
Simulating Strict Priority Queueing, Weighted Round Robin,

and Weighted Fair Queueing with NS-3

Robert Chang and Vahab Pournaghshband

Advanced Network and Security Research Laboratory
Computer Science Department

California State University, Northridge
Northridge, California, USA
bobbychang@google.com

vahab@csun.edu

Abstract—Strict priority queueing, weighted fair queueing, and
weighted round robin are amongst the most popular differen-
tiated service queueing disciplines widely used in practice to
ensure quality of service for specific types of traffic. In this
paper, we present the design and implementation of these three
methods in Network Simulator 3 (ns-3). ns-3 is a discrete event
network simulator designed to simulate the behavior of computer
networks and internet systems. Utilizing our implementations will
provide users with the opportunity to research new solutions to
existing problems that were previously not available to solve
with the existing tools. We believe the ease of configuration
and use of our modules will make them attractive tools for
further research. By comparing the behavior of our modules with
expected outcomes derived from the theoretical behavior of each
queueing algorithm, we were able to verify the correctness of
our implementation in an extensive set of experiments. These
implementations can be used by the research community to
investigate new properties and applications of differentiated
service queueing.

Keywords–ns-3; network simulator; differentiated service; strict
priority queueing; weighted fair queueing; weighted round robin;
simulation

I. INTRODUCTION

In this paper, we present three new modules for three
scheduling strategies: strict priority queueing (SPQ), weighted
fair queueing (WFQ), and weighted round robin (WRR). These
queueing methods offer differentiated service to network traffic
flows, optimizing performance based on administrative config-
urations.

A. Network Simulator 3

The network simulator 3 (ns-3) [2] is a popular and
valuable research tool, which can be used to simulate systems
and evaluate network protocols. ns-3 is a discrete-event open
source simulator. It is completely different from its predecessor
ns-2. ns-2 was written in 1995 under the constraints of
limited computing power at the time, for example it utilized
scripting languages to avoid costly C++ recompilation. ns-3
is optimized to run on modern computers and aims to be easier
to use and more ready for extension. Its core is written entirely
in C++. ns-3 has sophisticated simulation features, such as
extensive parameterization system and configurable embedded
tracing system with standard outputs to text logs or pcap

Figure 1. ns-3’s simulation network architecture [3]

format. ns-3 has an object oriented design, which facilitates
rapid coding and extension. It also includes automatic memory
management and object aggregation/query for new behaviors
and state, e.g., adding mobility models to nodes [3].
ns-3 is aligned with real systems. It has BSD lookalike,

event based sockets API and models true IP stack with poten-
tially multiple devices and IP addresses on every node. ns-3’s
simulation network architecture is similar to IP architecture
stack as depicted in Figure 1.
ns-3 organizes components logically into modules. The

official modules included by default are able to create basic
simulated networks using common protocols, and users can
add additional components by creating specialized modules.
This has been used to add a leaky bucket scheduler [4] and to
add and evaluate a DiffServ framework implementation [5].

B. Differentiated Services

DiffServ is a network architecture that provides a way to dif-
ferentiate and manage network flows. A DiffServ network can
give priority to real-time applications, such as Voice over IP, to
ensure acceptable performance, or prevent malfunctioning and
malicious applications from occupying all of the bandwidth
and starving other communication. Two of the main compo-
nents of DiffServ are classification and scheduling. DiffServ
networks classify the packets in a network flow to determine
what kind of priority or service to provide and schedule
packets according to their classification. Differentiated service
queueing disciplines, such as those described in this paper,

1

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are responsible for executing the flow controls required by
DiffServ networks.

DiffServ refers to the differentiated services (DS) field in IP
headers. Routers utilize this header to determine which queue
to assign each packet in a differentiated service architecture. In
addition to this field, there is the older Type of Service (ToS)
field in IP headers, which the DS field has largely replaced,
and the Class of Service (CoS) field in Ethernet headers.
Many enterprise routers utilize these fields to implement the
differentiated service methods described in this paper. Routers
and switches produced by Cisco and ZyXEL implement SPQ,
WRR, and WFQ. Routers and switches produced by Allied
Telesis, Alcatel-Lucent, Brocade, Billion Electric, Dell, D-
Link, Extreme Networks, Ericsson, Huawei, Juniper Networks,
Linksys, Netgear, Telco Systems, Xirrus, and ZTE implement
SPQ and WRR. Routers and switches produced by Avaya,
Cerio, Hewlett-Packard, RAD, implement SPQ and WFQ.
Routers and switches produced by TP-Link implement SPQ
only.

This paper is organized as follows: first, a brief overview
of the theoretical background behind each of our modules is
presented in Section II. In Section III, we overview existing
simulation tools for differentiated service queueing. Section
III describes our design choices and implementation details.
Section IV showcases experiments using our modules and
presents an analysis of the results to validate their correctness
by comparing the observed behavior to analytically-derived
expectations. In Section V, we provide instructions to configure
these modules in an ns-3 simulation, and finally. we consider
future work in Section VI.

II. BACKGROUND

Each of the modules implemented in this paper is based
on well understood queueing algorithm. In this section, we
provide an overview on the behavoir of these algorithms.

A. Strict Priority Queueing

Strict priority queueing (SPQ) [6] classifies network packets
as either priority or regular traffic and ensures that priority
traffic will always be served before low priority. Priority
packets and regular packets are filtered into separate FIFO
queues, the priority queue must be completely empty before
the regular queue will be served. The advantage of this method
is that high priority packets are guaranteed delivery so long
as their inflow does not exceed the transmission rate on the
network. The potential disadvantage is a high proportion of
priority traffic will cause regular traffic to suffer extreme
performance degradation [6]. Figure 2 gives an example of
SPQ; packets from flow 2 cannot be sent until the priority
queue is completely emptied of packets from flow 1.

