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Abstract—This research paper presents a new relaying strategy 

for decentralized wireless networks that target mobile node 

motion recognition and prediction, using statistical reasoning 

to give portable devices more intelligence, which we term the 

Smart Relaying scheme. The aim of the proposed protocol is to 

enable intelligent terminals to observe the movement of 

adjacent wireless nodes so as to analyze the measured data and 

infer the targeted mobile subscriber motion strategies in 

different scenarios. This ability is of use within the Store-Carry 

and Forward Relaying scheme to create opportunities for the 

system to increase its overall performance. The motion data 

are processed by the Kalman Filter (KF) algorithm that can be 

seen as a series of prediction, tracking and smoothing 

calculations of the movement of mobile subscribers. The 

protocol is tested using the Opportunistic Network 

Environment (ONE) simulator. Compared with other DTN 

routing protocols in simple networks, the KF algorithm offers 

a well-controlled on hop count and overhead ratio with same 

delivery rate. In complex scenarios, the results show the KF 

routing protocol balances the delay, the times of relay and 

overhead ratio very well, which means the designed routing 

scheme delivers outstanding performance with good tolerance 

and resilience.  

Keywords— Store-Carry and Forward; Decentralized 

Wireless Networks; Kalman Filter; Opportunistic Network 

Environment (ONE) simulator 

I.  INTRODUCTION 

Lack of resources is always a potential issue for 
communication networks, however, well designed in terms 
of a wired or wireless backup system. In the case of natural 
disasters, such as hurricane, earthquake, landslide and so on, 
portable devices can only work under an ad hoc model to 
achieve the transmission of information, forming a type of 
decentralized wireless system. 

In a decentralized wireless network, each of the mobile 
nodes is allowed to have its own determination of how to 
assist other mobile nodes or the attached wireless network. In 
this case, the wireless node can be designed to simply 
forward or flood the relayed message as required, however, 
this will cause the mobile system to be less controlled or to 
lack management. Providing the portable node with 
intelligence to analyze the ambient situation and provide 
input to the routing decision process helps the system 
improve its overall performance.  The widespread use of 
smart devices makes this easy to implement and provides an 
advantageous network feature [1]. 

 Delay Tolerant Networks (DTNs) [2] are typical of 
decentralized wireless networks, and FANETs (Flying Ad 
Hoc Networks) [3] constitute a very modern DTN 
application, in which end-to-end connectivity is provided 
between a pair of nodes despite intermittent link connectivity 
and long delays thus providing more network flexibility and 
resilience [4]. As the network needs to use the limited 
connectivity to forward segments of the payload, the packets 
can be randomly forwarded to any neighboring nodes 
depending on the relaying strategy. This results in reduced 
system efficiency, overall delay and considerable energy 
wastage. The Store-Carry and Forward (SCF) relaying 
scheme [5] is a well-designed DTN wireless system based on 
random segment forwarding capabilities. The mechanisms 
used to determine the forwarding will critically influence the 
wireless network performance, including factors such as 
network efficiency, transmission delay, Quality of Service 
(QoS), energy efficiency and network load distribution [6]. 

The mobility of wireless subscribers is one of the benefits 
of mobile networks, providing more flexibility to mobile 
users. Moreover, it also allows portable device vendors to 
offer advanced functionality comparable to wired networks 
but in a much more adaptable and reconfigurable way. The 
SCF relaying scheme may use this mobility to achieve its 
relay work, whilst the nature of the uncertainty of the 
wireless nodes causes uncontrollable DTN performance. 
However, if the overall motion of wireless subscribers can be 
observed and the future movement can be foreseen, then the 
relay route can be well managed and optimized. 

 The rest of the paper of the paper is organized as follows. 
In Section II, the context for the work is provided by a short 
overview of the literature. Section III gives a review of a list 
of existing related DTN routing protocols. In Section IV, 
detailed information is provided on the proposed Kalman 
Filter (KF) routing protocol regarding its mathematical 
model. Section V shows the simulation results and 
comprehensive comparisons with other relaying strategies. 
The last section presents the conclusions and suggestions for 
future work. 

