
Building the Bridge Towards an Open Electronic Wallet on NFC Smartphones

Kevin De Kock, Thierry Van Herck, Glenn Ergeerts, Rud Beyers, Frederik Schrooyen, Marc Ceulemans and Luc Wante
Department of Applied Engineering

Artesis University College of Antwerp
Antwerp, Belgium

glenn.ergeerts@artesis.be

Abstract—Many recent initiatives indicate an evolution to-
wards an open electronic wallet to perform all sorts of elec-
tronic transactions, like for example micropayments, loyalty,
and transport ticketing. Furthermore, the smart phone is
emerging as an indispensable tool for many, containing more
and more personal information. Hence, it seems like the ideal
medium for carrying the electronic wallet as well. The fast
and intuitive touch-and-go philosophy and the integration
in mobile devices, makes Near Field Communication (NFC)
the perfect technology for an electronic wallet. However, the
complex ecosystem is holding back the world-wide integration
of this technology in mobile handsets, resulting in a low market
penetration of NFC smartphones. This paper discusses the use
of an active NFC Bluetooth sticker as an intermediate step
towards an open electronic wallet on NFC smartphones. Two
requirements are set: backwards compatibility with an existing
DESFire smart-card solution and support for all the different
smart phone platforms. The first requirement will be satisfied
through the deployment of a DESFire emulator on the Java
Card of the NFC Sticker. The second requirement will be
fulfilled by using the Smart Card Web Server functionality of
the secure element, which will provide a platform independent
interaction with the content of the electronic wallet. Finally, the
proposed solution was evaluated in terms of user-friendliness,
transaction speed, compliance with the imposed requirements
and feasibility of success in the current NFC ecosystem.

Keywords-NFC; eWallet; NFC Sticker; SCWS; Java Card.

I. INTRODUCTION

The giant leaps of progress in the field of microelectronics
since the 1970s have created a solid foundation for the
smart card technology of today. An intelligent smart card
contains both a microprocessor and data storage, which are
integrated on a single silicon chip. This allows cryptographic
algorithms to be executed in order to protect sensitive data
against tampering and other security threats [1].

This high level security environment has opened the door
for applications that resolve around electronic payments
(e.g., online/offline debit cards or E-purse cards). However, a
lot of the commercial payment systems that exist today are
geared towards the general transaction of solely e-money;
whereas cases exist that ask for a more specific approach.

The Artesis University College of Antwerp in Belgium
has started the Tetra EVENT project [2], which focuses on
the development of an open electronic wallet for the event
sector. This project will use an online/offline hybrid payment

system and several types of items can be stored on the wallet
(e.g., vouchers, tickets, coupons, credits, loyalty).

The wallet itself resides on a passive DESFire tag and
relies upon terminals equipped with Near Field Communi-
cation (NFC) technology to initiate the actual transactions.
One of the main advantages in comparison to other existing
electronic wallet systems is its inherently scalability aspect
in function of big events, because of its online/offline hybrid
system. Another advantage is its open character, which
allows other 3rd party modules to co-exist on the same
physical wallet.

Even though the current market situation imposes the
project to focus on NFC tags, a proof of concept will be
carried out to test the feasibility of using mobile phones
instead. These devices hold a number of intrinsic advantages
over tags such as allowing users to view and interact with the
contents of the wallet, whereas tags rely solely on terminals
instead, which can be deemed to be a shortcoming.

Unfortunately, there is still a low market penetration of
NFC enabled mobile phones [3]. A temporary solution to
this problem is the use of NFC stickers, which allows
any handset to gain NFC functionality through a Bluetooth
connection. An extra benefit gained from the use of an NFC
sticker is its build-in NFC reader, which allows external
DESFire tags to be accessed.

Since current terminals are intended to be compatible
with only passive DESFire tags, one of the goals is that
the mobile counterpart adopts the current protocols used
between terminals and tags. A DESFire emulator will be
deployed on a Java Card to ensure backwards compatibility
with the currently used system.

Furthermore, there is a lot of differentiation between the
various handsets currently available on the market, which
means that the wallet implementation needs to be as cross-
platform as possible. A Smart Card Web Server (SCWS)
servlet [4] will be employed to provide the means of
interaction with the contents of the electronic wallet.

