other aspects of program execution. Therefore, our
trace design incorporates the richness of data to enable various
kinds of dependency analysis instead of reducing the amount
of data, such as in the approach proposed by Wang et al. [9].

In addition to currently studied Back-In-Time Debug-
gers [4]–[6], which aim at a microscopic perspective for the
dependency analysis of a specific statement, our previous
study [7] dealt with all-state updates via persistent variables
and their value dependency across the entire trace. A persistent
variable is either a class variable, an instance variable, or an
array component. It implements a state that persists after the
invocation of a method is completed [10]. This macroscopic
nature of our dependency analysis renders it inefficient, al-
though the algorithm works in practice. In order to solve this
problem, an approach is needed to support the efficient analysis
of dependency in a large trace.

This study implements an efficient dependency analysis
environment for macroscopic dependency analysis similar to
that in [7]. Hence, the bottleneck in our dependency analysis
environment needs to be resolved. In our previous study [11],
we had clarified a factor affecting efficiency in our dependency
analysis environment and had proposed a trace-partitioning
approach for it. However, our approach did not enhance the
efficiency of dependency analysis. In this study, we assess
the effectiveness of our proposed approach for efficient de-
pendency analysis.

We will introduce related to dependency analysis, and
describe the demands of for dynamic analysis environment in
Section II. Then, in Section III, we illustrate our implementa-
tion of dynamic analysis environment that consists of a trace
generation part and a trace processing part using the graph
database. In Section IV, we propose a trace-partitioning ap-
proach based on graph database for efficient trace analysis. We
will conduct an experiment of dynamic analysis performance
for evaluating our proposed approach.
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II. RELATED WORK

Debuggers widely used in software development projects
support a common feature to suspend program execution at a
specified break point and show the runtime state at that point.
They do not record the execution and, thus, have the common
drawback that there is no way to examine the execution of
a method whose invocation has been already completed. It
is a serious problem because defects and infections are often
found in methods that have been completed before the program
fails [6]. A defect is an error in program code while an
infection, in software engineering, is a runtime error caused
by the execution of a defect [1].

Maintainers using a debugger must repeat a task to specify
a breakpoint (it is usually very difficult to find a suitable
breakpoint in the program code.) and re-execute the program to
examine the executions of methods that have been completed.
Such a debugging style, forced by the common limitation
in current of existing debuggers, leads to inefficient debug-
ging [3].

Using traces for debugging support is a natural idea to over-
come the above limitation in existing debuggers [4] [5] [12].
An omniscient debugger [4] examines assignment operations
with set values referenced from variables. If a maintainer wants
to determine why a statement has or has not been executed,
Whyline [5] analyzes related dependencies and generates the
results of the analysis using sophisticated Graphical User
Interfaces (GUI).

Dynamic Object Flow Analysis [12] aims to understand
program execution from the aspect of object references. Its area
of application ranges from dependency analysis of methods for
software testing [13] to performance engineering for a back-
in-time debugger [6].

To the best of our knowledge, no existing dependency
analysis approaches to debugging support aims at macroscopic
dependency analysis except for our previous proposal [7].
An omniscient debugger deals with only the correspondence
between the value of a variable and the assignment operation
that has sets this value. Whyline navigates a maintainer along
the dependencies among statements to the extent of his/her
manual examination. Dynamic object flow analysis performs
macroscopic analysis but only deals with object references.

The above approaches to microscopic dependency anal-
ysis provide useful debugging aids. However, understanding
a program from a macroscopic viewpoint is necessary for
debugging [14]; therefore, maintainers have to spend time and
effort to obtain this perspective through manual dependency
analysis.

We studied several kinds of macroscopic dependency anal-
ysis in this context in our last study [7]. Of these, outdated-
state analysis aims to identify symptoms to suggest possible
infections incurred by the accidental use of an old value of a
field or array component along with its updated value.