B. Weighted Fair Queueing

Weighted fair queueing (WFQ) [7] offers a more balanced
approach than SPQ. Instead of giving certain traffic flows
complete precedence over others, WFQ divides traffic flows
into two or more classes and gives a proportion of the available

Figure 2. A strict priority queue

bandwidth to each class based on the idealized Generalized
Processor Sharing (GPS) model [8].

In the GPS algorithm, the classifier classifies packets from
each flow into different logical queues. GPS serves non-
empty queues in turn and skips the empty queues. It sends
an indefinitely small amount of data from each queue, so that
in any finite time interval it visits all the logical queues at least
once. This property, in fact, makes GPS an ideal algorithm.
Note that if there are weights associated with each queue,
then the queues receive service according to their associated
weights. When a queue is empty, GPS skips it to serve the next
non-empty queue. Thus, whenever some queues are empty,
backlogged flows will receive additional service in proportion
to their weights. This results in GPS achieving an exact max-
min weighted fair bandwidth allocation. While GPS introduces
the ideal fairness, it suffers from implementation practicality
issues. Because of this issue, numerous approximations of GPS
have been proposed that are not ideal but can be implemented
in practice. Amongst these proposed GPS approximations are
several DiffServ networks such as WFQ and WRR.

In GPS, each queue i is assigned a class of traffic and
weight wi. At any given time, the weights corresponding to
nonempty queues wj are normalized to determine the portion
of bandwidth allocated to the queue as shown in (1).

w∗i =
wi∑
wj

(1)

w∗i is between zero and one and is equal to the share of
the total bandwidth allocated to queue i. For any t seconds on
a link capable of sending b bits per second, each nonempty
queue sends b ∗ t ∗ w∗i bits.

WFQ approximates GPS by calculating the order in which
the last bit of each packet would be sent by a GPS scheduler
and dequeues packets in this order [9]. The order of the last
bits is determined by calculating the virtual finish time of each
packet. WFQ assigns each packet a start time and a finish time,
which correspond to the virtual times at which the first and
last bits of the packet, respectively, are served in GPS. When
the kth packet of flow i, denoted by P ki , arrives at the queue,
its start time and finish time are determined by (2) and (3).

Ski = max(F k−1i , V (Aki)) (2)

F ki = Ski +
Lki
wi

(3)

F 0
i = 0, Aki is the actual arrival time of packet P ki , Lki is

the length of P ki , and wi is the weight of flow i. Here V (t)

2

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. A weighted fair queue

is the virtual time at real time t to denote the current round
of services in GPS and is defined in (4).

dV (t)

dt
=

c∑
i∈B〈t〉

wi
(4)

V (0) = 0, c is the link capacity, and B〈t〉 is the set of
backlogged connections at time t under the GPS reference
system. WFQ then chooses which packet to dequeue based on
the minimal virtual finish time. Figure 3 gives an example of
WFQ; packets are sent in the order determined by their virtual
finish times.

C. Weighted Round Robin

Weighted round robin (WRR) queueing is a round robin
scheduling algorithm that approximates GPS in a less com-
putationally intensive way than WFQ. Every round each
nonempty queue transmits an amount of packets proportional
to its weight. If all packets are of uniform size, each class of
traffic is provided a fraction of bandwidth exactly equal to its
assigned weight. In the more general case of IP networks with
variably sized packets, the weight factors must be normalized
using the mean packet size. Normalized weights are then used
to determine the number of packets serviced from each queue.
If wi is the assigned weight for a class and Li is the mean
packet size, the normalized weight of each queue is given by
(5).

w∗i =
wi
Li

(5)

Then the smallest normalized weight, w∗min, is used to
calculate the number packets sent from queue i each round
as shown in (6) [10]. ⌈

w∗i
w∗min

⌉
(6)

WRR has a processing complexity of O(1), making it useful
for high speed interfaces on a network. The primary limitation
of WRR is that it only provides the correct proportion of
bandwidth to each service class if all packets are of uniform
size or the mean packet size is known in advance, which is
very uncommon in IP networks. To ensure that WRR can

emulate GPS correctly for variably sized packets, the average
packet size of each flow must be known in advance; making it
unsuitable for applications where this is hard to predict. More
effective scheduling disciplines, such as deficit round robin
and WFQ were introduced to handle the limitations of WRR.
Figure 4 gives an example of WRR queueing; because packets
sent are rounded up, each round two packets will be sent from
flow 1 and one packet from flow 2.

III. RELATED WORK

The predecessor to ns-3, ns-2 [11] had implemented
some scheduling algorithms such fair queueing, stochastic fair
queueing, smoothed round robin, deficit round robin, priority
queueing, and class based queueing as official modules. Ns-2
and ns-3 are essentially different and incompatible environ-
ments, ns-3 is a new simulator written from scratch and is
not an evolution of ns-2. At the time of writing, the latest
version, ns-3.23, contains no official differentiated service
queueing modules. Several modules have been contributed by
others, such as the previously mentioned leaky bucket queue
implementation [4] and DiffServ evaluation module [5].

This paper describes the sames modules with an expanded
suite of validation experiments as presented in Chang et al.
[1]. In this paper, we present our results from additional
experiments performed to further validate the SPQ module and
provided a more complete coverage of our WFQ and WRR
validation experiments.