Nevertheless, the result of deploying an electronic wallet
on a mobile phone could prove to be very useful in the long
run. The subsequent sections of this paper will focus on the
development of an electronic wallet, which allows the user
to interactively work with the contents of the wallet, taking
into account the various aspects and hindrances mentioned

28

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

before. This paper is structered as follows: the next section
goes into details about the research and development done.
The third section describes the results and is followed by a
concluding section.

II. RESEARCH AND DEVELOPMENT

The research put forth in this paper focuses on carrying
out a proof of concept, which will be used as a basis
to determine the feasibility of using mobile handsets for
the deployment of an open electronic wallet system. The
results will be compared with the passive tag version that
is currently used in the EVENT project. Furthermore, the
project will have to meet certain requirements in order to be
accepted as a full-fledged and valid alternative to the use of
passive tags. These requirements are the following:

• Finding an intermediate solution to the NFC ecosystem
problem, which is currently limiting and/or preventing
the further expansion and deployment of NFC services
on a larger scale.

• Providing backwards compatibility for the existing pas-
sive DESFire Smartcards [5], which are used in the
EVENT project for holding the wallet data.

• Allowing the wallet to be used on various different
handsets and thus broadening the pool of potential
users, by making the system cross platform.

• Taking the aspect of security in account since sensitive
data will reside locally on a mobile device.

• Comparing aspects like user friendliness and transac-
tion speed with a passive NFC tag.

A. Project architecture

The software architecture (Figure 1) and hardware used
during this project is dictated by the earlier mentioned
requirements and can be divided in a number of components.
All components are interconnected with each other using
either internal or external communication links.

The first component is the interface of the wallet, taking
full advantage of the readily available screen and keyboard
provided by the mobile device, which is in contrast with the
passive tags that rely purely on terminals for the readout of
its content.

There is a lot of differentiation however between the
mobile devices of different manufacturers (e.g., a variety of
different available mobile platforms), which makes creation
of a universal interface across platforms currently very hard.
A second issue presents itself in terms of secure data storage
since the data stored in the memory of the mobile device has
some monetary value and the memory itself is intrinsically
unsafe (tampering may occur by both the user itself or third
parties).

Both the cross platform issue and the secure data storage
issue can be solved by the use of a Java Card with a SCWS
[6] deployed on it. The Java Card is used as a secure element
to prevent any illegal access to the data and an HTML

(a)

Figure 1. General setup of the system

interface is rendered in the browser of the mobile phone by
the SCWS servlet, which will generate the necessary HTML
pages. The operation of the Java Card is done by its own
local OS and it is thus separated from the general operation
of the mobile device OS itself.

The second component of the architecture is the DESFire
emulator, which will provide backwards compatibility with
the DESFire tags currently used in the EVENT project.
This emulator is utilized to link the mobile wallet with the
payment terminals through to use of the DESFire protocol.
This allows communication links to be setup without having
to alter the existing payment terminals.

The third and last component deals with the NFC ecosys-
tem problem, namely the lack of NFC functionality in many
currently available mobile devices. We made the decision
of using NFC stickers, which are designed specifically for
this issue and will provide NFC functionality through a
Bluetooth link to a mobile device. The sticker is attached
to the back of a mobile phone.

The next sections of this paper will be dedicated towards
providing a more in depth discussion regarding the com-
ponents mentioned before and the actual hardware that has
been used.

B. Smart Card & Java Card

The main objective in the use of smartcards is providing
the necessary level of security for the storage of sensitive
data to an otherwise unsafe environment. This allows ap-
plications to be developed around this sensitive data using
a subset of the Java programming language [7]. A well-
known example is the SIM (Subscriber Identity Module)
card, which is used for the identification of a mobile phone
user in order to give secure access to the GSM/UMTS
network.

29

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

Most SIM smartcards are Java Card based these days,
which offers the benefit of allowing third-party software to
be loaded on the card and executed through a Java Card
API.

A high level of security is still maintained on Java Cards
by isolating the memory regions of each individual applet
from each other through a software firewall, each applet runs
in its own context. Furthermore, cryptographic functions can
be executed to secure data communication and applets can
run in parallel with each other after having been selected by
the OS.

