MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

A Storyboard-based Mobile Application Authoring
Method for End Users

Jun-Sung Kim, Byung-Seok Kang and In-Young Ko
Dept. of Computer Science, Korea Advanced Institute of Science and Technology (KAIST)
291 Daehak-ro, Yuseong-gu, Daejeon, Korea
{junkim, byungseok, iko}@kaist.ac.kr

Abstract—Mobile computing focuses on supporting everyday
activities of users by providing services that utilize mobile
computing resources. More diverse types of users and computing
resources have been engaged in mobile computing environments.
Considering these characteristics, it is essential to support making
end-users actively participating in mobile computing environments
based on high-level goals of the users. To meet these requirements,
we have devised a storyboard-based application authoring method.
The main elements of this approach include a storyboard model to
structure the mobile applications and a semantically-based
abstraction method to represent complex applications in terms of
abstracted scenes in a storyboard. This approach improves the
existing visual programming paradigms which mostly focus on
visually composing fine-grained programming elements. We have
developed a prototype implementation of the application authoring
tool and tested it with a group of users to prove the effectiveness of
allowing end-users to create and manage mobile applications.
Keywords -

Mobile Application Authoring; Application

Storyboard; End-user Software Engineering; Visual Programming.

. INTRODUCTION

To achieve the user-centricity goal in providing mobile
applications [1], new computing paradigms such as service-
oriented computing (SoC) and task-driven computing (TDC)
have emerged [2][3]. These approaches focus on separating the
concerns of selecting and coordinating specific services from
the concerns of recognizing users’ high-level computing goals.
These allow end-users to more easily interact with numerous
computing resources in a mobile computing environment with
their high-level task goals. However, SoC and TDC in mobile
computing have been considered mostly within the context of
“use of applications” rather than “authoring of applications”.
Therefore, it is normally difficult for end-users to define their
task goals and to arrange and access mobile computing
resources that are necessary to accomplish their goals.

In this paper, we propose a storyboard-based mobile
application authoring method by which end-users can
intuitively specify their task goals as a storyboard and easily
generate a mobile application from the storyboard. In a
storyboard, users can specify the necessary functionalities and
structure of an application as high-level activities (scenes).
Once a mobile application is created, it can be validated,
executed, evaluated, and personalized.

Our approach also allows users to identify and reuse
common patterns of defining storyboards to accomplish a type
of goal. The main elements of our approach include a
storyboard model to structure the mobile applications and a

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

semantically-based abstraction method to represent complex
applications in terms of abstracted scenes in a storyboard. Fig.
1 shows the overview of the storyboard-based mobile
application authoring method.

Guidelines to
create scenes

A\

Personalized /

service o
recommendation

Intuitive application
creation

Reusable Assets

Figure 1. Overview of the storyboard-based mobile application authoring

Scaffidi et al. reported that most of the computer users
these days are non-professionals who do not know much about
conventional programming [18]. In mobile computing
environments, there is even a bigger proportion of non-
professional end-users.

End-user software engineering is a paradigm of allowing
end-users to develop software to meet their own needs while
bridging the gap between their high-level requirements and
detail system capabilities [4]. Our approach provides an end-
user software engineering framework that covers the overall
lifecycle of software development including requirement
specification, application generation, evaluation, and evolution.
In comparison to the existing visual programming paradigms
which mostly focus on visually composing fine-grained
programming elements, the storyboard-based authoring method
enables end-users to represent their requirements in a higher-
level abstraction.

This paper is organized as following. We introduce the
major requirements of end-user mobile application authoring
and explain the related works in Section Il and Section IlI,
respectively. Section IV and Section V describe the core
approach of the storyboard-based authoring. Section VI shows
the evaluation results. Finally, Section VII concludes the paper
by explaining the main contributions and future works.