III. IMPLEMENTATION OF DEPENDENCY ANALYSIS
ENVIRONMENT

Debugging a program requires various kinds of dependency
analysis of statements. Therefore, we developed two kinds of
techniques for the analysis of the relevant symptom in our
previous study [7]. The proposed trace was designed to execute
these symptom analyses. For this reason, our trace tended to be

Figure 1. Dependency analysis environment.

large and complex, and usually led to inefficient processing of
analysis. In order to conduct an efficient dependency analysis,
an analysis environment is needed that can handle our trace.

Figure 1 illustrates the entire process, which involves the
execution of a Java program under instrumentation and several
sub-processes of symptom analysis in a dependency analysis
environment. In trace generation, our system generates a trace
using Java byte code instrumentation technology. In trace
processing, on the other hand, it stores the generated trace
in a graph database system (GDBS) and supports efficient
processing of various kinds of dependency analysis.

A. Trace Data Model
Dependency analysis approaches from various aspects of

execution are necessary for practical debugging support. In
previous work, we developed two kinds of dependency analysis
algorithms to detect symptoms that indicate infections in a
failed execution [7].

Both of the proposed algorithms process control data
dependency across the entire extent of an execution. One
algorithm checks a complex condition that specifies data flow
to associate operations in a class instance caused by the
invocation of a certain kind of method. The other algorithm
keeps track of side effects via fields and array components.
We propose a new kind of dependency analysis that aims to
abstract the effects of methods and operations on objects based
on inputs by the debugger users.

In order to meet the above requirements, our trace model
defines the following basic elements of program executions:

• Method execution
• Execution of abstracted byte code instructions to rep-

resent statements.
• Creation and reference of values by instructions.
• Values to be created or referenced.

Some abstracted instructions represent “control statements,”
such as conditional statements, method invocations, and throw
and catch. Abstracted instructions contain assignment oper-
ations on local variables, fields, and array components. The
instruction set also contains constants, instance creations, and
array creations, as well as various calculation operations.
Values created, calculated, and assigned are referenced by the
instructions that use them.

For each executed instruction in an execution, its trace
records the control instruction under which it is executed. If
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Figure 2. Property graph model.

the instruction references a value, the trace records from the
instruction form which the value originates. In this way, we
can obtain control and data dependency information among
instructions, including a method invocation structure.

A trace generated by the proposed approach can first
be represented using the property graph model shown in
Figure 2. This is a data model defined in the TinkerPop project
in Apache [15]. This data model features good description
capability, and hence can represent various kinds of data.

The proposed data model allows programs to check
data/control dependency for a large number of instructions in
order to examine state changes on some objects or to find the
cause of an infection. Algorithms to check such dependencies,
which is represented by links among graph nodes, should be
efficient.

B. Trace Processing

The requirements stated in Section III-A make it difficult
to reduce trace size. Traces are needed not for a particular
dependency analysis, but for various kinds of analysis dealing
with the conditions of such program elements as classes,
fields, and methods related to the four elements described in
Section III-A. Therefore, rich data is required for the proposed
trace model for such additional information.

For dependency analysis purposes, the instructions between
which the analysis is performed cannot be predicted. There-
fore, for a failed execution, the trace of the entire extent of
execution is first needed. The proposed algorithms then search
for instructions that are the targets of dependency analysis.

Dependency analysis usually requires checking of complex
conditions for the above four kinds of elements one by one
along with their dependency relationships. Furthermore, the
results of past condition checks must be stored for reference.

A situation sometimes arises where the Java virtual ma-
chine is quite inefficient, or even runs out of memory in apply-
ing dependency analysis to the execution of a software system.
Hence, data engineering approaches are needed to build a
framework that enables efficient access to and processing of
massive traces.

In this study, we develop a dependency analysis environ-
ment on the GDBS to improve analysis performance. This
paper adopts a GDBS called Neo4j following the property
graph model [16] because it is suitable for storing traces with
complex data structures. Moreover, Neo4j is considered the
best for handling graph data for all GDBSs [17] [18].

In order to handle our trace, our dependency analysis
environment was implemented using the native Java API of
Neo4j and its query language Cypher.

