MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Formalisms for Use Cases in Ubiquitous Computing

Richard E. Gunstone
Computing and Informatics, School of Design, Engineering and Computing
Bournemouth University, Poole, Dorset, United Kingdom
rgunstone @bournemouth.ac.uk

Abstract—Use cases have achieved widespread adoption in
software requirements capture and representation in software
system analysis and design. Ubiquitous Computing, a paradigm
attributed to the late Mark Weiser, offers new challenges in the
representation of user requirements. Such systems are likely to
require a high degree of user-centricity if they are to meet some-
times demanding requirements of the modern computer user.
This paper presents a review of relevant use case methodologies,
principally those that augment or replace the Unified Modelling
Language metamodel for use cases.

Index Terms—use cases; software; ubiquitous computing

I. INTRODUCTION

Use cases have achieved widespread adoption in soft-
ware requirements capture and representation in contemporary
software engineering and they are frequently integrated into
business processes. The requirements engineering process is
widely recognised as being crucial in the process of building
a software system, by building a specification through iterative
processes of elicitation, specification, and validation; and
crucially this should ideally also integrate multiple viewpoints
to foster objectivity [1].

A widely recognised shift in the usage of computing tech-
nology, focusing more on computing as a communications tool
rather than a collection of discrete computational processing
systems, leads toward a close relationship between user needs
and software systems. This represents a change in the focus
of attention, away from the computer system itself toward
support for the activities of the user. Ubiquitous computing,
and the software systems used to achieve it, shares this shift
in emphasis toward user- and not system-centricity.

The concept of ubiquitous computing is acknowledged as
beginning with the work of Mark Weiser at Xerox [2]. Weiser
can be considered something of a visionary, describing a
future paradigm of computing that eschewed then-accepted
approaches in favour of a highly distributed, interactive and
pervasive world. Similarly, we view ubiquitous computing as
a move toward an environment where technology diffuses into
the background and where software systems are used that
adapt to user needs autonomously. We consider the current
understanding of ubiquitous computing to be an evolution
of Weiser’s original design, reflecting some aspects but not
all. Contemporary ubiquitous computing examples are wide
and varied, but they tend to require relatively advanced func-
tionality in networks (including Cloud computing), context-
awareness, and interaction. A prevalent instance of ubiquitous
computing to date has been the emergence of converged

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-164-9

devices such as smartphones and tablet-class computing, and
these devices are indicative of a widespread trend toward more
ubiquitous computing architectures.

The use case approach to software engineering (as proposed
by Jacobson) would appear to fit many of the requirements
of ubiquitous computing. It encapsulates user requirements of
a system in an easily-understood formalism, and caters for
multiple viewpoints. However, limitations have been identified
in several studies since its introduction.

The conventional use case representation is based on the
concept of scenarios or collections of use cases that represent
flows of events [1]. There are several prominent characteristics.
The first is that a use case should consist of a description
[3], which is typically unstructured or semi-structured text.
The use case should also contain a sequence of actions (or
transactions) performed by the system [3, 4, 5]. In addition,
for the use case concept to be valid such actions should lead
to an observable result [3, 4, 5] thereby excluding incomplete
or multiple sequences [5]. Finally, the observable result should
be of value to an actor [3, 4, 5]. Use cases can be represented
using a graphical notation.

Use cases serve as projections of future system usage and
as projected visions of interactions with a designed system
[6]. They are considered by some authors to be scalable
to large and complex systems, as they can be improved
and expanded incrementally with little or no loss of prior
information. Use cases can also be used in such a way as
to facilitate requirements traceability throughout design and
implementation [1]. Use cases typically make use of natural
language, and because of this they are recognised as being a
good medium through which requirements can be elicited and
recorded, and because of their representation they also avoid
the problems associated with purely narrative approaches,
while at the same time permitting partial specifications [7].
Taking a user’s viewpoint is of significant value when vali-
dating the ‘adequacy of requirements’ [7], and use cases can
help facilitate such a process. Use cases are also considered
useful for introducing abstraction into the requirements capture
and design processes, to allow the system to be understood
from structural, behavioural and interactive perspectives [8].
As a consequence of these characteristics, they can support a
more effective elicitation process and consequently enable an
agreement on the views of the users involved [9].