However, there are cases where an applet still requires
the data and functionality from a foreign applet. A way
of acquiring this is through the use of SIO (Shareable
Interface Objects) [8][9]. It is important to note that the
access mentioned before is only limited in scope. Solely
the functions which are defined through the use of one
or multiple interfaces are visible outside the applet who
grants outside access. Additionally, this access is usually
only granted to an outside applet that can identify and au-
thorize itself through the use of its unique AID (Application
Identifier).

C. Interface

Mobile handsets offer a very large advantage in terms
of user interactivity when compared to passive tags. The
former comes equipped with a functional keyboard and
screen and grants the possibility of an interactive interface
for the mobile electronic wallet. This section will provide the
necessary information about the interface part of the project.

The first step in the development of the interface was to
compare several types of interfaces with each other and de-
termine which type best suits the basic project requirements
mentioned in section II.

The possible interface types are:
• Using an external SATSA MIDlet residing in the mem-

ory of the phone itself
• Using SIM Application Toolkit (SAT)
• Using a SCWS servlet residing on the Java Card
Even though SATSA MIDlets [10] offer a lot in terms

of the visual interface options and adequate security, these
MIDlets lack in terms of the cross platform requirement
since they are designed specifically for a J2ME environment.
Furthermore, this MIDlet needs to be installed on the handset
itself and thus a reinstall is required every time a user
decides to switch handsets. Lastly, only very few handsets
are currently supporting the JSR 177 API required for using
SATSA MIDlets.

The SAT on the other hand offers full interoperability
since everything is stored on a SIM card, which is useable
by any kind of handset and is furthermore deemed to be very
secure. While this may sound tempting to use, the flipside
is that it lacks seriously in terms of visual interface options.
Moreover, its usability is limited to only SIM cards as SE.

A good compromise is the use of a SCWS installed on a
Java Card. A SCWS is a HTTP 1.1 web server embedded on
a Java Card and is available since the Java Card 2.2 version,
offering a device independent way of the management of
personal user data in a secure fashion. This option still puts
the application on the SE for security and interoperability
purposes. The difference is however that a relatively good
HTML interface can be offered by providing static and
dynamic content to the browser of a mobile phone through
the http://127.0.0.1:3516/ address, which is OS independant.

The last interface type seems to be the most beneficial
in terms of the electronic wallet project, because of its
advantages in both maintaining a good visual interface as
well as the interoperability, security and user friendliness
aspects.

The application and data can be additionally managed
externally through an Over The Air (OTA) link using web
protocols. A secure tunnel will be opened between the
SCWS on the Java Card and the OTA platform [11], which
is used for the administration of the SCWS.

D. NFC Bluetooth sticker

NFC stickers are contactless cards/tags designed to be
glued on the back of a mobile phone and are designed
to offer a solution to the current complex NFC ecosystem
that prevents a world-wide integration of NFC technology in
mobile handsets. A ferrite backing layer prevents distortion
to occur between the components of the phone and its radio
signal. The sticker also has an internal antenna installed for
communication purposes.

An alternative to this is the use of MicroSD cards, which
have an embedded chip that will grant NFC functionality to
the host device. The antenna itself can be either external or
integrated in the package. Additionally, MicroSD cards use
similar read/write functions as integrated NFC handsets.

Both have their advantages and disadvantages. An NFC
MicroSD card is basically plug and play, thus eliminating
difficult setups, but requires the handset to have a MicroSD
slot. The NFC sticker on the other hand only needs a
Bluetooth radio, which is a very common feature in most
of the mobile phones currently produced. The drawback is
however that these are less user friendly to setup compared
to NFC MicroSD cards.

After carefully weighing both options, we decided to
integrate a MyMax NFC sticker from Twinlinx in our
project. This will make the project potentially compatible on
a much larger variety of mobile handsets compared to the
small number of handsets currently available that support a
SE on a MicroSD card.

1) NFC sticker characteristics: The sticker has been
designed to be as small as possible. A small low voltage
battery is used to power the internal Bluetooth chip. This
chip is responsible for setting up a connection with the
handset and has the capability of making between 300 and

30

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

500 connections before the battery is drained. The battery
itself can be wirelessly recharged using a specialized USB-
charger.