IV. A TRACE-PARTITIONING APPROACH
AND A RULE FOR APPLYING THE PROPOSED APPROACH

The loading nodes, the edges, and their attributes used for
dependency analysis are very important for the efficient use of
the main memory. Our environment loads only use nodes and
edges. When the nodes and edges are loaded, so are all their
attributes. However, not all of the loaded attributes are used
for all analyses of dependency. Therefore, this paper focuses
on the selection of loading attributes.

In the previous study [11], we proposed an approach
for partitioning our trace that can load attributes as needed.
However, this did not help improve dependency analysis
performance. Therefore, we formulate a rule in this section
to determine whether a given attribute should be loaded for a
given trace.

A. Trace-partitioning Method for Memory Reduction
In order to cope with the problem described above, nodes in

GDBS are divided into two categories in order to sort them.
One category includes those nodes that are analysis targets,
while another includes nodes whose attributes are analysis
targets.

In this way, it is possible to load only nodes and attributes
that are targets of the dependency analysis and eliminate
unnecessary ones. We believe that this is the best approach, as
kinds of nodes need to be distinguished more frequently than
attributes of nodes in dynamic analysis.

The proposed approach is shown in Figure 3, where a node
and an edge are first created. This node stores attributes (the
node IDs are 5, 6, 7 and 8 in Figure 3.), which are generated
for convenience of an analysis (the node IDs are 1, 2, 3 and 4
in shown Figure 3.). The edge distinguishes the nodes that
are used to store attributes. The node is described as one
used to store attributes and the edge as one used to access
the attributes of the nodes in the trace (this edge is called
an attribute relationship in this paper). Therefore, deviations
from the property graph model obtain: 1) The number of nodes
stored doubles in a GDBS. 2) The number of edges connecting
nodes of the trace increases.

B. Inefficient Processing in Proposed Approach
We assume that the time required for importing a trace

increases due to the above sorting 1). However, graph traversal
performance is not influenced by the increase in the number
of nodes, intended only for the node where graph traversal
is connected to a certain node in Neo4j. On the other hand,
instead of preventing the loading of attributes of a node that
are unnecessary for analysis, an attribute-relationship is loaded
with sorting 2). The fixed-length data size of edge on the Neo4j
is larger than node’s one. However, we can assume that the data
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Figure 3. Graph partitioning approach for proposed trace.

Require: Nnode, Nattr, Ntrav

for each l ∈ L do
{Not applying proposed approach to all labels of the
node.}
{Initializing f of the dictionary type.}
{The key of f is l ∈ L, and let the value be false.}
f [l]← false

end for
for each l ∈ L do
before← Sload(f , Nattr, Nnode)
f [l]← true {Applying our approach to l.}
after ← Sload(f , Nattr, Nnode)
traversal← Strav(f , Ntrav, Nnode)
if before > after and traversal = 0 then

continue
else
f [l]← false {Not applying our approach to l.}

end if
end for
return f

Figure 4. Optimization algorithm for the proposed approach.

size of edges loaded in the memory is small because the size of
an attribute of edges, such as references and dependencies, is
less than that of a nodes. Moreover, the time needed to confirm
the edges needed to traverse the graph traversal by sorting 2)
increases in all nodes, and we predict that leads to inefficient
graph traversal performance.

Furthermore, if it is necessary to access an attribute, the
attribute-relationship is traversed during dependency analysis.
Since traversing attribute-relationship is not necessary in the
case of an original trace, as the number of processes increases,
efficiency worsens.

C. Optimization Algorithm for our Previous Approach
The purpose of this approach is to reduce the memory

size used by attributes of nodes to improve the efficiency
of graph traversal. However, our previous approach [11] has
been unable to improve the effectiveness of traversing the
proposed trace because we had not considered the situation

where the attributes of each node are loaded into the main
memory. As a result, the previous approach made additional
traversals to analyze attribute relationships. The traversal of
attribute relationships does not occur in the original structure
of the trace; hence, we propose an algorithm to automatically
determine the node needed for the approach in order to avoid
creating attributes over and above those that are required. If
a minimum number of such attributes can be loaded into the
main memory, the effectiveness of the proposed approach will
improve.