While use cases offer many opportunities, several of the
key benefits offered through their use can also be considered
drawbacks. As has been noted, they derive much of their
flexibility from their use of natural language, however in

103



MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

lacking formal lack formal syntax and semantics [1, 9] they
may permit too much scope, introducing the potential for
ambiguity or misinterpretation, and in in the case of plain
narrative text this can lead to serious quality problems [7].
They also have limited support for structuring and managing
large use-case models [9], which can have consequences for
all parts of the development process. Similarly, while there has
been recent efforts to represent checks on the quality of use
case descriptions [10, 11], the use of text to describe the use
case does not necessarily guarantee that the complete process
is specified. Use case may also promote a highly localised
perspective that can obscure business logic [5]. Finally, in
their application, use cases permit the definition of system
behaviour from the perspective of many different stakeholders,
and, while such flexibility can be considered a benefit in some
respects, it is also thought to lead to conflicting functional
requirements [12] and contradiction.

In trying to find suitable augmentation or replacement of
the methodology for the reasons described in Section I, a
number of concepts including some applicable to ubiquitous
computing, can be considered desirable. Lee et al. propose
several that we propose are very relevant for ubiquitous
computing and slightly adapt [1]:

e clarity (combining Lee et al’s comprehensibility and
unambiguity)-a replacement or augmented formalism
should continue the theme of ease-of-understanding that
Jacobson’s original method provided, and also provide a
method that is clear and unambiguous to all stakeholders
and analysts.

 scalability—any change should scale well to the use case
elicitation process, providing representational schemes to
ensure abstraction is permitted.

« partiality—a proposed formalism should accommodate of-
ten incomplete information (and to not require a complete
representation in order to function).

o goal-based-it is desirable for a use case methodology to
include some kind of formalisation of user goals as part
of the representation to accommodate the goals of the
user.

These criteria provide a useful way of analysing the range
of formalisms that have emerged since the original use case
methdology was proposed. Ubiquitous computing has a strong
association with privacy concerns, one aspect not included
in the above summary. Incorporating privacy (including Non
Functional Requirements - NFRs) from the initial requirements
capture process is another important consideration, and we
discuss this in more detail in Section III.

We propose the move towards more widespread use of
ubiquitous computing technologies interactions between user
and system will become focused on the activities of the
users in their environment rather than with the system that
may be used at a particular time. Therefore, we consider a
representational scheme that can accommodate goals as being
an important requirement as a means to partly, or fully, address
this trend.

The remainder of this paper is structured as follows: In
Section II we review a number of extensions that have emerged
regarding use cases, with a particular focus on the aspects

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-164-9

most relevant to ubiquitous computing. The paper is finished
in Section III, where conclusions are made.

II. REVIEW

A number of extensions have emerged that could be re-
garded as incremental refinements. Lee and Xue [9] propose
a goal-based approach (GDUC) to specifying use cases, one
that permits the representation of NFRs and consideration
of interactions between requirements. NFR representation is
a frequent desirable property in the engineering of complex
systems, however the use case approach is not geared to
representing NFRs easily. Moreover, ineffectively dealing with
NFRs is thought to have led to a number of failures in software
development (see [13] for a review and an overarching process
to elicit NFRs). In GDUC for a given actor-specific and
functional goal, it is classified with respect to their competence
(complete or partial satisfaction is needed), view (actor- or
system-specific), content (functional or non-functional), yield-
ing a faceted break-down into «extend» extension use cases
and extension goals. The representation used in GDUC allows
for NFRs to be represented and also permits associations
between indirectly associated goals.

Another process is that by Tan et al. [14] where Data
Flow Diagrams (DFDs) are utilised in an augmented form
to transform parts of an analysis model such as processes
and data flows into an Object Oriented (OO) design and
implementation in terms of classes, class attributes, and so
on. Their aim is to harness DFDs for use-case realisation.
In this approach, DFDs are enhanced to cater for candidate
class operations being reflected in processes in the diagram,
candidate class attributes, arguments and return values being
represented, and control flow being fully specified without
recourse to additional specification. The authors propose that
by incorporating their augmented DFDs into the requirements
analysis stage, by representing use-cases, a comprehensive
method can than be used to translate use-cases into OO design,
and in turn to implementation.