Figure 2. MyMax NFC sticker architecture

The MyMax sticker can act either passively or actively
(Figure 2). An active sticker will rely on its own internal
power source, while a passive sticker will use an emitted
magnetic field from an external reader to draw power from.

Furthermore, the sticker can go into 3 different operation
modes; the first mode is a passive mode where the sticker
will act as a passive NFC tag. An external reader can be used
to read and/or alter the contents of the NFC chip/internal SE
on the sticker. It is important to note that a sticker operating
in this mode will work completely independent from the
handset that it is attached to (i.e., the handset is not required
to be powered).

The second mode requires that both the MyMax sticker
and its corresponding mobile phone draw power actively
from an internal power source. This mode allows a connec-
tion to be established between the sticker and the mobile
phone. Consequently, the content of the internal SE/NFC
chip can be read or changed by the handset through this
link.

The third mode takes advantage of the internal reader chip
of the sticker, which makes it possible to create a connection
to an external tag and allow the mobile phone to read or
change the contents of this tag.

2) Testing the capabilities of the sticker: We carried out
some preliminary tests with the NFC sticker to determine
several key aspects of the sticker that are necessary in the
development of the project.

First, we wanted to determine whether the active part and
the passive part of the sticker share the same SE. In order to
use the active part, we installed the MyMax demo projects
on the handset to write new values to the internal NFC tag of
the sticker. These values are readable by an external reader,
thus proving that the active and passive part of the sticker
share the same SE since the reader only reads the passive
part.

The second test involved the use of the MyMax SDK to

develop a J2ME test project Midlet. The purpose of this
project is to read the values of an external tag through
the reader chip of the MyMax sticker. DESFire APDU
commands are transmitted to the external tag using functions
found in the MyMax Library to send APDU.

3) Combining the sticker with the Java Card: Setting up
a secure Bluetooth link between the Java Card residing on
the handset and the external SE on the sticker is absolutely
vital to safeguard the read/write keys that are used in the
application for accessing and altering the wallet information
from unauthorized use. The purpose of this is to prevent any
counterfeiting from occurring.

It is important to note however that the JSR 82 API
for Bluetooth is not supported in general by the currently
available Java Cards. This obligated us to look for alternative
ways to gain this functionality, since the sticker as mentioned
before uses Bluetooth technology when accessed from a
handset and it is imperative that the overall security of the
system is kept at a high level.

A first potential solution for this issue is the use of SATSA
(Security And Trust Services APIs) Midlets [12], which are
designed specifically for the secure access of Java Card
applets. The availability of the JSR 82 API for SATSA
Midlets allows data to be passed between the Java Card and
NFC sticker in a more indirect fashion.

Two different communication APIs are possible with
SATSA Midlets. The first communication API is the SATSA
JCRMI (Java Card Remote Method Invocation), which re-
quires a Java Card applet to first extend the java.rmi.Remote
interface before any data can be shared with an external
application [13][14]. The second communication API is the
SATSA APDU, which uses APDU messages to access the
on-card objects.

The flipside however in the use of SATSA Midlets is
losing the cross platform aspect of the project since SATSA
Midlets are J2ME specific, thus narrowing down the number
of compatible handsets. Additionally, it turns out that almost
no mobile phones support SATSA JCRMI in the first place
and only a small number support the SATSA APDU API.

Despite the fact that SATSA Midlets gave good results in
terms of programming functionality, they are not viable to
be used in our project due to lack of support.

A second potential solution to gain Bluetooth functionality
is the use of the BIP (Bearer Independent Protocol) that al-
lows OTA support for the Java Card. While it is theoretically
possible to setup a Bluetooth connection using this protocol
with the sticker, the lack of publically available practical
information for development purposes has prevented us from
actually implementing this functionality in our project [15].
The addition of this functionality has been scheduled for
future work.

31

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

E. DESFire emulator

One of the goals of the project is to maintain backwards
compatibility for the existing passive DESFire Smartcards
that are used during the EVENT project for holding the
wallet data.