To automatically determine the node in the proposed ap-
proach, the analytical algorithm of the dependency analysis
environment needs to be recognized. That is to say, one needs
to understand that the algorithm traverses nodes and loads their
attributes in the trace using the proposed approach. In this case,
the approach requires knowing the number of attributes loaded
from all nodes, with each node labeled as Ntrav. At the same
time, it also requires knowing the number of attributes denoted
by Nattr.

However, we cannot correctly estimate Ntrav , because
dependency analysis is dynamically executed depending on the
value of the attribute in the trace. Hence, we assume that all
nodes of the trace can be traversed, and the maximum number
of loading attributes of nodes is Ntrav . In short, we decide to
partition the attributes of node into extra node when a loading
attribute has the potential to obtain the attribute of node.

We developed an algorithm for the automatic application
of the proposed, as stated above. This algorithm is shown in
Figure 4. Given a set of labels of nodes as L, every node is
labelled l ∈ L as Nnode(l) in Figure 4, and every attribute
is labelled as Nattr. We also represent the frequency of the
attributes of loading nodes with label m ∈ L when reaching
label l ∈ L of a node. Note that we take into account the
identification of these labels (l = m).

We now introduce criteria for applying the proposed ap-
proach. Sload is the sum of the number of loading attributes
while conducting dependency analysis, and Strav is the sum of
the number of traversing attribute relationships. We can esti-
mate these criteria using Nnode, Nattr and Ntrav , respectively.
Sattr(L) and Strav(L) can be calculated as (1)，(2):

Sattr(L) =
∑
l∈L

sattr(l,f [l]) (1)

where :

sload(l,f [l]) ={
Nattr(l) ·Nnode(l) if f [l] = false
0 otherwise

Strav(L) =
∑
l∈L

strav(l,f) (2)

where :

strav(l,f) ={ ∑
m∈L Ntrav(l,m) ·Nnode(m) if f [m] = true

0 otherwise

In (1), sload(l,f [l]) is calculated to multiply the number
of loading attributes of nodes labeled l by the number of
nodes labeled l in GDBS. In (2), we also calculate strav(l,f)
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to multiply the number of traversing attribute relationships
connected with nodes labeled m when reaching nodes labeled
l. Note that the value of sattr(l,f [l]) is zero if the label l is
applied because it does not obtain the traversal of an attribute
relationship.

Finally, our algorithm produces f , which is a combination
of whether the proposed approach is applied. This f allows for
dependency analysis without traversing attribute relationships
and minimizes the sum of loading attributes Sattr.

V. EXPERIMENT

As described in Section IV-A, we proposed an approach for
solving the bottleneck in memory consumption in dependency
analysis environments. In this section, we report an experiment
to verify the effectiveness of our approach. For the assessment
of macroscopic dependency analysis, not only is it necessary
that memory consumption be evaluated, the time consumed
for it is also a crucial factor to bear in mind. We assessed
the improvement in analysis performance using the proposed
approach by measuring the memory consumption and analysis
time needed for dependency analysis.

We compared the experimental results with the following
trace conditions:

NON: This trace was non-transformational.
ALL: We employed the approach for all nodes in the

trace.
OPT: We employed the approach for a few nodes se-

lected by the rule in Section IV-C.

The experiments in this section were conducted on a
kernel-based virtual machine with 64 GB RAM and the Cent
OS 7 operating system.

A. Unified Modeling Language Editor “GEFDemo”
We used trace for the execution of the demonstration

program on the Graph Editing Framework (GEFDemo) [8]
for dependency analysis in Section V-B. GEFDemo is a
simple Unified Modeling Language (UML) editor program that
used the application framework as shown in Figure 5(a). A
flaw, such as in Figure 5(b), is known to occur during the
delete operation, a ternary association, which is a defect in
implementation of the GEFDemo.

Accurate inspection of the analysis program was possible
because the cause of the defect shown in Figure 5 was manu-
ally confirmed. The trace used in this experiment recorded the
execution process of GEFDemo that intentionally produced an
exception, as shown in Figure 5 in the following procedure:

1) Creating three classes on the editor.
2) Creating an association for other classes from one

class.
3) Creating an association for another association from

the class that does not create an association.
4) A diamond object expressing the occurrence of a

ternary connection occurs.
5) Deleting the diamond object.

