
Cloud Systems and Their Applications for Mobile Devices

Jin-Hwan Jeong

Cloud Computing Division

Electronics and Telecommunication Research Institute

Daejeon, South Korea

jhjeong@etri.re.kr

Hak-Young Kim

Cloud Computing Division

Electronics and Telecommunication Research Institute

Daejeon, South Korea

h0kim@etri.re.kr

Abstract— In this paper, we discuss what mobile cloud is and

what the differences between traditional cloud systems and

mobile cloud systems are. At first, we point out mobile

peculiarities such as battery constrains and computation

weakness, and then we envision cloud system architecture for

mobile devices that addresses these two issues. Specifically, we

introduce mobile sensor virtualization and remote execution as

essential components of mobile cloud system. At last, we show

canonical services benefiting from our mobile cloud system.

Keywords-Cloud computing; Mobile; Android; Sensor;

Remote execution

I. INTRODUCTION

Today, computer science communities face very big two
tides called cloud computing and mobile computing.

Since a few years, major software companies such as
Amazon, Google, Microsoft have built large-scaled cloud
systems and most SP (Service Provider) have transferred
their services to the cloud systems. As cloud systems provide
various software platforms from IaaS (Infrastructure as a
Service) to SaaS (Service as a Service) and guarantees
endless computing resources with scale up/out flexibility, SP
can implement scalable services easily at the low cost. It is
no doubt that SNS (Social Network Service) is one of live
evidences.

Another big tide is mobile computing lead by
smartphones. Smartphones, as a representative of mobile
devices are very popular, and their hardware configuration is
outstanding, for example, 1.2 GHz CPU, 1024 MB ram,
802.11g/n WIFI, 3G, and various sensor devices. These
hardware components make recent smartphones possible to
do everything that desktop can do. Especially, high-end
smartphones (e.g., Apple, Android, and Window Phone 7)
that have their unique application ECO system can do
beyond desktop’s capabilities on the behalf of various sensor
devices.

In a sense, it might be natural to collaborating mobile
devices with cloud system. As the performance of
smartphone is superior, users want to use their smartphone as
a client of new SNS as well as legacy services. Also, cloud
system administrators begin to enhance the cloud systems
with additional servers that help mobile devices. Typical
examples of this efforts are PUSH (e.g., C2DM (Cloud To

Device Messaging) from Google) servers and SYNC servers.
Specifically, C2DM is a wonderful tool for SNS developers
and it is good for network operators, because it prevents
from wasting bandwidth for Keep Alive messages.

Nevertheless, both service developers and users found
some limitations on services running in cloud system with
smartphones. At first, users always keep attention for one
resource, battery power, which is a most crucial resource.
High performance smartphone can process complicated
services, but it drains battery power much faster. Therefore,
users cannot help recharging the battery, and then, this
degrades the portability. Secondly, service developers have
different difficulties. Most services including SNS require
various sensor data in real-time such as geographical location
or motion speed. This means that software part running on
cloud system needs to query user’s sensor data in real time.
However, there is no uniform platform/library to aggregate
and to deliver sensor data from various sensor devices of
individual mobile devices for the server side system, so this
is a big hurdle for SNS developers.

To address the first issue, Chun [7] proposed an
augmented execution model. This approach has strength in
alleviating computation loads of smartphones, but it has
some constraints. In augmented execution, when application
runs on server side, it is hard to synchronize intermediate
data with mobile side. As mentioned in the previous
paragraph, mobile services need various sensor data
ceaselessly. However, augmented execution model does not
provide a well-defined platform how server module can read
mobile sensor data.

As a result, a cloud system for mobile devices should
provide a tool that help work together easily and provide a
way how to send mobile sensor data for rich mobile services.
Therefore, we adopt augmented execution model as a cloud
execution model and we propose sensor virtualization layer
that gives transparent sensor data delivery. The latter can
enhance the former’s usability.

In this paper, we propose a virtual machine based-remote
execution module with sensor device virtualization. With
these tools, server module can co-work client modules with
easy and utilizes client’s sensor devices seamlessly. We start
from building a virtual machine for Android, and implement
remote execution mechanism for Java and also implement
virtual sensor devices into Linux kernel as a form of kernel

135

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

modules. As virtual sensor devices are implemented in Linux,
the devices can be used transparently by Android system.

II. BACKGROUND AND RELATED WORK

As illustrated in Fig. 1, the current mobile cloud system
is much similar with typical cloud system except PUSH and
SYNC servers. PUSH and SYNC servers are of “sugar”
servers, because the servers enhance just mobile user
experience much better and help other core servers. In a
sense, two servers can be just regarded as a mobile gateway
for better data exchange with cloud servers.

Now, the question is what the “mobile” does mean. Some
cloud systems can be regarded as mobile cloud systems
because their clients are mobile devices or because their
deploying services are targeting for mobile devices or
because they contains PUSH and SYNC servers as
mentioned above.