Previously, Pournaghshband [12] introduced a new end-to-
end detection technique to detect network discriminators (such
as the differentiated queueing managements implemented in
this paper) and further used the SPQ module presented in this
paper to validate their findings. Furthermore, Rahimi et al. [13]
introduced a new approach to improve the TCP performance
of low priority traffic in SPQ and used the introduced SPQ
module in this paper to simulate the approach.

IV. DESIGN AND IMPLEMENTATION

In the DiffServ architecture, there is a distinction between
edge nodes, which classifies packets and set the DS fields
accordingly, and internal nodes, which queue these packets
based on their DS value. In the design framework we used
for all modules, each queue operates independently; we do
not utilize the DS field and packets are reclassified at each
instance.

WFQ, WRR, and SPQ all inherit from the Queue class in
ns-3. Queue provides a layer of abstraction that hides the

Figure 4. A weighted round robin queue

3

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scheduling algorithm and allows easy utilization of our classes
wherever the Queue class exists.

The Queue API has three main public members related
to functionality: Enqueue(), Dequeue(), and Peek(). In the
Point To Point module, PointToPointNetDevice passes outgo-
ing packets to Queue::Enqueue() when it has finished pro-
cessing them. PointToPointNetDevice calls Queue::Dequeue()
when the outgoing link is free and begins transmitting the
returned packet. Our modules were built specifically with Point
To Point in mind, but can be included with any ns-3 module
that utilizes Queue.

Classes that inherit from Queue must implement the abstract
methods DoEnqueue(), DoDequeue(), and DoPeek(), which
are called by the public methods Enqueue(), Dequeue(), and
Peek() respectively.

DoEnqueue() takes a packet as an argument, attempts to
queue it, and indicates whether the packet was successfully
queued or dropped. DoDequeue() takes no arguments, attempts
to pop the next scheduled packet, and returns the packet if
successful or an error otherwise. DoPeek() takes no arguments
and returns the next scheduled packet without removing it from
the queue.

Our classes follow the same functional design pattern:
DoEnqueue() calls Classify(), which determines the correct
queue based on user provided parameters. DoDequeue() and
DoPeek() both implement the module-specific scheduling al-
gorithm and return the next the scheduled packet.

To handle user provided criteria for classification, we pro-
pose an input format modeled after Cisco System’s IOS con-
figuration commands. For each of the disciplines, the classifier
sorts incoming packets into separate classes or queues based
on these criteria: source IP address, source port number,
destination IP address, destination port number, and TCP/IP
protocol number (TCP or UDP).

The source and destination address criteria could be either
a single host or a range of IP addresses. An optional subnet
mask can be provided along with the criteria to distinguish
the incoming packets from a particular network. It is an
inverse mask instead of normal mask (0.0.0.255 instead of
255.255.255.0) for consistency with Cisco IOS.

Each set of user-defined match criteria is stored as an Access
Control List (ACL). An ACL consists of a set of entries,
where each entry is a combination of the mentioned five-tuple
values to uniquely identify a group of packets. After ACLs
are introduced to the system, each ACL is linked to a CLASS,
which matching packets are associated to.

WFQ and WRR use CLASSs for classification purposes. A
CLASS has attributes such as weight and queue size. Each
instance of CLASS must have an associated ACL and each
ACL can only relate to one CLASS.

Upon arrival of a new packet, the classifier attempts to
classify the packet into an existing CLASS based on ACLs.
If a match is found, the packet is placed into the reserved
queue for the corresponding CLASS, however if a match is not
found, it will be grouped into the predefined default CLASS.

Each reserved queue is a first-in first-out queue with a tail
drop policy. Two methods for configuring ACLs and CLASSs
via input files are included in the usage section and they are
accompanied by actual examples.

As for SPQ, we also suggest an input configuration model.
We have not implemented it, however, we briefly explain
the idea behind it here. In this model, PRIORITY-LISTs are
defined and ACLs are linked to them. A PRIORITY-LIST
contains the definitions for a set of priority queues. It specifies
which queue a packet will be placed in and, optionally, the
maximum length of the different queues. Here, a PRIORITY-
LIST has two queues, a high priority queue and a low priority
queue. Similar to CLASSs, the same procedure happens when
a packet arrives. The classifier tries to put the packet into one
of the priority queues based on existing ACLs. If a match is
not found, the packet will be placed in the low priority queue.
Each reserved queue is a first-in first-out queue with a tail
drop policy.

A. Strict Priority Queueing

1) Design: SPQ has two internal queues, which we will
refer to as Q1 and Q2, Q1 is the priority queue and Q2 is the
default queue. Priority packets are distinguished by either a
single port or IP address. Traffic matching this priority citerion
are sorted into the priority queue, all other traffic is sorted into
the lower priority default queue.

In some SPQ implementations, outgoing regular priority
traffic will be preempted in mid-transmission by the arrival of
an incoming high priority packet. We chose to only implement
prioritization at the time packets are scheduled. If a priority
packet arrives while a regular packet is in transmission, our
module will finish sending the packet before scheduling the
priority packet.

2) Implementation: DoEnqueue() calls the function Clas-
sify() on the input packet to get a class value. Classify() checks
if the packet matches any of the priority criterion and indicates
priority queue if it does or default queue if it does not. The
packet is pushed to the tail if there is room in the queue;
otherwise, it is dropped.

DoDequeue() attempts to dequeue a packet from the priority
queue. If the priority queue is empty, then it will attempt to
schedule a packet from the regular queue for transmission.

B. Weighted Fair Queueing

1) Design: Our class based WFQ assigns each packet a
class on its arrival. Each class has a virtual queue, with which
packets are associated. For the actual packet buffering, they are
inserted into a sorted queue based on their finish time values.
Class (and queue) weight is represented by a floating point
value.