40

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Il. REQUIREMENTS OF END-USER MOBILE APPLICATION
AUTHORING

A. User-centricity — Task-driven abstraction and
visualization

In a mobile computing environment, it is especially crucial
for end-users to access mobile computing resources based on
their task goals without considering any technical details. End-
users need to be able to focus on describing what they need to
achieve their task goals rather than expressing the detail
structure and functions to be implemented in their applications.
In addition, there must be a visual aid to allow users to
intuitively represent their task requirements and to understand
the core activities to be supported by a mobile application.

B. Efficiency — Automated and non-error-prone authoring
and instantiation processes

Most end-users are non-programmers who do not have
enough technical skills to create, recognize and compose
services and to monitor applications [5]. Therefore, it is
essential to minimize such technical burdens of users by
automating the process of selecting and combining component
services that are necessary to accomplish a task goal. In
addition, there must be a mechanism of bridging the gap
between a high-level task representation and a set of services
available in a mobile computing environment, and making
automated bindings between those two different abstractions.

End-users’ authoring activities are normally error prone.
Therefore, the authoring process should support the ways of
resolving mismatches between required capabilities and
available service functions, and validating an application
against a user’s task goal.

C. Reusability and Evolovability — Reuse of common
application patterns and support of application evolution

In mobile computing environments, there is a wide
spectrum of applications to be supported for diverse types of
users. In these environments, reuse of common application
patterns and evolution of applications based on users’ feedback
are critical to reduce development efforts of applications and to
improve the quality of applications [11][12]. Therefore, it is
necessary to provide a mechanism to identify a common
structure and functionalities to support a similar set of user
tasks and to enable these common application patterns to be
refined and extended based on users’ feedback. The application
instantiation process also needs to meet these requirements by
providing a mechanism of reusing successful task-service
bindings for similar situations, and by making these binding
patterns evolvable.

D. Mobile Usability — Usability support in user-interface-
constrained mobile computing environments

Mobile usability is about allowing mobile users to
effectively interact with an application by using User Interface
(U-constrained computing environments such as smart
phones and tabular PCs. The end-user mobile application
authoring environment should support mobile usability such
that users can effectively represent and recognize the core
structure of task activities by using their mobile devices. The
granularity of Ul elements that comprise a task-driven
abstraction of an application needs to be coarse-grained enough

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

to be efficiently visualized on a small screen, and to be
controlled by using constrained input methods. Especially, it is
essential to make the high-level Ul abstraction of an
application consistent with the detail application integration
structure [6].

I1l. RELATED WORK

End-user software engineering is a paradigm to allow end-
users to create and manage software applications without
having deep programming knowledge and skills [4]. Many
approaches have been developed to help end-users conduct
various development activities throughout the software
development lifecycle.

A. Flowchart-based Approach

In this approach, end-users can draw a flow of component
services and conditions by using a common format or template
provided by developers [13][14]. Although this allows users to
structure an application based on the main flow of activities
and events that are important in a specific domain, it is often
difficult for end-users to learn and understand detail notations
(branches, loops, etc.) and options (e.g., sequential structure vs.
parallel structure) to represent a flow.

The activities in a flow are normally represented at the
same abstraction level as component services. Therefore, users
need to associate each activity to a specific component service
to be used. It is usually a difficult job for end-users to
recognize, select and compose component services with
understanding their functionality and other technical factors
such as interfaces, preconditions and post-conditions. In
addition, the detail flow structure cannot be shown effectively
on a small screen of a mobile device.

B. Wizard-based Approach

In this approach, end-users can create and customize
applications by creating forms and representing dialogues that
are needed to be used in user interactions [15][16]. The step-
by-step dialogue sequence and appropriate forms to provide at
each step can be specified in the application definition. The
wizard-based approach relatively does not need users to
understand complex notations and technical factors. However,
this approach requires careful modeling of the forms and
dialogues. The forms need to be modeled such that the users
can easily understand the desired inputs to be provided at a step.
In addition, detail conditions and branches of the steps cannot
be easily programed by end-users. In this approach, some error-
toleration features can be incorporated to ensure the quality of
data filled in a form.