The MyMax sticker uses a mifare 1K Classic chip with
1KB of memory, which is a lot smaller compared to its
DESFire counterpart that can hold up to 8 KB. The latter
can thus hold a lot more wallet data and also uses certain
functionality and encryption algorithms (3DES) that the
sticker lacks. This results into an inability to port the passive
DESFire Smartcard wallet directly to the sticker.

A way to overcome this problem is the deployment of a
DESFire emulator on the SE of the sticker to emulate the
DESFire wallet functionality. Some additional advantages
are its larger sticker SE memory (32KB EEPROM) and it
can also be deployed on NFC phones or NFC MicroSD
cards.

We will be using a NFC MicroSD card instead of the
sticker for testing purposes during this project because of
the problems with initiating a secure Bluetooth link from
the SE as mentioned earlier.

III. RESULTS

This section will provide some deeper insight regarding
the inner workings of the application. This application
(Figure 3) exists out of an interface and two Java Card
applets, which are responsible for providing the actual wallet
data.

Figure 3. Application components

The content of the event wallet is displayed in the
interface on the mobile phone of the user. This HTML
based interface can be divided into a number of interface
components that are individually requested from a SCWS
residing on the Java Card through various HTTP requests.

The servlet that is responsible for providing the interface
with the necessary data is running on the SCWS and will
send specific SIO requests to the DESFire emulator on the
Java Card. This emulator is another applet residing on the
Java Card and will (after authentication) provide the servlet
with the desired data. The servlet will then, based upon the
collected data, give an answer to the previously made request
by the interface.

Updates to the wallet content on the emulated DESFire
card are done mainly through external points of sale, which
are available on either the event itself or through an OTA
purchase.

A. Application interface

The design of a mobile interface requires some special
attention, more so than its workstation counterpart.

First, there is a large differentiation between different cell
platforms, each whom presents its own interface. Secondly,
physical obstacles such as different screen sizes, aspect ratios
and physical buttons need to be taken into account as well.
Lastly, there is the user aspect, which demands that an
interface needs to be intuitive and easy to learn.

We made the decision to use a SCWS to provide a
consistent interface by taking full advantage of the mobile
phone browser capabilities, which is tasked for the rendering
of an HTML based interface for the wallet application. This
interface is theoretically universally applicable to any mobile
phone that supports Java Cards. Recent developments like
jQuery Mobile and PhoneGap make it possible to build
native looking and responsive HTML and javascript-based
applications.

The design of the interface of the application itself is
based upon known design principles [16], which dictate how
information on a page is to be presented to its user. This
includes but is not limited to bringing information to the
top of the interface by limiting the amount of links a user
has to go through thus, minimizing navigation or bringing
a collection of relevant information together, based on the
desired intent of the user.

1) Interface structure: The wallet interface consists of
three main tabs that allow a user to browse through a
number of subtabs. The main interface tabs are the ”Events”,
”Wallet” and ”Settings” tab.

(a) The event tab (b) The wallet tab

Figure 4. The interface

The ”My event list” subtab (Figure 4(a)) is used to list all
the possible events that a user currently has access to. This

32

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

list is kept up to date through a connection with a backend
server. A number of possible items are linked to each specific
event and are shown in the ”My wallet” subtab (Figure 4(b)).
Items can be bought and/or spend using the local terminals
or through OTA functionality [11].

The settings tab allows for various options, including
setting the number of listed items and/or events on the events
and wallet tab pages. The interface is resolution independent
and can thus be used on a number of different handsets. The
layout can additionally be changed altogether depending on
the preferred style of the user.

Finally, the wallet tab includes the option of purchasing
items OTA. The purchased items will be listed on the ”My
wallet” subtab as ”reserved items”, meaning that they still
need to be synchronized by specialized terminals called
”sync points”. The main advantage of this is that wait time
for the user at a terminal will be cut down significantly since
a user only has to touch the terminal and through a NFC
link will the previously purchased items be made available
for use.

B. Data flow

The next part of the application consists of two elements,
namely the GUI Servlet and the DESFire emulator, which
are both tasked with the provision of the actual data to the
interface mentioned earlier.

A GUI Servlet is a Java Card application that runs on the
SCWS and will act both as a server and a client when data
is requested by the interface, since it will serve information
to the interface after it has requested the necessary data from
the DESFire emulator.