Before defining the meanings of mobile, we point out the
differences between mobile devices and desktop systems in
the view point of clients (service target). About ten years ago,
mobile devices were quite different from desktop. They had
low performance processor, low memory, low quality
displayer, so they was not able to run normal operating
systems which meant that mobile applications were
somewhat dedicated for mobile platforms. Therefore, the key
philosophy for mobile applications was that the less mobile
devices do, the better services are. Ten years change
everything, and then, today, there is no quite difference
between desktop and mobile devices such as iPhone or
Android, and mobile devices can process most jobs that
desktop can do in terms of performance.

However, there is one thing left, portability. The faster
mobile processor is, the faster battery drains. In spite of
brilliant material technology, the development speed of
rechargeable battery technology is very slow, so everyone
who has an iPhone or Android phone now is commonly
worried about the shortage of battery power.

Also, a new issue comes out. Unlike the past, stock
mobile devices have many sensor devices, and mobile
services read values in real time. Most mobile platforms (e.g.,
iOS, Android, or Windows Phone) provide well defined API
to handle sensor devices. However, the method for
transferring sensor data from mobile devices to the cloud
systems still is nothing changed. Developers just use TCP/IP
communication with their own socket libraries.

Figure 1. Typical mobile cloud system

There are some researches [6][7] for mobile issues. In [6],
authors addressed battery lifetime with cloud computing and
proposed off-loading computation for energy-saving. In [7],
authors introduced clone computing to enhance smartphone
capabilities. They [6][7] tried to catch two goals,
computation limitation and energy limitation by Dalvik VM
cloning (Augmented Execution) for Android. This work is
remarkable, because augmented execution can leverage the
degree of distribution between mobile device and cloud
system on the same programming environment. However,
they do not refer methods how to synchronize runtime
execution environments (including run time data) with
cloned Dalvik VM and real VM. Since sensor data have a
tendency to change ceaselessly in mobile services, streaming
sensor data is crucial. Nevertheless, augmented execution is
worthy to evolve and we adopt it as a starting point of our
remote execution.

III. MOBILE CLOUD SYSTEM ARCHITECTURE

Our system targets at two tools, remote execution and
sensor device virtualization. Remote execution takes a
responsibility for helping mobile device execution, which
means that some sections of code are run on cloned VM
instead of on mobile device, and sensor device virtualization
that is used as sensor data sources for remote execution.

To simply remote execution model, we also restrict
remote execution scope as following: 1) it has the same
programming environment as mobile devices; 2) it does not
share data between local modules and remote modules –
stateless model; 3) only mobile side can initiates application.
4) only sensor data read from virtualized sensor devices are
allowed for server. Like augmented execution in [7], our
model is based on virtual machine.

Figure 2. Mobile Cloud System

Mobile

platform

SYNC

PUSH

IaaS

PaaS

SaaS

Host OS

Virtual machine

Mobile platform

Mobile

service

s

Mobile

application

s

Mobile OS

Mobile platform

Mobile

applications

Normal part

Remote execution

part

Normal part

RE engine RE engine

Cloud server Mobile device

136

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

Figure 3. Sensor device virtualization

Fig. 2 illustrates overall architecture of our mobile cloud

system. We adopted x86-based Android system for mobile
virtual machine, and RE (Remote Execution) is implemented
as Java library, which is similar with JAVA Remote Thread
library. Like other remote thread libraries, RE is also based
on a stateless model. Instead, our RE thread function takes
one “Serializable” Java class as a function parameter.

In the cloud system side, RE modules are often in need of
sensor data for mobile services. So far, developers should
make a connection to read them, and they should endure
various overheads such as checking device capabilities or
network status. To alleviate such overheads, we introduce the
sensor device virtualization that lets developers use client
(remote) sensor devices locally. Fig. 3 shows the sensor
device virtualization flow. As Android system is based on
Linux, we hooked sensor devices I/O at kernel modules. This
implies that applications (RE modules) can invoke sensor
device I/O calls transparently. Specifically, when a request
arrives from RE modules, virtual devices redirect a request to
a peer mobile device. Although not presented in Fig. 3,
mobile device also should have corresponding modules to
process a redirected request. The corresponding modules
receive a request and finally reply with live sensor value.

Figure 4. Overall cloud system for mobile devices

Our mobile cloud system with remote execution and
sensor device virtualization is shown in Fig. 4. As one of the
goals of our cloud system is to provide the same application
environment as mobile devices to developers, our cloud
supports mobile virtual machines. In case of Android phones,
our cloud system allocates an Android x86 virtual machine
per Android client for server part modules.

Specifically, for server module, service is linked with
remote execution callee interface and sensor virtualization
(requester) interface, and then it is initiated while VM
creation implicitly (or explicitly by user's request). These
interfaces eventually are connected on-the-fly with incoming
mobile device using simple protocol. Similarly, mobile
application has two modules, remote execution caller and
sensor replier. Remote execution caller has various methods
for instantiation / destruction / synchronization of remote
thread object. Sensor replier simply replies sensor data
requests from peer server.