C. Spreadsheet-based Approach

This approach allows end-users to create applications by
putting values and assigning computations to designated cells
in a spreadsheet [19]. Since spreadsheets are widely used by
people, end-users can easily learn how to make applications by
editing cells in a spreadsheet. In addition, some features to
improve the dependability of application can be supported by
adding interactive and dynamic testing capabilities described in
[19]. However, the types of applications that can be developed
by using this approach are limited to the ones that require
management and computation of data in a tabular form. In
addition, computational rules are normally hidden behind the

41

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

visual representation of a spreadsheet, and novice users may
have difficulty of creating and validating them.

D. Storyboard-based Approach

A storyboard is a series of visual illustrations sequentially
arranged and displayed. It has been widely used in the movie,
advertisement, and multi-media domains. There have been
some attempts to use storyboards for designing and creating
applications [9][10][17]. In this approach, service functions are
abstracted to ‘scenes’ that can be arranged into a storyboard. A
storyboard visualizes the structure and semantics of an
application, and provides users with a series of interfaces to
interact with the application. To create an application, end-
users firstly identify available service functions via predefined
mockup scenes, and then select and arrange the scenes in a
storyboard template. Users can understand the semantics of an
application by interpreting the sequence of the scenes selected.

This storyboard-based approach provides end-users with an
intuitive interface to select and compose component services.
In addition, a mockup scene can be used to effectively visualize
the essential functionality of a component service. In addition,
a storyboard that is composed of multiple scenes can be
visualized and browsed effectively on the small screen of a
mobile device.

However, similar to the wizard-based approach, most of the
storyboard-based approaches cannot visualize and control
detail application structures. In addition, large-scale
applications that need to be composed of many scenes arranged
in various structures cannot be efficiently created and managed
by using storyboards. Some researchers have tried to overcome
the limitations by providing detail structure representations on
storyboards. However, the complex storyboard representations
increased the difficulties of understanding and controlling
component services to be accessed to accomplish a user task. In
other words, although we can represent some control structures
such as loops, branches and parallelism in a storyboard, a
mobile application that is presented in a storyboard becomes
too complex to understand and manage by end-users.

In each scene of a storyboard, users need to be able to
represent their computational needs in their own perspective.
However, most storyboard-based approaches lack the ability of
hiding the technical details of component services and
hardware devices in an environment. In addition, most of them
do not support the reuse of existing storyboards to make new
mobile applications based on previously defined compositional
patterns. Without the support of finding and reusing existing
storyboards, it is hard for the end-users to represent a service
composition from scratch with considering different candidates
of services in a local environment and the dynamically
changing context of using an application. As we discussed in
Section 11, it is necessary for end-users to find most appropriate
patterns of making storyboards for their needs, and generate an
application by simply extending and customizing them. The
previous storyboard approaches also do not provide facilities to
validate the correctness of a service composition generated
from a storyboard.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

IV. STORYBOARD-BASED MOBILE APPLICATION
COMPOSITION MODEL

We have developed our storyboard-based application
composition model based on the task-oriented application
framework [20]. As depicted in Fig. 2, the model is composed
of three different views: visualization model (called U-board),
task meta-model, and instances.

The visualization model is for allowing end-users to
describe their computing tasks as a story which is composed of
multiple activity scenes. The task meta-model defines a
decomposition structure of user-centric applications. A task is
created for each computational goal of a user, and composed of
unit tasks each of which defines a compositional pattern of
services for performing an action in the task. A unit task
defines a set of necessary component services and the
interconnection structure among them. The instances are actual
instances of applications and services that can be run in a local
environment. Instances of a task are generated by considering
system specific characteristics and environmental conditions.

As shown in Fig. 2, the task meta-model maps the user-
centric visualization into the elements of an application
instance. All the entities in our models are described and
managed by using ontologies. In other words, the semantics of
task stories, scenes, tasks, unit tasks, and services are described
by using domain specific ontologies, and their semantic
relationships and similarity can be inferred by using a
reasoning engine [20]. In this section, we focus on explaining
the content of the visualization model.

