
Extending Friend-to-Friend Computing to Mobile
Environments

Sven Kirsimäe, Ulrich Norbisrath, Georg Singer, Satish Narayana Srirama, Artjom Lind
Institute of Computer Science, University of Tartu

J. Liivi 2, Tartu, Estonia
Sven.Kirsimae@ut.ee, Ulrich.Norbisrath@ut.ee, Georg.Singer@ut.ee, Satish.Srirama@ut.ee, Artjom.Lind@ut.ee

Abstract—Friend-to-Friend (F2F) computing is a popular peer
to peer computing framework, bootstrapped by instant messag-
ing. Friend-to-Friend (F2F) Computing is a simple distributed
computing concept where participants are each others friends,
allowing computational tasks to be shared with each other as
easily as friendship. The widespread availability of applications
and services on mobile phones is one of the major recent develop-
ments of the current software industry. Due to the also emerging
market for cloud computing services we mainly find centralized
structures. Friend-to-Friend computing and other Peer-to-Peer
(P2P) computing solutions provide a decentralized alternative.
However these are not very common in mobile environments.
This paper investigates how to extend the Friend-to-Friend
computing framework to mobile environments. We describe our
process and point out possible pitfalls and achievements. For this
investigation, we ported our private cloud environment Friend-
to-Friend Computing to Android and Symbian. We demonstrate
a mobile gaming application using Friend-to-Friend Mobile.

Keywords—Distributed Computing; Peer-to-Peer; Social Net-
works; Android; Symbian; Mobile Software; Mobile Networking
and Management

I. INTRODUCTION

In this paper, we will present a case study on how we
ported our F2F Computing framework to Android and the
Symbian S60 mobile platform. Based on our observations we
will outline the process of making P2P computing frameworks
mobile aware.

Along with the increased availability of software as a service
(SaaS) on PCs, services are also moving into the mobile
market. Moreover, a smart phone nowadays has become a
commodity device with millions subscriptions worldwide. It
is not just a mere voice only device anymore, but offers
many alternative communication technologies. The importance
of running applications and accessing services becomes the
key demand from the users. Also having access to these
in a convenient manner plays an important role. Users do
not care about installation process, installation locations–on
the phone or in the cloud–, only about the provided func-
tionality. They appreciate the possibility of having a set of
self selected applications on their devices. The importance
of this application and service support becomes evident with
the success of the iPhone [1] and Android platforms as well
as with the struggling of Nokia [2] to provide a competing
architecture. In addition, Nokia’s investment in Maemo and
Meego, opensourcing and withdrawing Symbian and now the
switch to Windows 7 at the same time as well as Google’s

success with Android prove the same point. Their strategy
is to offer other ways to distribute applications and services
as an alternative to Apple’s very popular and successful but
proprietary platform.

The approach of providing computational resources from
smart phones for various collaborative tasks is conceptually
similar to providing services on them. This was studied
at the mobile web service provisioning project [3], where
Mobile Hosts were developed, that provide basic services
from smart phones. Mobile Hosts enable seamless integration
of user-specific services to the enterprise by following web
service standards, also on the radio link and via resource
constrained smart phones [4].

Friend-to-Friend (F2F) Computing is a simple distributed
computing concept where participants are friends or acquain-
tances of each other, allowing computational tasks to be shared
with each other as easily as friendship. It will be explained in
more details in Section II. A network of friends is the base for
F2F Computing. A similar concept can be seen among mobile
device users. People using these devices are often socially
connected. There are multiple services for mobiles available
nowadays, which support this concept. Examples for such
services are Facebook, Twitter, Flickr, blogging, youtubing,
or multiplayer games.

In this paper we describe the simply installable extension of
F2F Computing called F2F Mobile running on the Android and
Symbian mobile operating systems. We will show the achieved
transparency between mobile and static systems from a devel-
oper’s point of view. We will show some of the difficulties in
extending P2P computing to the mobile environment, which
have to be addressed by other mobile platform developers.
We will also present an application demonstrated on top of
our F2F Mobile.

The rest of the paper is organized as follows. Section 2
will give a brief outline of Friend-to-Friend (F2F) Com-
puting. Section 3 introduces the F2F Mobile concept, its
implementation details, the demonstrated application, and a
small reference of criteria for mobile platform selection and
implementation issues. Section 4 shows related work for F2F
and mobile environments. Section 5 concludes the paper with
future research directions.