A WFQ’s scheduler calculates the time each packet finishes
service under GPS and serves packets in order of finish time.
To keep track of the progression of GPS, WFQ uses a virtual
time measure, V (t), as presented in (4). V (t) is a piecewise
linear function whose slope changes based on the set of active

4

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

queues and their weights under GPS. In other words, its slope
changes whenever a queue becomes active or inactive.

Therefore, there are mainly two events that impact V (t):
first, a packet arrival that is the time an inactive queue becomes
active and second, when a queue finishes service and becomes
inactive. The WFQ scheduler updates virtual time on each
packet arrival [9]. Thus, to compute virtual time, it needs
to take into account every time a queue became inactive
after the last update. However, in a time interval between
two consecutive packet arrivals, every time a queue becomes
inactive, virtual time progresses faster. This makes it more
likely that other queues become inactive too. Therefore, to
track current value of virtual time, an iterative approach is
needed to find all the inactive queues, declare them as inactive,
and update virtual time accordingly [9]. The iterated deletion
algorithm [14] shown in Figure 5 was devised for that purpose.

while true do
F = minimum of Fα

δ = t− tchk
if F <= Vchk + δ ∗ L

sum then
declare the queue with Fα = F inactive
tchk = tchk + (F − Vchk) ∗ sumL
Vchk = F
update sum

else
V (t) = Vchk + δ ∗ L

sum
Vchk = V (t)
tchk = t
exit

end if
end while

Figure 5. The iterated deletion algorithm

Here, α is an active queue, Fα is the largest finish time
for any packet that has ever been in queue α, sum is the
summation of the weights of actives queues at time t, and L
is the link capacity.

We maintain two state variables: tchk and Vchk = V (tchk).
Because there are no packet arrivals in [tchk, t], no queue can
become active and therefore sum is strictly non-increasing in
this period. As a result a lower bound for V (t) can be found as
Vchk+(t− tchk)∗ L

sum . If there is a Fα less than this amount,
the queue α has become inactive some time before t. We
find the time this happened, update tchk and Vchk accordingly
and repeat this computation until no more queues are found
inactive at time t.

After the virtual time is updated, the finish time is calculated
for the arrived packet and it is inserted into a priority queue
sorted by finish time. To calculate the packet’s finish time,
first its start time under GPS is calculated, which is equal to
the greater of current virtual time and largest finish time of a
packet in its queue or last served from the queue. Then, this
amount is added to the time it takes GPS to finish the service
of the packet. This is equal to packet size divided by weight.

2) Implementation: Similarly to SPQ’s implementation,
DoEnqueue() calls Classify() on input packets to get a class
value. Classify() returns the class index of the first matching
criteria, or the default index if there is no match. This class
value maps to one of the virtual internal queues, if the queue
is not full the packet is accepted, otherwise it is dropped.

Current virtual time is updated as previously described
and if the queue was inactive it is made active. The packet
start time is calculated by (2) using updated virtual time
and queue’s last finish time. Then packet finish time is set
by CalculateFinishTime(). This method uses (3) to return the
virtual finish time. The queue’s last finish time is then updated
to the computed packet finish time. Finally, the packet is
inserted into a sorted queue based on the finish numbers. A
priority queue from C++ container library was used for that
purpose.

DoDequeue() pops the packet at the head of priority queue.
This packet has the minimum finish time number.

C. Weighted Round Robin

1) Design: WRR has the same number of internal queues,
assigned weight representation, and classification logic as
WFQ. The weight must be first normalized with respect to
packet size. In an environment with variably sized packets,
WRR needs to assign a mean packet size si for each queue.
These parameters are identified by the prior to the simulation
in order to correctly normalize the weights. The normalized
weight and number of packets sent are calculated by (5) and
(6).

2) Implementation: Before the start of the simulation, Cal-
culatePacketsToBeServed() determines the number of packets
sent from each queue using (6). Similar to SPQ and WFQ,
DoEnqueue() uses Classify() to find the class index of the
incoming packets and then puts them in the corresponding
queue.

DoDequeue() checks an internal counter to track how many
packets to send from the queue receiving service. Each time
a packet is sent the counter is decremented. If the counter is
equal to zero or the queue is empty DoDequeue() marks the
next queue in the rotation for service and updates the counter
to the value previously determined by CalculatePacketsToBe-
Served().

Sender Receiver

SM

SPQ

High Priority Flow

Low Priority Flow

MR

Figure 6. Simulated network used in validation experiments for SPQ

5

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1 Detecting Strict Priority Queueing
detectStrictPriorityQueueing(np = 1000, nI = 1000, cp =
{50Mbps, 100Mbps})

1: # Pre-Probing Phase
2: (PLj)Mj=1 ← constructLProbeSequence(nl, np, cp)
3: (PHj)Mj=1 ← constructHProbeSequence(nl, np, cp)
4:
5: # Probing Phase
6: send(PLj

)Mj=1

7: send(PHj
)Mj=1

8:
9: # Post-Probing Phase

10: p̂iL ← estimateLossRatio(nl, np, ((PLj
)Mj=1)′)

11: p̂iH ← estimateLossRatio(nl, np, ((PHj
)Mj=1)′)

12:
13: return (p̂iL, p̂

i
H)

TABLE I. Parameters used in validating strict priority queueing

Experiment Parameters Value

Sender to Middlebox link capacity {50, 100} Mbps

Middlebox Queue Size 20 Packets

Separation Packet Train Length 10 Packets

Initial Packet Train Length 1,000 Packets

Inter-Packet Time 0.1 ns

Packet Size 100 bytes

Middlebox to Reciever Link Capacity { 10,...,100 } Mbps

V. VALIDATION

To validate our SPQ, WFQ, and WRR implementations, we
ran a series of experiments against each module. For each
experiment, we chose a scenario with predictable outcomes for
a given set of parameters based on analysis of the scheduling
algorithm. Then we ran simulations of the scenario using the
module and compared the recorded results with a model that
describes the expected behavior of these queueing disciplines.