U-Board Task Meta Model |
Visualization Model ' !
TaskStory | i | T i T
i+ A determined and descriplive way lo |- Task Story
m— organize unit lask in a suitable ' LDefinitions |
Is composed of | | T ! Is compoasd of
1 s compased of | i
Unit Task
Scene] '
+=-» A configuration or sel of high-Jevel |1
) absiract services or functions that are)
H to perform an action : s
: | | b composed of ' '[.k——lm“
1 | L oempen | :;
! Abstract Service ! = 1
: L || service ||
] A class of services thal implement | ¢ | |
1 a spocific type of unit asks = =
End User System

Figure 2. Three views of the storyboard-based mobile applcation
composition model

A. Scene Visualization Model

As we discussed in Section Il, each scene of a storyboard
needs to be highly readable even on mobile devices. A shown
in Fig. 2, a scene is composed of three parts: activity name,
representative image, and context information. The activity
name is a textual name of a scene, and the representative image
visualizes the essential characteristics of a scene such as an
object, movement, and operations. The context information
represents the temporal and spatial context in which the scene
is activated and becomes valid.

42

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Waiting Sc_en e

B
| Public/privaie spoce, | l_

iy /might time.

| #Sharing Materials® | - Iterative Scene

e prvare g
day./night time._

T

= s

Public/private spoce,
doy./night time.

Invariant Scene

_{,‘.andilionai Scene

Variant Scene”

Concurrent Scene

Sub-storyboard

Figure 3. Examples of scene visualization (the scenes defined in the task
story called ‘Having a Meeting’)

B. Scene Types

A task story can be composed of scenes that are either
invariant or variant scenes. Invariant scenes are static parts of
a story that are not changed over time and are common across
different situations. At the example story shown in Fig. 3,
‘Meeting Call’ and ‘Closing Meeting’ are the scenes (marked
with the yellow background) that are common in every
meeting tasks, and defined as invariant scenes. Variant scenes
are the ones that can be replaced by an alternative scene based
on user preferences and environmental conditions. In the
example above, ‘Sharing Materials’ and ‘Setting Environment
are variant scenes that can be substituted to an environment-
specific or customized scene. For example, ‘Shareing
Materials’ can be replaced by a scene of exchaning secure
emails to handle critical information. In most of the cases,
variant scenes are replaced by personalized or more
specialized scenes automatically based on user preferences or
environmental conditions. This is to meet the efficiency
requirement explained in Section II.

Scenes are also categorized into four groups based on their
control structures: sequential, concurrent, iterative, and
conditional scenes. The scenes that are arranged in a
storyboard are sequential in default. The concurrent scenes
that need to be executed in parallel can be grouped together
into a scene as depicted in Fig. 3. The compound scene can be
expanded into multiple, concurrent scenes by clicking on the
control icon (overlapped rectangles). Scenes with a curved
arrow are iterative scenes, which services are executed
iteratively while a condition is met. The iteration condition of
a scene is represented as a set of properties, and can be
checked by double clicking on the curved-arrow icon. A
diamond icon that is shown on a scene means that the scene is
a conditional scene. A conditional scene is activated when a
condition, which is represented as a set of properties, is met.

In our approach, control structures can be imposed only on
each scene rather than across multiple scenes in a storyboard.
Although this limits the representation power of controls, our
simple and graphical controlling mechanism makes the
authoring and management of storyboards much simpler and
easier for end-users.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

V. IMPLEMENTATION

We have implemented a prototype of our end-user mobile
application authoring tool. Fig. 4 shows screen shots of the tool.
The main screen shows a storyboard canvas and a task radar.
The task radar allows users to visually control some contextual
aspects such as spatial, social, temporal and personal aspects to
narrow down the candidate storyboard to reuse for a task. The
tasks found are shown in a hierarchical structure (based on their
ontological relationships) in the task browser. When a task
story is selected from the task browser, the sequence of scenes
is displayed in the storyboard canvas, and the detail list of
scenes and their decomposition structures are shown in the
scene browser.