Glinz has proposed an approach that combines a structured
textual representation and a statechart-based structure [7].
In this method there is a clear distinction between events
produced by the actor and the responses of the system, and
there are simple structuring constructs (such as if, go fo step,
etc.) to add further detail. Activity flows between scenarios
can be achieved by arranging the scenarios as a directed
graph, where edges have explanatory text describing the con-
ditions required for that flow of activity. Glinz’s statechart
methodology appears to offer greater clarity compared to other
approaches, and we return to this in our observations section.

Similar to Glinz’s approach, Nebut et al. [15] propose
a formalisation of the use case corpus by capitalising on
pre- and post-conditions, to make contracts executable by
using requirement-level logical expressions. This is a logical
evolution of the use case approach and gives rise to a se-
quential structuring. In the case of Nebut et al.’s work, this
is done with the goal of generating tests from a formalisation
(in particular the detection of faults in embedded software).
Logical expressions used in the conditions of use cases are

104



MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

constructed from Boolean logic operators: conjunction, dis-
Jjunction, and negation, in addition to quantifiers V (forall)
and 3 (exists), and implication in post-conditions. The authors
use the formalism to generate all possible orderings of use
cases to form a ‘transition system’, and once constructed
this allows a variety of structural and logical tests to be
performed, exercising paths in the transition system. Tests are
implemented as sequence diagrams, representing nominal or
exceptional scenarios associated with use cases. The use of
a formalised representation has particular benefits in terms of
analysis (c.f. Lee et al.) however the authors note the difficulty
it may impose on the requirements analyst, who is forced to
be rigorous and to clearly specify conditions.

An interesting continuation of augmentation to the UML®
metamodel is the work of Dias et al. [16] that introduces Use
Case Fragments (UCFs) into the development process of use
cases. They identify that successful use cases should include
several elements, including the basic flow and sequence of
steps, alternate flows, information exchange details, and also
business rules associated with the interactions encapsulated
in the model. Addressing the perceived requirements of both
students and novice professionals, they consider the use of
a catalogue of recurring use case fragments that can be
composited quickly to address the majority of use cases needed
in typical information systems. Such fragments are noted as
having a similar organisation to software patterns, with each
addressing the abstract concept such as select one element
from a set of existent elements. A UCF template contains
the fragment name, sub-goals, purpose, basic flow, alternative
flows, input and output details, and rule details. In order to
have an applied UCF reflect the situation where it is being
used, there are customisation points in the UCF where business
terms are substituted. Some of the advantages noted by Dias
et al. include the UCF acting as a facilitator, supporting novice
requirements professionals in developing use cases, improving
writing speed and supporting the specification process.

Sutcliffe [6] introduces the scenario-based requirements
engineering approach, of relevance to ubiquitous computing.
In common with the original use case approach, this process
involves use case elicitation from users and gives formatting
guidelines. The final two stages in this process involve sce-
nario generation (from a use case specification) and scenario
validation. The process makes use of a reusable library of
requirements and associated application classes, influencing
factors, exception types, requirements specification(s), and
validation frames to support method stages. The use case is
modelled as a collection of actions with rules that govern
connectivity between actions, and these actions lead to the
attainment of a goal. Use cases are organised into a hierarchy
to allow for refinement of higher-level use cases. Several
action link types are available, including strict sequencing, part
sequencing, and inclusion, offering a range of ways links can
be established. Validation functionality is possible, to check
conformance of the use case models using a schema, and if
suitable abstraction is present the use case model can be linked
to related systems allowing identification of abstract appli-
cation classes. This work provides a series of functions that
would aid the development of ubiquitous computing systems,

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-164-9

particularly where there are common application functions
across use cases. An example could be route finding and geo-
social networking, which both require geo-location services
through the Global Positioning System (GPS), Assisted GPS,
Wi-Fi® and IEEE® 802.11 Positioning Systems, etc.