II. FRIEND-TO-FRIEND COMPUTING

Friend-to-Friend (F2F) Computing was initially motivated
by the complexity of setup, usage, and administration of Grid

75

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

Figure 1. F2F Pidgin plugin screenshots: F2F Group friends, F2F Chat,
application selection and debug window

networks. Encouraged by the fact that Skype made voiceoverIP
(VoIP) usable for everyone and these deficiencies of current
Grids, we combined the best parts of both ideas into a system
today known as Friend-to-Friend Computing. F2F Computing
is an open source project for spontaneously running distributed
applications using the resources provided by computers of
friends. The initial setup of the virtual parallel or distributed
computer environment makes use of Instant Messaging (IM)
software as the triggering means. As a result, people can share
computation tasks and other resources in an easy and intuitive
manner through their social connections.

Creating an F2F Computing network consists of specifying
a set of IM contacts and starting distributed applications or
services. An important aspect of F2F Computing is its ability
to be plugged into various different instant messengers and its
independence of and interoperability between different instant
messaging protocols. F2F Computing tries to choose from a
set of network protocols the fastest one to connect each peer
with each others. It also uses Network Address Translator
(NAT) traversal techniques to accomplish efficient connections
in case of address translating network devices. Figure 1 shows
a collection of screenshots of dialogs of the F2F Pidgin plugin.
It shows the list of friends added to a F2F Group, an F2F Chat,
the application selection, and a debug window of a running
F2F application.

The new architecture of F2F Computing (see Figure 2)
allows different clients for setting up F2F networks and
running applications or services on them (F2F Adapters). Most
commonly used are plugins for IM (we have plugins for
Pidgin and SIP Communicator – now Jitsi [5]). To run an
F2F network the plugins need to be installed on the devices
of all participants. One of the group members has to initiate the

F2F Group by adding initial participants. After authorization
by these, applications or services can be started as jobs. There
are also command-line clients for starting initiators without
user interaction.

Once the F2F network is established, the clients can ex-
change files between their friends in their contact lists, use
collaboration tools like a whiteboard, play games, or accel-
erate computational intensive tasks like rendering or research
simulations. Computational applications that have been carried
out on F2F Computing include Monte Carlo computations,
distributed matrix multiplication making it possible to solve
large distributed systems of linear equations, and rendering
tasks on Blender [6].

The first version of F2F Computing [7] was written in Java
and was realized as a plugin of the multi protocol instant
messenger SIP Communicator (Jitsi). F2F Computing was
later rewritten to have a lower footprint. The core is now
implemented in C allowing it to be ported even to restricted
platforms like mobile devices. On a standard x86 system, the
core itself has now only a size of 34k. We also re-implemented
the application layer. This means, we implemented the instant
messaging adapter as a plugin for Pidgin and as a Python com-
mand line client. For the execution adapter, which executes the
tasks, we initially used Python. Python is here only used as a
prototype for the access to the actual core. Currently, we are
adapting Low Level Virtual Machine (LLVM) [8] and Java
Virtual Machine (JVM) as execution adapter to allow other
languages (like C, C++, and FORTRAN) for the executed
applications and services. Python is only used here to access
the F2F API.

The F2F Computing framework needs fast communication
between participating peers (friends). The research was trig-
gered by the need for fastest available communication for
distributed desktop computing (cycle scavenging) applications.
However, the fact that also other IM applications like VoIP,
Video over IP and file transfer, are in real need for direct and
fast communication availability, F2F Computing has grown
into other application domains as well. We have successfully
used F2F Computing for the aforementioned computational
applications, for teaching, a cross-IM-brand whiteboard appli-
cation, two computer games and a file transfer application.

Figure 2 shows the F2F Computing architecture. The frame-
work consists of four layers: F2F enabled applications, appli-
cation, adapter, core, and communication. In the adapter layer
we provide the abstraction from the different communication
providers of the communication layer in one uniform inter-
face for F2F Computing applications, which can be run via
the Computing adapter as byte-code compiled from various
languages. This abstraction provides access to the concepts
service, peer, and group.