Our tool is developed by using Java SWT. We used
jfreechart 1.0 for implementing the task radar. This client is
installed in two ultra-mobile PCs (SAMSUNG Q1, Fujitsu
U2010). In addition, the semantic descriptions of unit tasks and
task stories are made by using the Protégé ontology editor [7].
The semantic reasoning of finding storyboards and scenes are
implemented by using the Jena library [8].

By using this tool, a user can define an initial task story by
finding and selecting a storyboard template that is most
appropriate for his or her task. Then, the end-user can
customize the initial task story by rearranging, adding, and
deleting scenes on the storyboard. A task story is defined by
arranging a set of scenes each of which has its URI, name,
control structure type, variability conditions, and contextual
properties.

Task Radar

Academic_Socle -
Having_a_Re
Having_a_Wis
Having_a_Pn -

PRI .

[

Social , Spatial
o’

Temporal Personal

@fie @Bacsad 0T SettingSchedule
Phone Service
Online Chatting

a FlleTransfer

FTP Transfer
WEB Transfer

4 SettingEnvironmen

Sattinglliuminat

SettingCompute

.

Figure 4. Layout of the mobile application authoring tool

While a task story is defined, the application authoring tool
analyzes the relationships among the scenes and automatically
suggests necessary modifications on the task story if it detects
mismatch between inputs and outs of consecutive scenes or
contextual inconsistency among scenes.

Once all authoring steps are finished, the end-user can hit
the ‘save’ button to initiate the process of converting the
storyboard representation into a concrete service composition
that can be executed in the local environment. The storyboard
is saved with some semantic description and can be found and
reused for similar purposes.

43

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

VI. EVALUATION

To evaluate our approach whether it meets all the
requirements to enable end-users to create mobile applications,
we conducted a user test. We recruited sixty users and provided
them with an operation manual (Table I) of the application
authoring tool. The users are mostly graduate students at our
school, but only few of them are expert programmers. To
compare our approach against the existing storyboard
approaches, we divided the sixty users into three groups. Each
group participated in evaluating one type of approach to avoid
learning effects because we measured the time to finish the
customization of a task story according to a given scenario and
counted the number of steps to accomplish the job.

TABLE |. OPERATION MANUAL OF THE APPLICATION AUTHORING TOOL

Operation Descriptions
Add Drag and drop scenes onto U-Board among the
recommended scenes
Delete Press delete key on the scene
Move Drag and drop scenes onto the any cell in U-Board
Retrieve Input the functionality of scenes to the retrieval window

Save Press save button on task authoring tool

Undo Press undo button to rollback to the original task story

TABLE Il. EVALUATION CRITERIA AND METHODS

Requirements Evaluation Methods

Easy to entry
(measure time to finish customizing a task story
according to a given scenario)

Intuitiveness of scenes and task story
Q) Difficulties to understand scenes and task story

Usability Appropriateness of the size of user interface

considering mobile device
Q) Appropriateness of the size of each scene

Appropriateness of the volume of information

Q) Do you think we provide too much information to
bother the use of tool?

User efforts

(measure the number of steps to customize a given task
story)

Error prevention

Q) Do you think the guidelines are helpful to solve
difficulties in customizing task story

Efficiency

Ease of Add/Delete/Move/Save Scenes
Q) Do you think Add/Delete/Move/Save functions are

Reusability | Working properly

Accessibility to existing scenes and task stories
Q) Do you think it is easy to access to existing scenes
and task stories

To the first group of users, we provided a tool that shows
only a monolithic image for each scene and does not support
the abstraction and mapping of scenes into task activities. To
the second group of users, we provided a tool that visualizes
scenes based on our scene visualization model, but does not
support the task-oriented abstraction of scenes. Our task-
oriented storyboard authoring tool was given to the third group
of users.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