A. Strict Priority Queueing

To verify the correctness of our strict priority queueing
implementation we adapted an approach proposed by Pour-
naghshband [12] to detect the presence of SPQ in a given
network topology (Algorithm 1 and 2). In this approach, a
sender and a receiver cooperate to detect whether certain
traffic is being discriminated using this queueing discipline.
In this section, we will validate our implementation for SPQ
module in ns-3 by demonstrating that this approach detects
our implemented SPQ accurately.

The original design of SPQ guarantees high priority packets
to be scheduled to be transmitted ahead of low priority
packets. In the case of high network congestion, this leads
to queue saturation, and hence overflow, causing packet losses
in any queues. However, due to the inherent nature of packet
scheduling in SPQ, in the presence of packets from both high
and low priority network flows, the high priority packet loss

Algorithm 2 Construct Low Priority Probe Sequence
constructLProbeSequnce(nI , np, cp)

1: (PLj
)Mj=1 ← Ø

2: for i = 1 to nI do
3: (PLj)Mj=1 ← (PLj)Mj=1 || (PH)
4: end for
5: for i = 1 to (M − 1) do
6: (PLj

)Mj=1 ← (PLj
)Mj=1 || (PLi

)
7: for k = 1 to N ′ do
8: (PLj)Mj=1 ← (PLj)Mj=1|| (PH)
9: end for

10: end for
11: (PLj

)Mj=1 ← (PLj
)Mj=1 || (PLM

)
12:
13: return (PLj)Mj=1

rate (PLR) is considerably lower compared to that of low
priority.

We exploit this starvation issue in presence of high network
congestion for low priority network flow and monitor the
aggregate loss rate of packets of both high and low packets.
We achieve this by constructing a UDP packet probe train
consisting of both high and low priority packets. The sender
sends this packet train, expecting to saturate both regular and
the high priority queues. Algorithm 2 lays out the implemen-
tation details of how the packet probe train is created. Figure
8 visualizes how the packets are constructed using Algorithm
2.

We used the network topology shown in Figure 6. Our
modified detection application was installed on the sender and
the receiver. We set the following fixed parameters for all
validation experiments: middlebox queue size to 20 packets,
separation packet train length to 2 packets, inter-packet send-
ing time to 0.1 ns, packet size of 100 bytes, and initial packet
train length to 1,000 packets. Initial packet train consists of

● ● ● ●

● ● ● ● ● ●

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Middlebox to Reciever Link Capacity (Mbps)

A
gg

re
ga

te
 L

os
s

R
at

e
(%

)

● LowPriority
HighPriority

Figure 7. Aggregate loss rate for high priority probes and low priority
probes where Sender-to-Middlebox link capacity is 50 Mbps

6

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Illustration of packet probe train constructed by
ConstructLProbeSeuquence function (N ′ is the number of packets in the

separation packet train. nI is the initial packet train length. M is the total
priority packet probes. (Green) High priority packets. (Red) Low priority

packets.)

only high priority packets to saturate the high priority queue
in SPQ, which leads to immediate subsequent packets (low or
high) to be queued.

We ran two sets of experiments with Sender-to-Middlebox
(SM) set to 50Mbps and 100Mbps. In each set of experiments,
we used ten different values for Middlebox-to-Receiver (MR)
link capacity: 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 Mbps.

All parameters used in experiments validating SPQ are
summarized in Table I.

Figures 7 and 9 demonstrate the clear noticeable difference
between the perceived aggregate loss rate between high and
low priority packets. In the detection algorithm (Algorithms 1
and 2), the packet trains are constructed in a way that satisfies
two goals: (1) in High Priority Phase, the separation packet
train consisting of low priority packets allows sufficient time
for high priority packets to never be backlogged in the high
priority queue, resulting in no packet loss for high priority
packets. (2) On the other hand, in Low Priority Phase, the
separation packet train consisting of high priority packets
ensures that the high priority queue is always busy such that
the packets in the regular queue never get a chance be served
by the scheduler. This should fill up the queue quickly, leading
to remaining low priority packets arrived at the queue being
dropped.

As a result, as illustrated in Figure 7 and 9, we observed no
packet loss for high priority packets in High Priority Phase,
and nearly all low priority packets in Low Priority Phase were

● ● ● ● ● ● ● ● ● ●

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Middlebox to Reciever Link Capacity (Mbps)

A
gg

re
ga

te
 L

os
s

R
at

e
(%

)

● LowPriority
HighPriority

Figure 9. Aggregate loss rate for high priority probes and low priority
probes where Sender-to-Middlebox link capacity is 100 Mbps

1

2

7

10

0 20000 40000 60000

Time (s)

P
er

ce
iv

ed
 B

an
dw

id
th

s
R

at
io

Weights Ratio = 10

Weights Ratio = 7

Weights Ratio = 2

Weights Ratio = 1

Figure 10. WFQ validation: T = 0.5 Mbps

1

2

7

10

0 10000 20000 30000

Time (s)

P
er

ce
iv

ed
 B

an
dw

id
th

s
R

at
io

Weights Ratio = 10

Weights Ratio = 7

Weights Ratio = 2

Weights Ratio = 1

Figure 11. WFQ validation: T = 1 Mbps

lost. PLR for low priority packets is not 100% since a few low
priority packets (in front of the packet train) were queued in
the regular queue, and hence starved but never lost. The exact
number of these low priority packets matches the size of the
queue (Table I).