One of the important requirements of F2F is reliable connec-
tivity between peers and speed of communication. Therefore
the framework has various connectivity possibilities like the
TCP communication provider, reliable UDP communication
provider, or the IM communication provider. In the future, the
communication layer can be easily extended by implementing
the specific communication providers (for example, Bluetooth,
Infiniband). The framework chooses always the fastest way. If

76

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

others

F2F Core

Signaling
adapter

Computing
adapter

LLVM
C,C++,Fortran

LLVM
C,C++,Fortran

adapter
layer

TCP/IP

communi-
cation layer

IPV6 Bluetooth

Signaling

core
layer

uses

process
buffers

uses/ manages
threading and memory

communicate via

uses/
runs application
on top of

executes byte-
code using

UDP
stun

Inf.band

Pidgin F2F HeadlessSIP CommunicatorF2F enabled
apps.

GUI Wrapper + IM

provide

othersothers

UPNP

Python othersothersothersapplication
layer

Figure 2. The F2F Computing architecture

peers are in the same local network direct TCP should be
possible. If it is not, the framework attempts to establish UDP
connection using NAT traversal techniques implemented in the
UDP communication provider. In the worst case, if peer-to-
peer connectivity is impossible, the messages are sent through
instant messages of the respective instant messenger.

III. F2F MOBILE

F2F Computing is based on a simple and transparent social
concept: being friends or acquainted with others. It also offers
an easy way to share resources on demand between a network
of such friends. The mobile phone is one of the most important
appliances for supporting social interaction. The demand for
services and applications ubiquitously supporting this social
interaction is growing [9]. However, due to the strongly
fragmented nature of mobile technology, current service and
application development is complex and focused on single
services or products. Our hypothesis is that F2F Mobile will
introduce a transparent environment for social applications
and services. F2F Computing allows a spontaneous creation
of social networks and the deployment of applications and
services within this network. Including mobile devices in such
a network is an obvious step.

Consider the use case where a group of people want
to share some content in private and independent of third
party services. Having F2F Computing embedded into mobile
devices allows them to spontaneously create a private network
of friends in order to share content or run an application.
F2F Computing relies on a third party service only while
bootstrapping the P2P network. After direct connections were
established the communication is happening only between the
peers in the private group.

Before designing F2F Mobile, we considered two major
factors – the market penetration of mobile platforms on the one
hand and the simplicity of third party development of mobile
platforms on the other hand. At the time of carrying out this
research, Nokia’s Symbian, Google’s Android, and Apple’s
iPhone OS had approximately the same share of applications

on smart phones. However in short time Android and iPhone
OS have significantly gained importance and currently Nokia
is far below 50 percents market share. Today we would suggest
to target the Android platform first as it comes with less
restrictions especially in a legal sense than Apple’s iPhone OS.
It is not allowed to run a virtual machine, like for example
Python, without violating the EULA. As Android was not
that popular and not that feature-rich (there was no possibility
to run native code) at the time we started our research, we
selected Nokia’s Symbian S60 for our F2F Mobile prototype.
It provided a proved C development environment, Python
support, and accessibility to the devices. However, the next
F2F Mobile port will be Android based, the development
process will be addressed later in this section.

F2F Computing is currently mainly based on C and sev-
eral language interfaces. Symbian S60 supports by default
a development in C and C++. A Software Development
Kit (SDK) [10] and a development environment based on
eclipse [11] are provided for free. A well maintained Python
port [12] exists. However, the build of Symbian binaries is
supported well only on Windows platforms, and this was a
biggest disadvantage, as our research lab is Linux-based. In
comparison Android SDK is supported on all three platforms
(Windows, Linux and Mac OS).

Mobile devices are usually very restricted concerning their
hard- and software. Applications are event-driven rather than
multithreaded. In Symbian multithreading is possible and is
used inside the Operating System, but it is generally avoided
in applications, because it potentially creates several kilobytes
of overhead per thread. Therefore, we avoided threads in the
Symbian port. Because of memory limitations, applications
are restricted in comparison to standard PC systems in their
memory allocation strategy. The heap might be only several
Megabytes and the stack be even smaller. Allocating memory
dynamically can easily lead to termination of the application,
system crashes, or kernel panics. Therefore, as a first step, the
core of F2F Computing was rewritten completely in ANSI C
without threading and with static memory management. Sym-
bian does not provide the standard C libraries by default. We
used Open C/C++ [11] to provide the missing C libraries. For
the Python adapter and Python execution environment, we had
to add more missing C libraries and the corresponding Python
interfaces. To allow simple installation of the F2F Mobile the
imported libraries were packaged additionally into the F2F
Mobile package, also including the F2F Core, and the Python
F2F Adapter as application layer (Figure 2).