We evaluated the three groups to check whether they meet
the usability, efficiency and reusability requirements that we
explained in Section Il. To measure the usability, we counted
the time taken by the user groups to finish customization of a
task story, and asked a series of questions to check various
usability factors. Efficiency is measured by counting the
number of steps to finish the customization of the task story,
and by checking the effectiveness of error prevention facilities
supported by the tools. Reusability is measured by asking a
couple of questions that are about the easiness of managing
scenes, and the effectiveness of finding and accessing existing
scenes and task stories. Table Il summarizes these evaluation
criteria and methods.

Time to finish customize task story
{Min)
|
T

Usability questionaire

By

(a) Usability

Steps to finish customizing task
story

Error prevention

Rating 85

(b) Efficiency

Accessibility to existing scene/task
story

Rating (0~5)

& e &
ot winels

CASEL CASE2 CASE3

ity 1o existing

scene/task story X 34 a2

(c) Reusability
Figure 5. Evaluation Results

Fig. 5 shows the evaluation results. As shown in Fig. 5(a),
our approach (Case 3) lowered the barrier to entry to the
application authoring job by reducing the time to learn how to
customize and manage task stories. The answers to the usability
guestionnaires also show that our approach is much more
intuitive and satisfactory than other two approaches.

In terms of efficiency, our approach contributed to reduce
the number of steps to customize task stories and to prevent
errors during the application authoring process. As shown in
Fig. 5(b), by using our approach, the users had to perform 9
steps in average where the first approach required average 22
steps.

44

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Finding appropriate storyboards to reuse is crucial to
improve the reusability of service compositions. The survey
result shown in Fig. 5(c) proves that our approach helped the
users to find and access useful storyboards to reuse.

VIl. CONCLUSION

In this paper, we proposed the storyboard-based end-user
mobile application authoring method. The main goal of our
approach is to allow end-users, who do not have sophisticated
technical knowledge about developing mobile applications, to
easily create and customize those applications. We identified
three essential requirements (usability, efficiency, and
reusability) of mobile application authoring for end-users to
successfully represent their task goals and required contexts in
an application description.

Our task-oriented storyboard approach provides an
environment in which end-users can develop mobile
applications without having technical knowledge. Users can
visually browse through existing storyboard templates by
controlling multi-dimensional aspects, and easily extend and
customize them to generate mobile applications to achieve their
computational goals. By using our tool, users can represent
compound scenes and essential control structures that are
effective to manage and dynamically instantiate storyboards
according to the changes of environmental conditions and user
requirements.

We are currently in progress on testing our application
authoring tool by applying it to the public application domains
in our campus and conducting a research to make the
application authoring more evolvable by accepting and
reflecting feedbacks from end-users. The accumulated
feedbacks are analyzed in spatial, temporal, personal, and
social perspectives. These can be automatically reflected in
selecting or composing unit tasks and services for application
authoring.

ACKNOWLEDGMENT

This work was supported in part by the IT R&D program of
MKE/IITA [KI001877, Location/Societal Relation-Aware
Social Media Service Technology]. This research was also
supported by the National IT Industry Promotion Agency
(NIPA) under the program of Software Engineering
Technologies Development.

REFERENCES

[1] Hansmann., Pervasive Computing: The Mobile World. Springer, 2003,
ISBN 3540002189.

[2] Wang, Z. and Garlan, D., Task-Driven Computing. Technical Report,
CMU - CS -00-154, 2000.

[31 W.T. Tsai and Yinong Chen., Introduction to Service-Oriented
Computing, Arizona State University,
http://www.public.asu.edu/~ychen10/activitiess/SOAWorkshop.
<retrieved: July, 2011>

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

[41

[5]

(6]

[71

(8l
[°]

[10]

[11]

[2]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Andy Ko., The State of the Art in End-User Software Engineering,
http://www.sei.cmu.edu/interoperability/research/approaches/upload/Le
wis-SEEUP2009-Workshop-20Review.pdf. <retrieved: July, 2011>

David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste.,
“Project Aura: Towared Distraction-Free Pervasive Computing”, IEEE
Pervasive Computing, vol. 1, no. 2, pp. 22-31, Apr.-June 2002.