II. RELATED WORK 

To deal with the motion of the nodes within a DTN, it 
has been common to form routing paths between nodes that 
are in each other’s direct communication range [7]. Thus, the 
network needs to maintain an end-to-end structure whilst its 
intermediate structure varies with node movement. This is 
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difficult because the variations in node positions constantly 
change the underlying communication graph and mean that 
nodes must quickly adapt to the new configurations. One of 
the methods for solving this problem is link reversal [8], 

which models the problem as a directed graph, reversing the 

link directions when needed as a result of motion induced 
connection loss. Unfortunately, as shown in [8], the time to 
produce a stable link for communication grows as the square 
of the number of nodes in the network, limiting the 
scalability of such algorithms. As a result, the SCF approach 
[5] was developed, in which intermediate mobile nodes store 
messages in their local memories if they do not encounter a 
suitable relay node. The messages are then carried whilst the 
nodes move until they find an appropriate node to which they 
can forward their data towards the destination. 

With particular reference to uncertainty in wireless 
subscriber movement prediction, it is known that given 
knowledge of a large population, accuracies approaching 90% 
can be achieved [9]. However, here we need real-time 
estimation based on limited information. Sometimes, the 
DTN in question will have movement restrictions such as 
that considered by Ahmed and Kanhere [10]. They 
considered operation where public transport networks or 
street patterns reduced the range of subscriber movement 
choices to simplify the prediction work. In general, we need 
to allow the network nodes more freedom and the approach 
taken can be reactive or proactive [11]. In the former, nodes 
report their location to a central network authority such as a 
base station. However, in the latter, prediction is used and 
this has the potential to reduce the inevitable latency whilst 
waiting for location updates. The uncertainty arises from the 
mobility model extending into the future based on known 
mobility history data. The success of a mobility model 
depends on how well it can learn and predict future node 
locations based on the available scenario history [11]. User 
movements are to a large degree predictable [12] so the 
problem becomes one of designing an efficient location 
prediction algorithm using past data.  

Similarly, the idea of using prior probability and 
Bayesian inference to properly drive a search process in ad 
hoc delay tolerant networks has been exploited [13]. This use 
of a generic computable inference mechanism to increase the 
performance of DTNs has gained popularity in the last few 
years, culminating in a recent study employing a weighted 
feature Bayesian predictor that outperforms a naïve Bayesian 
approach [14]. However, there is no comprehensive and 
systematic research study on the entire system to improve the 
network performance by using rigorous prediction and 
analysis methods. Although Kalman filtering has been used 
to update connection probabilities [15], the work in [13] was 
the first adoption of Bayesian inference in the context of 
DTN routing. However, the main focus of the paper is on 
gradient routing in which the message tends to follow a 
gradient of increasing utility function values towards the 
destination. Another paradigm has been employed by 
Talipov et al. [16], who utilize a hidden Markov model to 
predict the future location of individuals. The inspiration for 
the scheme is the same as ours and based on the observations 
of Gonzalez et al. [17] that human trajectories show a high 

degree of temporal and spatial regularity, and in social 
environments individuals move subject to a deterministic 
schedule with only a few random deviations. 

III. ROUTING PROTOCOLS 

There are many existing routing protocols that could be 
applied in the DTN system. In this work, the following 
routing strategies will be reviewed and compared with the 
proposed Smart Relaying algorithm to present its 
performance for various network scenarios. 

Direct Delivery routing protocol [18] also known as the 
Direct Transmission protocol, in which the sender only 
delivers the message to the final receiver directly as soon as 
an encounter happens. There are no other intermediate nodes 
involved in the packet relaying offering advantages when 
there are no reliable intermediate nodes available. The 
protocol is able to securely deliver the information with 
minimum overhead ratio and transmission energy 
consumption. However, the delivery probability relies on the 
likelihood of node encounters, which determines that this 
routing scheme is only appropriate for some particular 
scenarios or requests. 