Another limitation is that the S60 SDK emulator only
emulates but not replicates the mobile device. In some cases
it even represents fewer constraints (memory, access rights)
compared with the real mobile device. Developing, testing and
debugging with the SDK means that the application needs to
be re-tested on the real devices in the real environment to
make sure it is behaving as expected.

For the installation, there have to be four packages installed
(in this order): Python for S60 3rd Edition 1.4.5, corresponding
Python shell, Open C/C++, and the F2F Mobile package.
The actual receiving client Python script comes as a separate
file. It will be started from the shell. After logging in to

77

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

Figure 3. Screenshots of demonstration application on F2F Mobile.

F2F Mobile core, it will wait for the application–the F2F
task– to arrive. The application itself can be sent either from
another mobile device (with a server script) or from an instant
messenger with the F2F plugin installed on a full PC. The
application arrives to the mobile client and executes on all the
arriving peers and automatically makes the spontaneous F2F
network infrastructure available for all participants. As one
sample application we implemented a small hangman style
game taking approximately 200 lines of code. The application
runs both on mobile and PC platform. At the moment the
GUI is still coded separately for PC and mobile platform. In
this game one player thinks of a word and all other players
have to guess it in turns, either guessing a new letter or the
whole word. If somebody guesses the word, this player can
think of the next word. Figure 3 shows some screenshots of
the start up and running the game on two different mobile
devices. The first two screenshots were taken on an Nokia
E70, the second two in the S60 Emulator. The setup we used
here were a PC with the emulator, an E70, an E61, and a PC
with Pidgin and the F2F Plugin. We submitted the application
from the PC. The first two screenshots show the configuration
and application deployment phase, the last two screenshots are
taken while the game is running.

Table I and Table II summarize our experiences, when
porting F2F Computing to Symbian S60. Table I summarizes
possible problems porting a platform to a mobile environment.
Table II shall be a reference for the technical realization of
such a port. It depicts our problems and selections we had to
make to achieve the port.

We did some experiments with Maemo and could prove

criterion comment
platforms to consider Symbian, iPhone, Android, Blackberry RIM,

Windows Mobile, Maemo [13], Meego
market penetration, for
personal target market • Take into account current penetration

and make platform decision accordingly
• Development/change of the penetration

over time (growing, shrinking?)

maturity of platform How established is the platform? Has there
been done already a lot of development on it?
Is there an active community of developers?
iPhone OS and Android are for example still
young players, but have a very big and fast
growing community.

distribution channels How can applications be uploaded to a phone,
is it only possible via an application store, do
other possibilities exist? Is the kind of
material, which can be distributed, restricted?

non functional
requirements • Are used programming languages

supported?
• Does an SDK exist? Is it free or not?
• Is a development environment

provided? Is it free or not?

legal issues
• License fees, are all interfaces

available, which are needed?
• Consider legal technical restrictions (for

example no virtual machine allowed on
iPhone)

• Application signing issues, can only
signed applications be run?, how
difficult/expensive is signing?

• Do you use open source libraries
(GPLv3), that you will not be allowed
to use in a potential restricted
environment?

• Are there usable open source (OS)
components? These can avoid a lot of
problems and simplify development
very much.

Table I
SELECTION CRITERIA FOR A TARGET MOBILE PLATFORM.

that we can compile the F2F Computing with Python adapter
directly. This is not surprising as Maemo is basically a far less
stripped down Linux than Android.

Addressing the criteria, which are summarized in the tables,
we present our initial experience with the F2F Computing
Android port. Portability and performance are only two of the
many advantages of Friend-to-Friend Computing. Its modular
architecture allows to build different sets of installations in
order to fit specific platforms. In the Android port we reuse
the F2F Core component with only minor changes to the code.
These changes are mainly in regard to providing the Java
interfaces. The graphical user interface (front-end) can then be
implemented in Java using Android specific widgets. Having
a platform specific front-end helps utilizing the corresponding
platform related features like touch screen, drag and drop,
scaling, or 3D rendering. Utilizing these features is essential
to provide user-friendly GUI.