Florian Daniel, Jin Yu, Boualem Benatallah, Fabio Casati, Maristella
Matera, and Regis Saint-Paul., “Understanding Ul Integration: A survey
of problems, technologies, and opportunities,” IEEE Internet Computing,
vol. 11, no. 3, pp. 59-66, May/June 2007.

The Protégé Ontology Editor and Knowledge-base Framework,
http://protege.stanford.edu/. <retrieved: July, 2011>

The Jena Semantic Web Framework, http://jena.sourceforge.net/.
<retrieved: July, 2011>

Yang Li and James A. Landay., “Activity-Based Prototyping of
Ubicomp Applications for Long-Lived, Everyday Human Activities,”
Proc. Twenty-sixth annual SIGCHI conference on Human factors in
computing systems (2008), pp. 1303-1312.

Agnes Ro, Lily Shu-Yi Xia, Hye-Woung Paik, and Chea Hyon Chon.,
Bill Organiser Portal: A Case Study on End-User Composition, Proc.
WISE 2008 Workshops, Springer Berlin / Heidelberg, vol. 5176, pp. 152-
161, 2008.

lvar Jacobson, Martin Griss, and Patrik Jonsson, Software reuse:
architecture, process and organization for business success, ACM
Press/Addison-Wesley Publishing Co., New York, NY, 1997.

Nam-Yong Lee and Charles R. Litecky, “An Empirical Study of
Software Reuse with Special Attention to Ada,” IEEE Transactions on
Software Engineering, vol. 23 no. 9, pp. 537-549, September 1997.

W. M. Johnston, J. R. Paul Hanna, and R. J. Millar., “Advances in
Dataflow Programming Languages, ACM Computing Surveys (CSUR),
vol. 36, no. 1, pp. 1-34, March 2004.

Cycling 74 Max, http://www.cycling74.com/products/max.html.
<retrieved: July, 2011>

D. Draheim and G. Weber, Form-Oriented Analysis., A New
Methodology to Model Form-Based Applications, Springer, October
2004, ISBN-10: 3540205934

Zhiming Wang, Rui Wang, Cristina Aurrecoechea, Douglas Brewer,
John A. Miller, and Jessica C. Kissinger., Semi-Automatic Composition
of Web Services for the Bioinformatics Domain,
http://cs.uga.edu/~jam/home/theses/z_wang_dissert/thesis/wsbiojournal/
workflow-journal29.pdf. <retrieved: July, 2011>

M.Haesen, J.Meskens, K.Luyten, and K. Conix., Supporting
Multidisciplinary Teams and Early Design Stages Using Storyboards,
Springer Berlin / Heidelberg, Human-Computer Interaction. New Trends,
Volume 5610, pp. 616-623, 2009.

Scaffidi, C. Shaw, C., and Myers, B., An Approach for Categorizing
End-user Programmers to Guide Software Engineering Research. Proc.
First Workshop on End-user Software Engineering (WEUSE), pp. 1-5 at
the 27th International Conference on Software Engineering (ICSE 2005),
St. Louis, Missouri, USA, May 15-21, 2005.

Margaret Burnett, Curtis Cook, and Gregg Rothermel. End-user software
engineering. Commun. ACM 47, 9 (September 2004), pp. 53-58.
In-Young Ko, Hyung-Min Koo, and Angel Jimenez-Molina. User-
Centric Web Services for Ubiquitous Computing. J.D.Vel asquez and
L.C. Jain (Eds.): Advanced Techniques in Web Intelligence — 1, SCI 311,
pp. 167-189, Springer-Verlag Berlin Heidelberg 2010.

45