We observe the effects of SPQ only when Middlebox-to-
Receiver is the bottleneck. This is due to the fact that the
service rate at SPQ is lower than the arrival rate. Aggregate
loss rate for both high and low priority packets are 0% loss
rate when the Middlebox-to-Receiver link capacity is equal to

1

2

7

10

0 1000 2000 3000

Time (s)

P
er

ce
iv

ed
 B

an
dw

id
th

s
R

at
io

Weights Ratio = 10

Weights Ratio = 7

Weights Ratio = 2

Weights Ratio = 1

Figure 12. WFQ validation: T = 10 Mbps

7

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1

2

7

10

0 200 400 600

Time (s)

P
er

ce
iv

ed
 B

an
dw

id
th

s
R

at
io

Weights Ratio = 10

Weights Ratio = 7

Weights Ratio = 2

Weights Ratio = 1

Figure 13. WFQ validation: T = 50 Mbps

1

2

7

10

0 20000 40000 60000

Time (s)

P
er

ce
iv

ed
 B

an
dw

id
th

s
R

at
io

Weights Ratio = 10

Weights Ratio = 7

Weights Ratio = 2

Weights Ratio = 1

Figure 14. WRR validation: T = 0.5 Mbps

or larger than the Sender-to-Middlebox link. This is when the
service rate is the same as or larger than the arrival rate.

In summary, the observed behavior aligns with the expected
behavior.

B. Weighted Fair Queueing

Our WFQ experiments used the six node topology shown
in Figure 18. The nodes sender1 and sender2 each have
an instance of ns3::BulkSendApplication installed.
The nodes receiver1 and receiver2 each have an instance
of ns3::PacketSink installed. sender1 and sender2 send
a traffic flow across the network to receiver1 and receiver2
respectively. Both traffic flows travel across a single link
between the two middle boxes and must share the avaiable
bandwidth. We installed a WeightedFairQueue module on the
outgoing ns3::NetDevice across the shared link. In order to
observe the characteristics of WFQ, both senders send data at
a combined rate above the capacity of the shared link, forcing
the ns3::NetDevice to utilize the installed queueing module.

The following parameters are constant across
all WFQ simulations. The senders use the
ns-3::BulkSendApplication to send 1000 byte
packets with no idling in between and only terminate sending
after they have send 1GB of data. All links have 5ms
delay, the data rates on all other ns3::NetDevice were set
high enough to prevent queueing, and the queue sizes on

1

2

7

10

0 10000 20000 30000

Time (s)

P
er

ce
iv

ed
 B

an
dw

id
th

s
R

at
io

Weights Ratio = 10

Weights Ratio = 7

Weights Ratio = 2

Weights Ratio = 1

Figure 15. WRR validation: T = 1 Mbps

1

2

7

10

0 1000 2000 3000

Time (s)

P
er

ce
iv

ed
 B

an
dw

id
th

s
R

at
io

Weights Ratio = 10

Weights Ratio = 7

Weights Ratio = 2

Weights Ratio = 1

Figure 16. WRR validation: T = 10 Mbps

WeightedFairQueue were set high enough to prevent packet
loss. We used ns3::FlowMonitor to measure the data rates
for each flow.

Because WFQ is approximations of GPS, and GPS allocates
bandwidth based on exact weights, we expect ratio of both
traffic flow’s throughput to be close to the ratio of weights.

The two traffic flows are assigned weights w1 and w2 where
w2 = 1 − w2 for all simulations. Both traffic flows transmit
packets at T Mbps from the senders and the shared link has a
throughput capacity of 0.5T , creating a bottleneck. For each

1

2

7

10

0 200 400 600

Time (s)

P
er

ce
iv

ed
 B

an
dw

id
th

s
R

at
io

Weights Ratio = 10

Weights Ratio = 7

Weights Ratio = 2

Weights Ratio = 1

Figure 17. WRR validation: T = 50 Mbps

8

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

module we ran sets of four simulations where w2 = 1, 12 ,
1
7 ,

1
10

and T is fixed, we repeated this four times with different
data rates T = 0.5, 1, 10, 50. In each simulation, the receivers
measure the average throughput of both flows, R1 and R2

over 1ms intervals and the we record the ratio. All simulations
stopped after the first traffic flow had finished transmitting to
prevent the experiment from recording any data that does not
include both senders.

The results in Figures 10, 11, 12, and 13 show the ratio
of throughput at the receivers remains close to the ratio of
weights. As we increase data rate across the network, the
measured ratio converges to the theoretical one.

For each flow in a correctly implemented WFQ system, the
number of bytes served should not lag behind an ideal GPS
system by more than the maximum packet length. In low data
rates such as 0.5Mbps even one packet can make a noticeable
difference. For instance, in a GPS system when the ratio of
weights is 10, the first flow sends 10 packets and the second
flow sends 100 packets over the same time interval. However,
in the corresponding WFQ system if the first flow sends 9
packets, then the perceived ratio will be 11.11 instead of 10.

C. Weighted Round Robin

Our WRR experiments used the same six node
topology used by the WFQ experiments, shown in
Figure 18. ns-3::BulkSendApplication and
ns-3::PacketSink were installed on the same nodes, and
ns-3::FlowMonitor was used to collect data. In these
experiments, we installed the WeightedRoundRobin module
on the outgoing ns3::NetDevice across the shared link.