A justification for many of the research proposals that
advocate a replacement formalism in the UML metamodel is
that the use case method does not lend itself well to formal
analysis [1]. In comparison, a formalised model would permit
an analysis of the dependencies and inconsistencies (or flaws)
in the model. Several research studies have proposed replacing
the UML metamodel for use cases to achieve well-defined
representations suitable for analysis and resolving imprecision,
which we mention in passing.

The Petri net formalism is a technique that has been used
to model software systems since the 1970s [17]. Devised
as a means of modelling discrete-event systems, Petri nets
are well-suited modelling software concepts and in particular
for modelling concurrency, with no inherent requirement for
synchronicity, and offer (through their asynchronous features)
an abstraction above the flow of time, to present events in
terms of their partial ordering [17]. They have been applied
in a number of ways to enhance the use case approach. Xu
& He [18] apply the concept of the Place Transition variant
of the Petri net ((PT, PrT, P/T net) to the generation of test
requirements, in the context of aspect-oriented use cases. In
contrast, Lee et al. propose Constraints-Based Modular Petri
Nets (CMPNs) (see [1] for mathematical definitions), which
are suggested as improving on the drawbacks of P/T nets
and coloured Petri nets. CMPNs are argued as addressing
several shortcomings with other approaches, such as being
cumbersome where incremental modification is required, to
limited analysis techniques on interaction and dependency, and
in the case of Finite State Automatons (FSAs) high state space
complexity [1].

Replacement formalisms are geared toward a more radical
change to the representational schemed used for use cases, and
while offering benefits in terms of machine analysis it does
present potential drawbacks. Such drawbacks can include a
loss of clarity, and potentially more work on the part of the
use case analyst.

III. OBSERVATIONS

Use cases have achieved widespread use in software en-
gineering problems, and more widely as a generic term for
user needs from products and services. In this paper we
have identified the principal benefits of the original use case
method, shortcomings and new approaches. For ubiquitous
computing, the adoption of use cases provides an opportunity
to ensure any systems developed are more closely aligned to
user requirements.

This paper has identified several evolutions to the original
use case representation, and these can be broadly classified as
either augmentation or replacement (though we note this is
not a clear separation and in reality some degree of overlap
exists). Replacement formalisms tend to use a more formal
representation to permit machine analysis. Regards this latter

105



MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

point and our earlier observations in Section I, we note Glinz,
that while formal representations are useful for analysis and
can achieve high levels of precision, this comes at the expense
of readability and effort to write the scenarios [7]. This
shortcoming in comprehensibility of some approaches detracts
from the comprehensibility of the original use case method (a
characteristic identified in Section I as worthy of preservation).

Taking these concepts further requires the development
of an extension to the UML metamodel that facilitates the
desirable attributes needed for ubiquitous computing, in par-
ticular representing user goals. It is also necessary to construct
and refine a suitable requirements example for ubiquitous
computing that illustrates these requirements, and use this
to validate the modifications to the UML metamodel. One
example is the the class of situation awareness applications
for ubiquitous computing (c.f. [19]) that provides a basis for
an illustrative set of use cases from a user perspective.

One aspect not examined in depth, but noted in the introduc-
tion, is that of privacy. It is desirable particularly for ubiquitous
computing systems to consider how privacy requirements on
the parts of users can be represented and implemented early-on
in the development process.

Ubiquitous computing takes privacy considerations for con-
temporary computing much further, because such systems
are intrinsically based upon the collection and processing of
information about their users, the environment, their property,
actions, and so on. This information is collected all or most
of the time, senses information types that are not readily
accessible in contemporary computing paradigms (such as
video camera feeds of rooms, contents of fridges via Radio
Frequency Identification, etc.), and is extensively processed
to yield new useful information that can aid the activities
of its users. On a practical level moving toward building
such complex systems inevitably requires specific technical
developments to the system design to ensure privacy can be
protected or enhanced. This necessitates the implementation
of technical measures—Privacy Enhancing Technology (PET),
discussed in a complementary paper [20].