Epidemic routing protocol [19] is based on a simple 
flooding mechanism to relay the data packets. As its name 
implies the relaying strategy is to maximize the delivery 
probability by spreading messages as an epidemic disease to 
any mobile nodes it encounters that has not already stored 
them in its buffered message list. This mechanism causes a 
substantial waste of buffer capacity, air interface bandwidth 
and transmission energy to flood the packets. If the network 
is experiencing a high traffic volume, this protocol could 
affect the normal usage of mobile subscribers or the 
efficiency of the wireless system. 

Spray and Wait routing protocol [20] has two versions: 
Binary and Vanilla. In this work, we consider only the 
widely applied Binary version for comparison with the 
proposed routing protocol and other candidate protocols. As 
indicated by its name, Spray and Wait consists of two phases: 
a Spray phase and a Wait phase. In the former, a source node 
transfers half of a replicated message to the first node it 
encounters, then the relay node forwards half of replicated 
packets to future nodes encountered, until a node has only a 
single copy of message; the latter phase is entered at this 
point and a direct delivery strategy is used to deliver the data 
packet to the final receiver. 

Spray and Focus routing protocol [21] is the upgraded 
relaying strategy of the Spray and Wait protocol, to tackle 
some problems with that scheme by introducing a new 
second phase, called the Focus phase, instead of the Wait 
phase. When a node only has one forwarding token left for a 
message, Spray and Focus routing no longer waits for the 
direct delivery opportunities but rather each relay can 
forward its copy to a potentially more appropriate node, 
using a sophisticatedly designed utility-based scheme. 

Location Prediction-based Forwarding for Routing 
using Markov Chain (LPFR-MC) routing protocol [22] 
uses a Markov Chain to predict the probability of a targeted 
mobile node moving towards the destination location or 
region of a relayed packet. The computation is based on the 
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present location of a portable node and the angle between 
itself and its intended destination, to determine the next hop 
forwarding the message segments. 

Game Theoretic Approach for Context Based Routing 
(GT-ACR) protocol [23] relying on a non-zero sum 
cooperative game of two players assisting with the context 
information, encounter index, and distance of the 
corresponding node from the destination as vital attributes in 
framing the game, to select the best possible relaying node. 

Some of the above reviewed routing strategies fully 
depend on the dissemination of data packets that can cause a 
big waste of network resources and some problems or risks 
in the wireless network, such as radio bandwidth, buffer and 
battery life of terminals, and furthermore network congestion. 
Some prediction-based relaying protocols are highly reliant 
on history records that require a large memory capacity to 
store the history data. Even though modern smart devices 
embed substantial memories, batteries and processor power, 
massive hardware usage requests can still cause substantial 
impacts on the normal function operation of terminal users. 
The ideal routing scheme needs to provide an optimized 
relaying path for the message to obtain network service and 
maintain a high performance of the wireless system, whilst 
meanwhile keeping the occupation of resources on the 
working terminals as low as possible. 

IV. THE KF ROUTING PROTOCOL 

The DTN system benefits from the mobility and 
flexibility of mobile subscribers, however, it brings many 
uncertainties into the wireless network. The routing schemes 
mentioned before attempt to minimize the nature of DTN 
uncertainty using different strategies. Study of movement 
prediction of the mobile users is a method to control these 
uncertainties comprising a series of estimations of moving 
targets. For each particular moment or interval, every 
individual mobile node will have its own set of state data to 
indicate its state space information in a state space model. 
This set of data will be denoted as a vector of the state space 
identification [24]. A series of state vectors is used to record 
the trajectory of a particular mobile subscriber or a 
predetermined mobile user group within the network. 