The performance is granted by the core component written
in C. During implementation of the Symbian S60 port, we
faced multiple issues based on limits of S60 platform (Open

78

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

criterion comment
threading Try to avoid threading, some platforms might

have problems.
multi-tasking There might be different levels of

multi-tasking available. iPhone: no multi
tasking for applications, Maemo full
pre-emptive.

memory management Low footprint, avoid dynamic memory
allocation.

test on real device The Symbian emulator has different
restrictions.

languages Choose a good balance between languages
you use, try to have an abstracting core or
library, try to use a wrapper.

library dependencies Check the dependencies and try if referenced
libraries are either available or compilable.
We had problems with hashlib and Pyexpat
(XML).

datatype sizes Make sure to wrap datatypes, so they can be
used in a mobile environment. Usually the
size has to be fixed in number of used bits.

ensure simplicity of
installation

See, how the packaging mechanism for you
target platform works. Is it possible to pack
all in one package?

Table II
CRITERIA TO ACCOUNT FOR IN THE IMPLEMENTATION PHASE.

C/C++ library, small memory and avoiding the threads usage).
According to Android documentation there is a Bionic library
[14] (custom libc) and Native Development Kit (NDK) [15]
starting from Android 1.5. While taking a closer look at the
Bionic library we found incomplete support of the POSIX
threads and C++ exceptions. The pthread_cancel() is not
supported and pthread_once() is limited as we use not these
functions neither C++ in F2F Core component implementation
it will be well portable to Android platform featured with
Bionic library. We add the Android tool-chain to our build
scripts. This is not an issue due the Python based SConstructor
(SCons) [16] builder that we use. There is an exhausting
manual how to provide a new tool-chain for SCons [17], there
is also project [18] using combination of SCons and Android
NDK. Considering legal issues, there is no special licenses
needed for Android development and the development tools
are free to download for Linux, Windows and Mac.

Android uses Java classes (Widgets) to provide an API
for writing user interfaces. In order to wire the Java based
user interface and the native C-code of F2F Core and the
corresponding C routines are exposed to Java using Java Native
Interface (JNI). The entire process can be completely auto-
mated with Simplified Interface Wrapper Generator (SWIG)
[19]. The same solution was applied to expose F2F Core
routines to the Python back- and front-end in the F2F mobile
prototype for Symbian S60.

The computing engines are essential to remote-execute the
code in F2F. For Symbian there was Python support, for
Android there are two ways: either we build standard Python
from sources [20] using NDK or we use the scripting-layer
(SL4A) [21]. SL4A allows to access Android Native API using
various scripting languages including Python. In addition it is
possible to run scripts from native code using Intent Builders
of the Android SDK. This means that we are able to run

the remote Python Scripts on Android platform. Having the
Python support is essential to have compatibility with existing
Symbian S60 port and the Desktop builds of F2F Computing.
As Android is Java based there is not much effort needed
to provide Java computing engine for F2F Android port. The
F2F Core component is loaded into JVM (Dalvik) at runtime,
corresponding Java routines are accessible using standard JNI
methods (FindClass, GetMethodID, CallVoidMethod, CallInt-
Method).

Another project we carried out on Android was porting
LLVM with the purpose to execute the native code remotely on
Android platform. The LLVM port to F2F was successful on
the Desktop platforms, therefore the next step to keep compati-
bility is to introduce it on the mobile platforms. As LLVM sup-
ports multiple languages (C/C++/Fortran/Java/Python) porting
it once to Android allows us not care about running remote
Python or Java code.

Android standard and native development kits are supported
by major platforms (Windows, Linux and Mac OS X). In
addition there is an Android development plugin for Eclipse.

These experiments and observations with Android show that
the modular architecture of F2F Computing is well suited to
be ported to Android.

IV. RELATED WORK

There exist several groups trying to realize concepts similar
to F2F. We took a look at the akogrimo [22], [23] project. It
claims to achieve the step “from Cluster Grids toward Mobile
Collaborative Business Grids”. It outlines a similar vision to
our F2F Mobile on several whitepapers. Case studies, market
analysis, and real deployed networks are missing. Therefore,
the actual differences in software and implications from the
mobile fragmentation are not addressed.