Although our service execution model is based on the
stateless model, it can process rich mobile services thanks to
sensor device virtualization which provides live sensor data.
In order to reduce response time and lightness, our model
uses UDP based protocol with packet sequencing and limited
ARQ features.

IV. APPLICATION

In this section, we show a typical example of services
benefiting from our remote execution and sensor device
virtualization. The example is about security. The scenarios
are supposed that one security developer wants to verify both
physical and logical security simultaneously. He/she needs
sensor data for physical authentication and wants to run
decoder for logical authentication on server. The main goal
of this example is not to show a fact that security is enhanced
due to our system. Instead, the goal is to show a fact that the
developers can use mobile sensor data easily for physical
authentication by sensor device virtualization just like they
implement and run it on a local device.

Figure 5. Two authentication scenarios

x86 VM

Host OS

Virtual machine

x86-based

Android System

Cloud server

RE module

Sensor

classes

Sensor device

module
Redirect to mobile device

x86 VM
x86 VM

Cloud system

...
Service module

Remote execution

interface

Virtual sensor layer

Service

Service Application

UDP based

protocol

Server

{ID, PW} checking

1) issue

2) ack.

Server

{ID, PW} checking

& check GPS

1) issue

4) ack.

2) query.
3) reply

(a) Traditional scenario

(b) New scenario for the proposed system

137

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

Mobile authentication with GPS: User authentication is
one of eternal problems. Basically, if the tuple, {ID,
Password} is correct, system regards an incoming user as
being verified. However, suppose that a hacker got a
password, and try to login. How can system detect this?

In the lower scenario (b) in Fig. 5, the developer of
servers implemented verification module with additional
features. Whenever the ID/Password arrives, server-side
verification module queries GPS data without intervention of
mobile user via local (virtualized) sensor devices and
constructs location DB {user/location area}. One day, the
user requests login, and verification module notices that
his/her location is far from the usual location area. With only
this fact, it is enough to suspect the user, and system can
proceed to more robust verification step.

This scenario also can be implemented with traditional
manner (a), but it is not simple. Developers should consider
how to read GPS data and how to transfer to server. Also,
developers should take care of upgrading of client part.
However, if developers use our remote execution, they don’t
need TCP/IP to send ID/Password data, and if they use
virtualized sensor devices, they don’t need to know user’s
device model and how to access.

V. CONCLUSION

In this paper, we addressed two peculiarities called
portability and sensor devices that make mobile cloud
systems different from typical cloud systems, and we
emphasize on the facts that mobile cloud system should take
a care of two peculiarities. Especially, manipulating of
various sensor data is considered as one of decision factors
for whether the services are categorized as mobile services or

not. For portability, we think the battery consumption. As a
result, we propose remote execution with stateless model.

We are currently building Linux kernel supporting
virtualized sensor devices and also implementing JAVA
interfaces for remote execution. While we are still working
on this project and are building prototypes, we take a look at
the possibility that it can be indeed a good candidate of
mobile cloud system.

REFERENCES

[1] http://www.android.com, April, 2011.

[2] http://developer.android.com/sdk/index.html, April, 2011.

[3] Bornstein, D. Dalvik virtual machine. http://www.dalvikvm.com,
April, 2011.

[4] Kozuch, M. A., Ryan, M. P., Gass, R., Schlosser, S. W., O'Hallaron,
D., Cipar, J., Krevat, E., López, J., Stroucken, M., and Ganger, G. R.
“Tashi: location-aware cluster management,” In Proceedings of the
1st Workshop on Automated Control For Datacenters and Clouds
(Barcelona, Spain, June 19 - 19, 2009).

[5] Avetisyan, A.I., Campbell, R., Gupta, I., Heath, M.T., Ko, S.Y.,
Ganger, G.R., Kozuch, M.A., O'Hallaron, D., Kunze, M., Kwan, T.T.,
Lai, K., Lyons, M., Milojicic, D.S., Hing Yan Lee, Yeng Chai Soh,
Ng Kwang Ming, Luke, J-Y., and Han Namgoong, “Open Cirrus: A
Global Cloud Computing Testbed,” in IEEE Computer, Vol. 43, Issue
2, pp. 35 ~ 43, April, 2010.

[6] Kumar, K., Y.-H. Lu, "Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?," in Computer, Vol. 43, Issue
4, pp. 51~56, April 2010

[7] B.-G. Chun and P. Maniatis, "Augmented smartphone applications
through clone cloud execution," in Proceedings of the 12th
conference on Hot topics in operating systems (HotOS'09), pp. 8~12,
2009

138

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-164-9

http://www.android.com/
http://developer.android.com/sdk/index.html
http://www.dalvikvm.com/