Similarly, each ns-3::BulkSendApplication was
programmed to send 1000 byte packets with no idling until
1 GB of data had been sent. We kept all link delays, data rates,
and queue sizes in this set of experiments unchanged from the
WFQ experiments.

We collected data from these experiments using the same
methods and calcuations described in the previous section
on WFQ. Like WFQ, WRR is an approximation of GPS,
and we expect ratio of both traffic flow’s throughput to be

Figure 18. Simulated network used in WFQ and WRR validation
experiments

close to the ratio of weights. Because WRR is optimal when
using uniform packet sizes, a small number of flows, and long
connections, we observe that WRR performs as well as WFQ
in approximating GPS. As expected, we can see in Figures 14,
15, 16, and 17 that the measured ratio of throughput converges
to the ratio of weights as data rate increases.

VI. USAGE

As discussed in Section IV, CLASSs and their correspond-
ing ACLs must be defined before the simulation can start. In
addition to working with objects directly in their applications,
users can provide this information through a text or XML file.

A. Text input configuration file

The input configuration data can be provided through a text
file. This file consists of a set of lines where each line is a
command designated to introduce an ACL or a CLASS to the
system. These commands are simplified versions of Cisco IOS
commands and should be familiar to users who have worked
with Cisco products.

Here, access-list command can be used to define a
single ACL. Figure 19 shows the syntax of the command and
the order of the parameters.

a c c e s s− l i s t a c c e s s−l i s t −i d
[p r o t o c o l]
[s o u r c e a d d r e s s]
[s o u r c e a d d r e s s m a s k]
[o p e r a t o r [s o u r c e p o r t]]
[d e s t i n a t i o n a d d r e s s]
[d e s t i n a t i o n a d d r e s s m a s k]
[o p e r a t o r [d e s t i n a t i o n p o r t]]

Figure 19. access-list command syntax

Furthermore, class command defines a single CLASS.
Weight amount can be determined using the bandwidth
percent parameter and queue size is set by queue-limit.
Figure 20 demonstrates the syntax of class command and the
order of the parameters.

c l a s s [c l a s s i d]
bandwid th p e r c e n t [we ig h t]
queue−l i m i t [q u e u e s i z e]

Figure 20. class command syntax

After defining a CLASS, it is expected to be linked to
an ACL. This is done through a class-map command that
matches one CLASS with one ACL. Figure 21 provides the
syntax of class-map command.

c l a s s−map [c l a s s i d]
match a c c e s s−group [a c l i d]

Figure 21. class-map command syntax

We provide a simple example here to configure a sample
WFQ system that has two classes with weights’ ratio of 7

9

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and queue sizes of 256 packets. We define an ACL called
highACL for the class with higher weight and another ACL
called lowACL for the class with lower weight. highACL
includes traffic from 10.1.1.0 network with port number 80
aiming to 172.16.1.0 network with the same port number
via TCP protocol. lowACL, however, includes traffic from
10.1.1.0 with port number 21 heading towards 172.16.1.0
with the same port number via TCP protocol. Figure 22
demonstrates the example.

a c c e s s− l i s t highACL TCP 1 0 . 1 . 1 . 0 0 . 0 . 0 . 2 5 5 eq 80
1 7 2 . 1 6 . 1 . 0 0 . 0 . 0 . 2 5 5 eq 80

a c c e s s− l i s t lowACL TCP 1 0 . 1 . 1 . 0 0 . 0 . 0 . 2 5 5 eq 21
1 7 2 . 1 6 . 1 . 0 0 . 0 . 0 . 2 5 5 eq 21

c l a s s h ighC l bandwid th p e r c e n t 0 .875 queue−l i m i t 256
c l a s s lowCl bandwid th p e r c e n t 0 .125 queue−l i m i t 256
c l a s s−map h ig hCl match a c c e s s−group highACL
c l a s s−map lowCl match a c c e s s−group lowACL

Figure 22. A sample example demonstrating configuration of WFQ using
text file commands

B. XML input configuration file

Alternatively, users can provide input configuration data
via an XML file where they can provide a set of ACLs to
the system using <acl_list> tag. An <acl list> tag can
include one or multiple ACLs. Each ACL is defined using
an <acl> tag and can have one or multiple set of rules or
entries defined by <entry> tags.

Similar to ACLs, CLASSs are introduced using a
<class_list> tag, which is a set of CLASSs each defined
by a <class> tag. Each CLASS has queue_limit and
weight properties and is linked to its corresponding ACL
using acl_id attribute.

Again we provide an example of configuration of WFQ. We
use the example that we already used in the previous section
and show that how it can be implemented via an XML file.
Figure 23 demonstrates the example.

VII. CONCLUSION AND FUTURE WORK

In order to add new functionality to ns-3, we have
designed and implemented modules for SPQ, WFQ, and
WRR. We have detailed our implementations of these well
known algorithms and presented the reader with the means to
understand their operation. We have validated these modules
and shared our experiment designs and results to prove their
correctness. Utilizing the instruction and examples we have
given, readers can write simulations that make use of our
modules for further experimentation. The ease of configuration
and use of our modules should make them attractive tools for
further research and we look forward to seeing how others
take advantage of our work.