F2F Computing focuses mainly on the mobile client side
and on the option to spontaneously setup private cloud en-
vironments. Conceptually, it does not distinguish the type of
device that is participating in the F2F Computing network.
Therefore, F2F Mobile works similar to the mobile clients for
public clouds, yet helps in sharing resources and CPU cycles
of individual mobiles. Thus F2F Mobile looks similar to P2P
Computing, but we still distinguish the general perception of
P2P and F2F Computing. For example, Boinc [24] is regarded
as a P2P Computing application. It allows harvesting the
CPU cycles via a central mediator. Even if it is called a P2P
Computing solution, it only facilitates P2P in a collaborative
sense but still uses a star topology and therefore becomes an
example for a client server architecture. In that sense F2F is
more related to P2P than these traditional applications that are
thought to be P2P.

Regarding moving P2P based systems to the mobiles we
have studied other projects, ex: LightPeers [25]. LightPeers
provides a good proposal of the lightweight P2P platform with
a well defined architecture. They also propose P2P protocols
that are minimalistic and easy to implement. They studied
other existing P2P protocol libraries (JXTA, JXME, Proem)
and identified the problems with adapting these technologies
for the mobile environment, thus were proposing their own

79

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

set of architecture and protocols. However, there is not much
information provided about the implementation as well as the
way to distribute and parallelize applications that run on top
of the LightPeers platform.

V. CONCLUSION AND FUTURE WORK

With this paper, we showed how the F2F Computing plat-
form can be extended to mobile devices. This drift supports
establishing mobile private clouds with significantly less effort.
The paper listed several tricks and difficulties and choices
taken to avoid them in building F2F Mobile. The paper also
showed some applications that were implemented, proving the
technical feasibility of the concept.

Not only proving the concept of F2F Mobile, the study also
provides several guidelines in building such systems. Espe-
cially with the tables provided in Section 3, we highlighted
the points in selecting the destination mobile platforms and
architectural choices to be taken care of in building application
and services. This study will generally be useful for any
community that is working and building private clouds and
distributed computing platforms that have in foresight shifting
their platforms to mobiles.

While the first prototype of F2F Mobile is ready, it provides
a lot of scope for further research. Our efforts are especially
directed to the possibility of writing code in any language
and be able to run it on mobiles. For this, we are developing
support of other execution adapters like LLVM [8] in addition
to Python. This will allow us to support multiple languages
for development and in terms of hardware architecture hetero-
geneous execution environments. A further important goal is
to create a release candidate for Android. If Apple changes
some of its software restrictions an iPhone port would also
be possible. Furthermore, we are also interested in building
more applications and services for F2F Computing, especially
in collaborative, mobile gaming, and m-learning domains.
Another huge issue is a standardization of some GUI elements
offered transparently in the F2F environment. Due to the
severely different screens and use patterns on the client devices
such an abstraction will be a challenging research area.

Because of the strong fragmentation in terms of hardware,
software, and operators, there still remain many problems with
transparent on demand software deployment across multiple
static and mobile participants in today’s networks.

VI. ACKNOWLEDGEMENT

This paper was supported by the European Social Fund
through the Estonian Doctoral School in Information and
Communication Technology.

REFERENCES

[1] 148Apps.biz | apple iTunes app store metrics, statistics and numbers
for iPhone apps. Available from: http://148apps.biz/app-store-metrics/
[cited July 19, 2011].

[2] Nokia’s application store faces apple dominance. Time, May
2009. Available from: http://www.time.com/time/business/article/0,
8599,1900901,00.html [cited July 19, 2011].

[3] S. N Srirama, M. Jarke, and W. Prinz. Mobile web service provisioning.
In Proceedings of the Advanced Int’l Conference on Telecommunications
and Int’l Conference on Internet and Web Applications and Services,
page 120, 2006.

[4] S. N Srirama and M. Jarke. Mobile hosts in enterprise service
integration. International Journal of Web Engineering and Technology,
5(2):187–213, 2009.

[5] Jitsi (sip communicator). Available from: http://www.jitsi.org/ [cited
July 19, 2011].

[6] Blender. Available from: http://www.blender.org/ [cited July 19, 2011].
[7] U.Norbisrath, K.Kraaner, E.Vainikko, and O.Batrashev. Friend-to-Friend

computing - instant messaging based spontaneous desktop grid. In
Internet and Web Applications and Services, International Conference
on, volume 0, pages 245–256, Los Alamitos, CA, USA, 2008. IEEE
Computer Society.

[8] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong
program analysis & transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and
runtime optimization, 2004.