The DESFire emulator is also a Java Card application
and consists of an emulated DESFire card with additional
communication logic. This emulated card follows the same
wallet structure of the passive tags used in the Tetra EVENT
project, which is responsible for holding the wallet content.
The additional communication logic of the DESFire emula-
tor allows a mobile phone to communicate with the terminals
that are used for monetary transactions during an event.

As a result of our project still being in a relative early
stage, we have opted to replace the DESFire emulator with
a temporary stub in order to fabricate a working prototype.
This stub will hold the same functionality from the point of
view of the servlet compared to the actual DESFire emulator.

1) Retrieval of data: A backend server forms the back-
bone of the system, because all the event dates, event names
and item names are requested from this server. Providing
a page in the interface with values requires the servlet to
request a list of AIDs and FIDs first from the DESFire
emulator.

These IDs represent the various events and items tied to an
event respectively and are required to be translated by the
back-end server to their actual corresponding names. The
item values shown on the wallet page are collected by using

an AID to select a specific event on the DESFire emulator
and then request the value of a specific item of that event
using its FID.

Figure 5. Retrieval of an item value

Every request done by the interface will thus trigger a
series of steps in the background of the application (Figure
5). The GUI servlet will perform a SIO method call to select
the AID that is linked to the desired event. The emulator
will respond with a confirmation message and the actual file
value will then be requested next by using the FID of a
specific item. The File value is passed back to the servlet,
which will pass it to the interface for visualization.

The backend server and its data have been temporary
replaced in our project by a number of vectors that store the
different names and dates mentioned before in a hardcoded
manner. The reason for this is identical to the stub in that
it is caused by the fact that the EVENT project is still in a
relatively early stage.

C. Installation on a Java Card

This section describes the installation part of the applica-
tion on an actual Java Card and any problems that occurred
in the process [17].

The first step of the deployment on a Java Card is the
conversion of the class files of the project, along with any
additional required export files, into an executable binary
CAP-file (Converted Applet File). This type of file format
is designed specifically for Java Cards and is used by an on-
chip installer to install the applet and link it with the classes
that are already available on the card [18].

33

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

1) Used hardware and installation problems: In terms of
hardware we used a G&D Sm@rtCafe Expert 5.0 microSD
Java Card in combination with the Gemalto Developers Suite
for the development of the project. The assumption was
made that our project, which is developed for a Java Card
version 2.2.2, would run on any physical 2.2.2 Java Card
without problems, but this original assumption turned out to
be false.

Different vendors use different implementations on their
Java Cards [19], which resulted in our case in the use of
libraries that are specifically made for Gemalto Java Cards
and thus are unavailable on the G&D card that we are using.
It should still be theoretically possible to deploy an applet in
a cross platform manner by following only the actual global
standards put forth by the Global Platform [20].

In order to test this hypothesis, we decided to rewrite the
DESFire emulator stub using the Java Card Development
Kit V2.2.2 from Sun and were able to successfully install it
on the G&D Java Card, thus proving our earlier made point.

IV. CONCLUSIONS

The goal of this research was to determine how the
functionality of a contactless smart card wallet on a mo-
bile device can be incorporated and improved; using an
intermediate step towards NFC enabled devices and taking
aspects such as security, usability, backwards compatibility
and interoperability into account.

By using a Java Card, a high level of security for
safeguarding the sensitive data residing in its memory is
maintained. The combination of a Java Card and the SCWS
allows the wallet to be deployed on a wide range of mobile
devices since no application is required to be installed on
the device itself.

The structure of the interface is based upon known design
principles to create an intuitive interface for the end-user.
Furthermore, the interface has been designed to take aspects
such as scalability into account, which is important for
overcoming physical obstacles such as different screen sizes
of the mobile device.

The current price for a MyMax sticker is 20 EUR, but its
price is expected to drop relatively fast, to around 10 EUR,
as a result of mass production. The length of the battery life
is long enough for it to be used on daily basis. Moreover, it
is easy to pair the sticker with a mobile phone.