There is a further oppurtunity to break these modules into
abstract components for re-use. There exist obvious shared
functionality between the three queues, particularly WFQ
and WRR. All three modules perform classification, a new
class could be implemented to handle classsification for any

<a c l l i s t >
<a c l i d = ‘ ‘ highACL”>

<e n t r y>
<s o u r c e a d d r e s s >1 0 . 1 . 1 . 0
</ s o u r c e a d d r e s s>
<s o u r c e a d d r e s s m a s k >0 . 0 . 0 . 2 5 5
</ s o u r c e a d d r e s s m a s k>
<s o u r c e p o r t n u m b e r >80
</ s o u r c e p o r t n u m b e r>
<d e s t i n a t i o n a d d r e s s >1 7 2 . 1 6 . 1 . 0
</ d e s t i n a t i o n a d d r e s s >
<d e s t i n a t i o n a d d r e s s m a s k >0 . 0 . 0 . 2 5 5
</ d e s t i n a t i o n a d d r e s s m a s k>
<d e s t i n a t i o n p o r t n u m b e r >80
</ d e s t i n a t i o n p o r t n u m b e r>
<p r o t o c o l>TCP</ p r o t o c o l>

</ e n t r y>
</ a c l>
<a c l i d = ‘ ‘ lowACL”>

<e n t r y>
<s o u r c e a d d r e s s >1 0 . 1 . 1 . 0
</ s o u r c e a d d r e s s>
<s o u r c e a d d r e s s m a s k >0 . 0 . 0 . 2 5 5
</ s o u r c e a d d r e s s m a s k>
<s o u r c e p o r t n u m b e r >21
</ s o u r c e p o r t n u m b e r>
<d e s t i n a t i o n a d d r e s s >1 7 2 . 1 6 . 1 . 0
</ d e s t i n a t i o n a d d r e s s >
<d e s t i n a t i o n a d d r e s s m a s k >0 . 0 . 0 . 2 5 5
</ d e s t i n a t i o n a d d r e s s m a s k>
<d e s t i n a t i o n p o r t n u m b e r >21
</ d e s t i n a t i o n p o r t n u m b e r>
<p r o t o c o l>TCP</ p r o t o c o l>

</ e n t r y>
</ a c l>

</ a c l l i s t >
<c l a s s l i s t >

<c l a s s i d = ‘ ‘ h igh Cl ” a c l i d = ‘ ‘ highACL”>
<q u e u e l i m i t >256</ q u e u e l i m i t>
<weight >0.875</ weight>

</ c l a s s >
<c l a s s i d = ‘ ‘ lowCl ” a c l i d = ‘ ‘ lowACL”>

<q u e u e l i m i t >256</ q u e u e l i m i t>
<weight >0.125</ weight>

</ c l a s s >
</ c l a s s l i s t >

Figure 23. A sample example demonstrating configuration of WFQ using
XML file

differentiated service queue. Scheduling, although different
for each queue type, has identical interfaces and could be
implemented as a base class for differentiated service queues
to inherit from and respective their own scheduling classes.
These shared classes could form the base of a framework
for creating additional differentiated service queue modules
in ns-3.

REFERENCES

[1] R. Chang, M. Rahimi, and V. Pournaghshband, “Differentiated Service
Queuing Disciplines in ns-3,” In Proc. of the Seventh International
Conference on Advances in System Simulation (SIMUL), Barcelona,
Spain, November 2015.

[2] ”The ns-3 Network Simulator,” Project Homepage. [Online]. Available:
http://www.nsnam.org [Retrieved: September, 2015]

[3] J. Kopena, “ns3: Quick Intro and MANET WG Implementations,”
Proceedings Of The Seventy-Second Internet Engineering Task Force,
Dublin, Ireland, 2008.

10

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] P. Baltzis, C. Bouras, K. Stamos, and G. Zaoudis, “Implementation of a
leaky bucket module for simulations in ns-3,” tech. rep., Workshop on
ICT - Contemporary Communication and Information Technology, Split
- Dubrovnik, 2011.

[5] S. Ramroop, “Performance evaluation of diffserv networks using the ns-
3 simulator,” tech. rep., University of the West Indies Department of
Electrical and Computer Engineering, 2011.

[6] Y. Qian, Z. Lu, and Q. Dou, “Qos scheduling for nocs: Strict priority
queuing versus weighted round robin,” tech. rep., 28th International
Conference on Computer Design, 2010.

[7] A. Parekh and R. Gallager, “A generalized processor sharing approach
to flow control in integrated services networks: the single node case,”
IEEE/ACM Transactions on Networking, vol. 1, no. 3, 1993, pp. 344-
357.

[8] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queuing algorithm,” ACM SIGCOMM, vol. 19, no. 4, 1989, pp. 3-14.

[9] S. Keshav, “An Engineering Approach to Computer Networking.” Addi-
son Wesley, 1998.

[10] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-
robin cell multiplexing in a general-purpose atm switch chip,” IEEE
Journal on Selected Areas in Communications, vol. 9, no. 8, 1991.

[11] “The ns-2 Network Simulator,” Project Homepage. [Online]. Available:
http://www.isi.edu/nsnam/ns/ [Retrieved: September, 2015]

[12] V. Pournaghshband, “End-to-End Detection of Third-Party Middlebox
Interference, Ph.D. Dissertation, University of California, Los Angeles,
2014

[13] M. Rahimi and V. Pournaghshband, “An Improvement Mechanism for
Low Priority Traffic TCP Performance in Strict Priority Queueing,” In
Proc. of IEEE International Conference on Computer Communications
and Informatics (ICCCI), pp. 570, January 2016.

[14] S. Keshav, “On the efficient implementation of fair queueing,” In Journal
of Internetworking: Research and Experience, volume 2, number 3,
December 1991.

11

International Journal on Advances in Networks and Services, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/networks_and_services/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