[9] J.Steele. comScore: mobile internet becoming a daily activity for
many. Available from: http://www.comscore.com/Press_Events/Press_
Releases/2009/3/Daily_Mobile_Internet_Usage_Grows [cited July 19,
2011].

[10] R.Edwards and L.Barker. Developing Series 60 Applications: A Guide
for Symbian OS C++ Developers. Pearson Higher Education, 2004.
Available from: http://portal.acm.org/citation.cfm?id=983988.

[11] Nokia developer - qt development frameworks. Available from: http://
www.developer.nokia.com/Develop/Qt/Qt_technology.xhtml [cited July
19, 2011].

[12] J.Laurila, M.Marchetti, and E.martt. Python for s60. Available from:
https://garage.maemo.org/frs/?group_id=854 [cited July 19, 2011].

[13] Home of the maemo community. Available from: http://maemo.org/
[cited July 19, 2011].

[14] Bionic c library overview. Available from: http://www.netmite.com/
android/mydroid/1.5/bionic/libc/docs/OVERVIEW.TXT [cited July 19,
2011].

[15] Android NDK android developers. Available from: http://developer.
android.com/sdk/ndk/index.html [cited July 19, 2011].

[16] SCons: a software construction tool. Available from: http://www.scons.
org/ [cited July 19, 2011].

[17] SCons new target platform and new toolchain. Available from: http://
buildman.net/sbuild_man/porting_eng/new_platform.htm#Step_2 [cited
July 19, 2011].

[18] AllJoyn - proximity-based peer-to-peer technology. Available from:
https://www.alljoyn.org/ [cited July 19, 2011].

[19] Simplified wrapper and interface generator. Available from: http://www.
swig.org/ [cited July 19, 2011].

[20] python-for-android - Py4A - google project hosting. Available from:
http://code.google.com/p/python-for-android/ [cited July 19, 2011].

[21] android-scripting. Available from: http://code.google.com/p/
android-scripting/ [cited August 11, 2010].

[22] S. Wesner, T. Dimitrakos, K. Jeffrey, and H. Performance. Akogrimo-the
grid goes mobile. ERCIM news no59 2004.

[23] C. Loos. E-health with mobile grids: The akogrimo heart monitoring
and emergency scenario. EU Akogrimo project Whitepaper, 2006.

[24] D.P. Anderson. BOINC: A system for public-resource computing and
storage. In proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, pages 4–10. IEEE Computer Society, 2004.

[25] B.Guldbjerg Christensen. Lightpeers: A lightweight mobile p2p plat-
form. In Pervasive Computing and Communications Workshops, 2007.
PerCom Workshops ’07. Fifth Annual IEEE International Conference
on, pages 132 –136, 2007.

80

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

http://148apps.biz/app-store-metrics/
http://www.time.com/time/business/article/0,8599,1900901,00.html
http://www.time.com/time/business/article/0,8599,1900901,00.html
http://www.jitsi.org/
http://www.blender.org/
http://www.comscore.com/Press_Events/Press_Releases/2009/3/Daily_Mobile_Internet_Usage_Grows
http://www.comscore.com/Press_Events/Press_Releases/2009/3/Daily_Mobile_Internet_Usage_Grows
http://portal.acm.org/citation.cfm?id=983988
http://www.developer.nokia.com/Develop/Qt/Qt_technology.xhtml
http://www.developer.nokia.com/Develop/Qt/Qt_technology.xhtml
https://garage.maemo.org/frs/?group_id=854
http://maemo.org/
http://www.netmite.com/android/mydroid/1.5/bionic/libc/docs/OVERVIEW.TXT
http://www.netmite.com/android/mydroid/1.5/bionic/libc/docs/OVERVIEW.TXT
http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html
http://www.scons.org/
http://www.scons.org/
http://buildman.net/sbuild_man/porting_eng/new_platform.htm#Step_2
http://buildman.net/sbuild_man/porting_eng/new_platform.htm#Step_2
https://www.alljoyn.org/
http://www.swig.org/
http://www.swig.org/
http://code.google.com/p/python-for-android/
http://code.google.com/p/android-scripting/
http://code.google.com/p/android-scripting/

	Introduction
	Friend-to-Friend Computing
	F2F Mobile
	Related work
	Conclusion and Future Work
	Acknowledgement
	References