These factors in combination with our research have
proven the MyMax sticker to be a good intermediate solution
in terms of the NFC ecosystem problem. However, we were
unable to setup a working Bluetooth connection between the
Java Card of the mobile handset and the sticker due to the
lack of publically available BIP documentation.

The backwards compatibility requirement of the project
can be fulfilled through the deployment of a DESFire
emulator on the MyMax sticker. Since a working emulator
was unavailable during the research phase, we developed a

DESFire emulator stub to offer temporary functionality to
prove the backwards compatibility of the mobile wallet by
installing the stub on the SE of the MyMax sticker.

Our conclusion is that a contactless smart card wallet on a
mobile device can be developed, in spite of the current NFC
eco system problems, while also taking the fundamental
requirements of the project into account.

REFERENCES

[1] W. Rankl and W. Effing, Smart Card handbook. Wiley, 2010.

[2] elab, “Tetra EVENT project,” [accessed 19-September-2011].
[Online]. Available: http://event.e-lab.be

[3] N. Forum, “Whitepaper: Essentials for successful nfc
mobile ecosystems,” [accessed 10-July-2011]. [Online].
Available: http://www.nfc-forum.org/resources/white papers/
NFC Forum Mobile NFC Ecosystem White Paper.pdf

[4] SIMalliance, “Whitepaper: Smart card web server, how
to bring operators’ applications and services to the mass
market,” [accessed 10-July-2011]. [Online]. Available:
http://www.simalliance.org/en?t=/documentManager/
sfdoc.file.supply&e=UTF-8&i=1185787014303&l=0&s=
QcEgCcAUIYrk9KQfX&fileID=1234200160560

[5] B. F. Council, “Mifare desfire specification,” p. 20, 2009.

[6] SIMalliance, “Smart card web server stepping
stones,” [accessed 10-July-2011]. [Online]. Available:
http://simalliance.org/en?t=/documentManager/sfdoc.
file.supply&e=UTF-8&i=1185787014303&l=0&s=
K5Aqx7C9UCsQoShk&fileID=/en?t=/documentManager/
sfdoc.file.supply&e=UTF-8&i=1185787014303&l=0&s=
K5Aqx7C9UCsQoShk&fileID=1261058498628

[7] S. M. Inc, “Java card applet developer’s guide,” [accessed
10-July-2011]. [Online]. Available: http://www.oracle.com/
technetwork/java/javacard/overview/index.html

[8] M. Montgomery and K. Krishna, “Secure object sharing in
java card,” p. 10, 1999.

[9] D. Perovich, L. Rodriguez, and M. Varela, “A simple method-
ology for secure object sharing,” p. 7, 2000.

[10] gemplus, “Whitepaper: Integrating the sim card into j2me
as a security element,” [accessed 10-July-2011]. [Online].
Available: http://whitepapers.zdnet.com/abstract.aspx?docid=
175614

[11] T. C. Vilarinho, “Trusted secure service design: Enhancing
trust with the future sim-cards,” p. 167, 2009.

[12] K. Mayes and K. Markantonakis, “Smart cards, tokens, secu-
rity and applications,” p. 416.

[13] S. Chaumette, A. Karray, and D. Sauveron, “Secure collabo-
rative and distributed services in the java card grid platform,”
p. 8, 2006.

[14] J. Andronicj and Q.-H. Nguyen, “Certifying an embedded
remote method invocation protocol,” p. 8, 2008.

34

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

[15] N. Aini, “Joomla authentication using smart card web server,”
p. 48, 2008.

[16] K. Holtzblatt, “Customer-centered design for mobile applica-
tions,” p. 11, 2005.

[17] Z. Chen, Technology for Smart Cards: Architecture and
Programmer’s Guide. Prentice Hall, 2000.

[18] Gemalto, “Java card & stk applet
development guidelines.” [Online]. Available:
http://developer.gemalto.com/fileadmin/contrib/downloads/
pdf/Java Card STK Applet Development Guidelines.pdf

[19] J.-F. Dhem and N. Feyt, “Hardware and software symbiosis
helps smart card evolution,” p. 19, 2001.

[20] GlobalPlatform, “Globalplatform card specification 2.1.1,”
[accessed 10-July-2011]. [Online]. Available: http://www.
globalplatform.org/specificationscard.asp

35

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