All mobile nodes have the ability to move around the 
radio frequency coverage area freely, and this random 
motion is a category of stochastic system. In particular, this 
is in mathematical or statistical terms a random walk of 
subscribers described via a stochastic process. The unknown 
state of the targeted wireless subscriber (denoted by X) is 
computable by the appropriate mathematical and statistical 
theories based on the observation or measurement data of 
behavior of the particular mobile subscriber (denoted by Y). 
For further movement, mathematical and statistical methods 
can also assist the production of an inference result using 
historical measurements [25]. 

Here, established Bayesian statistical methods are used to 
accomplish the moving object motion prediction operation 
[26]. According to the overall behavior of mobile subscribers, 
the nodes will be classified into different categories by 
utilizing different criteria, for instance, non-maneuvering 
objects and maneuvering objects. If the objects are 

maintaining a constant velocity so that they may be classified 
as the non-maneuvering type, then the system can be defined 
as a Linear Quadratic Gaussian (LQG) one [25]. Such a 
system belongs to a framework of circumstances which 
contains the fundamental tools of stochastic optimal control, 
and the tracking, filtering, smoothing and prediction 
operations can be solved using linear system models. The 
motion of maneuvering objects is normally more dynamic 
with different accelerations and the trajectory is non-linear so 
the solution will be found under more complicated 
circumstances which could be such that only sub-optimal 
solutions are achievable [27]. Each mobile node only needs 
to track and predict the nodes with which it is able to 
establish a direct bi-directional radio connection and the 
prediction information is only exchanged among these 
neighboring mobile nodes. To achieve this prediction, each 
mobile node needs to track and obtain the state information 
for all of its neighboring nodes by observing and tracking 
their movement. 

A. Tracking Strategies 

The tracking problem is actually to estimate the state of 
moving targets based on the observation data via statistical 
algorithms. The state of the targets can thus be seen as 
belonging to a dynamical system [28] and the states are 
independent of the time, forming an autonomous system. The 
motions (or trajectories) of targeted mobile subscribers are 
normally continuous, but the observers take the observation 
data in each constant time interval or according to a preset 
fixed sampling frequency, making the observations discrete. 
This mathematical statistics mode is called the continuous – 
discrete filtering mode [24], and the observation results are 
in the discrete mode that will be the state space information 
input. The movement of mobile users cannot remain at a 
constant velocity or absolute steady state. In practice, small 
changes in the velocity or state close to the mean value may 
be treated as Gaussian noise. 

The classical Bayesian approach provides us with a 
method to deduce the further states of observed moving 
objects. Bayes’ theorem [26] implies that the mobile node 
states can be predicted from the observation data, which is 
the joint probability of the state of event x and the 
observation of event y divided by the unconditional 
probability of the observation of event y, which is the 
normalization factor. 

The movement of a mobile subscriber is a random walk 
[25] obeying the Markov property [29], so the stochastic 
motion of each mobile node can be treated as a series of 
Markov process individually. A first order Markov chain can 
be used for predicting the state space identification of each 
mobile subscriber step by step. The recursive Bayesian 
solution is [28]: 

𝑝(𝒙𝑘|𝒚𝑘) =
𝑝(𝒚𝑘|𝒙𝑘)

𝑝(𝒚𝑘|𝒚𝑘−1)
𝑝(𝒙𝑘|𝒙𝑘−1)𝑝(𝒙𝑘−1|𝒚𝑘−1) (1) 

Leading to a state conditional density: 
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𝑝(𝒙𝑘|𝒚𝑘) = ∫ 𝑝(𝒙𝑘|𝒚𝑘)𝑑𝒙𝑘−1
𝒙𝑘−1

              (2) 

In these equations, the superscripts refer to vectors of all 
x or y values from one to k or k-1 whereas the subscripts 
denote single instances of x or y. 