The number of nodes in this trace was 510,370 and the
number of relationships 4,437,367. Moreover, the trace into
the GEFDemo contained 46 kinds of labels for nodes and 44
kinds of relationships. Furthermore, the size of the trace was
63.8 MB as text. Hence, our trace contained a large amount of

(a) Creating three Classes and a Ternary
Association.

(b) Deleting a Ternary Association.

Figure 5. Operating the GEFDemo Program

information about the runtime state of the program. However,
it can easily become large and complex.

B. Outdated-state Analysis
As described in Section V-A, a defect of the GEFDemo is

caused by changes in the process of execution of the program
during the collection state, which is an object of Java. We
used an outdated-state analysis, which is the approach of
dependency analysis proposed by Kume et al. [7]. It can detect
instructions that use different states of a specified object.

We executed the outdated-state analysis in a dependency
analysis environment as described below:

1) Investigating method called in execution order one by
one.

2) Investigating dependencies with state of objects with
many instructions occurring in each method.

3) When analyzing an instrument concerning the change
in the state of the object, a node was created to record
the frequency of change of the object for a GDBS.

4) Investigating instructions dependence on the combi-
nation of a new state and old states of the same object
from nodes that we created by Procedure 3).

In Procedure 1), the outdated-state analysis consumed a
large amount of memory because it was necessary to analyze
instruments and values in a trace. Moreover, outdated-state
analysis is a two-step process: (1) analyzing the trace, (2)
creating the nodes and edges to record the status of objects
(data generated during dependency analysis) on the database
in Procedure 1). Finally, it analyzes data generated using
Procedure 3).

C. Measurement of Effects on Entire Dependency Analysis
In order to evaluate the effectiveness of the approach to

dependency analysis proposed in this paper, we measured
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(a) Traversal time.

(b) Memory consumption.

Figure 6. Dependency analysis performance.

its processing time and memory consumption. Memory con-
sumptions per second were recorded using vmstat, which is a
UNIX command that can report information related to memory,
paging, CPU activity, and so on, and can calculate the basic
statistics of memory consumption.

Figure 6 shows the results of three approaches. Figures 6(a)
and Figure 6(b) show the average value of 10 traversals and
instances of memory consumption in the dependency analysis,
respectively. In these figures, NON represents our previously
approach proposed in [7]. ALL refers to the naı̈ve approach
proposed in [11], and OPT represents the approach in this
paper.

The six p-values in Figure 6 indicated that OPT could re-
duce processing time and memory consumption of dependency
analysis compared with those of ALL; however, we could not
find any difference in traversal times for dependency analysis.
In short, OPT can conduct dependency analysis with the same
efficiency as NON but consumes less memory using Figure 4.
On the other hand, ALL could not conduct dependency analy-
sis with the same efficiency and memory consumption as NON
and OPT. Therefore, it can be concluded that Figure 4 can help
considerably improve memory consumption for dependency
analysis with the same efficiency as NON.

VI. CONCLUSION

This paper developed a prototype dependency analysis
environment for efficient dependency analysis of large traces
using complex graph structures. Our analysis environment is
built on a graph database system that can efficiently traverse
large and complex graph data. For efficient dependency anal-
ysis, we introduced a policy to restrict the number of loading
operations on node’s attributes to the main memory in order
to prevent it from being occupied by unnecessary data.

We applied this approach to a trace dealing with de-
pendency across macroscopic program execution. In this ex-
periment, the proposed approach yielded good performance
in terms of analysis time and memory consumption during
dependency analysis.
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parison of graph databases,” in Proceedings of International Conference
on Information Integration and Web-based Applications &#38; Services,
ser. IIWAS ’13. ACM, 2013, pp. 115:115–115:124.

[18] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph
databases,” in Proceedings of the 2013 International Conference on
Social Computing, ser. SOCIALCOM ’13. IEEE Computer Society,
2013, pp. 708–715.

78Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-548-7

MMEDIA 2017 : The Ninth International Conferences on Advances in Multimedia