REFERENCES

[1] W. J. Lee, S. D. Cha, and Y. R. Kwon, “Integration
and Analysis of Use Cases Using Modular Petri Nets
in Requirements Engineering,” IEEE Transactions on
Software Engineering, vol. 24, pp. 1115-1130, December
1998.
M. Weiser, “Some Computer Science Issues in Ubiqui-
tous Computing,” Commun. ACM, vol. 36, pp. 75-84,
July 1993.
D. Leffingwell and D. Widrig, Managing Software Re-
quirements: A Use Case Approach. Addison-Wesley
Professional, 2 ed., May 2003. Print ISBN-10: 0-321-
12247-X; Print ISBN-13: 978-0-321-12247-6.
I. Jacobson, M. Griss, and P. Jonsson, Software Reuse:
Architecture, Process and Organisation for Business Suc-
cess. Reading, MA: Addison-Wesley/ACM Press, 1997.
[5] A.J. H. Simons, “Use Cases Considered Harmful,” tech.
rep., University of Sheffield, 1999.

(2]

(3]

(4]

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-164-9

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and
D. Manuel, “Supporting Scenario-Based Requirements
Engineering,” IEEE Transactions on Software Engineer-
ing, vol. 24, pp. 1072-1088, December 1998.

M. Glinz, “Improving the Quality of Requirements with
Scenarios,” in Proceedings of the Second World Congress
for Software Quality (2WCSQ), (Yokohama), pp. 55-60,
September 2000.

Object Management Group, “Introduction to
OMG’s Unified Modelling Language,” July 2005.
http://www.omg.org/gettingstarted/what_is_uml.htm,
Last accessed June 2011.

J. Lee and N.-L. Xue, “Analyzing User Requirements by
Use Cases: A Goal-Driven Approach,” IEEE Software,
pp- 92-101, July/August 1999.

K. Phalp, J. Vincent, and K. Cox, “Assessing the Quality
of Use Case Descriptions,” Software Quality Journal,
vol. 15, pp. 69-97, 2007.

K. Phalp, A. Adlem, S. Jeary, J. Vincent, and J. Kanyaru,
“The Role of Comprehension In Requirements and Im-
plications for Use Case Descriptions,” Software Quality
Journal, 2010.

J. H. Hausmann and R. Heckel, “Detection of Conflicting
Functional Requirements in a Use Case-Driven Approach
- A static analysis technique based on graph transforma-
tion,” in ICSE 2002, pp. 105-115, ACM Press, 2002.
L. M. Cysneiros and J. C. S. do Prado Leite, “Non-
functional Requirements: From Elicitation to Conceptual
Models,” IEEE Transactions on Software Engineering,
vol. 30, pp. 328-350, May 2004.

H. B. K. Tan, Y. Yang, and L. Bian, “Systematic Trans-
formation of Functional Analysis Model into OO Design
and Implementation,” IEEE Transactions on Software
Engineering, vol. 32, pp. 111-135, February 2006.

C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jezequel,
“Automatic Test Generation: A Use Case Driven Ap-
proach,” IEEE Transactions on Software Engineering,
vol. 32, pp. 140-155, March 2006.

F. G. Dias, E. A. Schmitz, M. L. M. Campos, A. L.
Correa, and A. J. Alencar, “Elaboration of Use Case
Specifications: an Approach Based on Use Case Frag-
ments,” in Proceedings of SACOS, (Fortaleza, Ceara,
Brazil), pp. 614-618, ACM, March 2008.

J. L. Peterson, “Petri Nets,” Computing Surveys, vol. 9,
pp. 223-252, September 1977.

D. Xu and X. He, “Generation of Test Require-
ments from Aspectual Use Cases,” in Proceedings of
WTAOPO7 Workshop, (Vancouver, British Columbia,
Canada), pp. 17-22, ACM, March 2007.

S. Minamimoto, S. Fujii, H. Yamaguchi, and T. Hi-
gashino, “Map estimation using GPS-equipped mobile
wireless nodes,” Pervasive and Mobile Computing, vol. 6,
pp. 623-641, 2010.

R. E. Gunstone, “Integrating Privacy During Require-
ments Capture for Ubiquitous Computing,” in Proceed-
ings of the First International Conference on Social Eco-
Informatics, (Barcelona), 2011.

106



	Introduction
	Review
	Observations