B. Simulation Model 

The targeted system and observation methods are based 
on linear system models with quadratic system optimization. 
The wireless system and observation are subject to Gaussian 
noise so they obey the basic LQG regulator equations [25]. 
Hence, the object tracking and movement prediction problem 
can be solved by a KF [25]. Equation (2) is the recursive 
estimation of the state conditional density function and the 

term 𝑝(𝒙𝑘−1|𝒚𝑘−1) gives the prior probability density 

function. In the Bayesian recursive solution, 𝑝(𝒙𝑘|𝒚𝑘) is a 
conditional density of the targeted mobile subscriber state 

𝒙𝑘 = (𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑛) ∈ ℝn at the moment k given all the 

observed data  𝒚𝑘 = (𝒚1, 𝒚2, … , 𝒚𝑘)  with 𝒚𝑘 =
(𝑦𝑘1, 𝑦𝑘2, … , 𝑦𝑘𝑚) ∈ ℝm. 

The moving object tracking algorithm with noise is: 

𝒙𝑘 = f(𝒙𝑘−1) +  𝒗𝑘                             (3) 

where f(𝒙)  is some function of 𝒙 and 𝒗𝑘  is a vector of 
Gaussian noise. 

In practice, the movement of mobile users cannot remain 
at a constant velocity or absolute steady state but the 
relatively small perturbations occur that can be regarded as 
Gaussian noise. Given that only a small portion of wireless 
users will exhibit high mobility [17], such a model is of some 
utility. 

In the decentralized wireless networks designed to date, 
to implement the SCF relaying scheme, each mobile node 
has to observe the movement of other nodes which are 
nearby, and try to estimate the state. In this work the 
estimated state is only limited to the position of mobile 
subscriber nodes. The observation cannot be ideal, and there 
is always some noise that enters the system. Generally, the 
KF algorithm is able to deal with two kinds of noise, one is 
the measurement noise (Gaussian sampling noise) or sensor 
noise, and the other is transition noise or process noise [30]. 
Both of these two kinds of noise are zero mean Gaussian 
noise, and the dynamic and observation models are linear 
Gaussian. The filtering model presented above acts as a basic 
LQG regulator as mentioned before, so the filtering 
equations can be expressed as [31]: 

𝒙𝑘 = 𝐀𝒙𝑘−1 + 𝒒𝑘−1                              (4) 

𝒚𝑘 = 𝐇𝒙𝑘−1 + 𝒓𝑘                                  (5) 

where 𝒙𝑘  ∈ ℝn is the hidden state vector at time k, ∈ ℝm 
is the observation vector at time k, respectively; 

𝒒𝑘−1~𝑁(0, 𝑄)  is the transition noise; 𝒓𝑘~𝑁(0, 𝑅)  is the 
sensor noise. 

The movement of the mobile subscriber is described by 
two-dimensional Cartesian coordinates, so the hidden state 

vector has four dimensions  𝒙𝑘 = (𝑥𝑘1, 𝑥𝑘2, 𝑥𝑘3, 𝑥𝑘4) . The 

first two elements, (𝑥1, 𝑥2) , capture the position of the 
mobile node and the second two, (𝑥3, 𝑥4) , represent its 
corresponding velocity. The observation vector is a two-
dimensional column vector that only has two elements and 
so is 𝒚𝑘 = (𝑦𝑘1, 𝑦𝑘2). 

The matrices within the dynamic model are: 

𝐀 = (

1
0
0
0

0
1
0
0

∆𝑡
0
1
0

0
∆𝑡
0
1

) = (

1
0
0
0

0
1
0
0

1
0
1
0

0
1
0
1

) 

𝐐 = (

0.1
0
0
0

0
0.1
0
0

0
0

0.1
0

0
0
0

0.1

) 

where ∆t is one second in the simulations and Q(i,j) is the 
transition covariance [30]. 

The matrices in the observation model are: 

𝐇 = (
1 0
0 1

0 0
0 0

) 

𝐑 = (
1 0
0 1

) 

where R(i,j) is the observation covariance [30]. 

Here, the KF equations can be described as two steps, 
which are a prediction step and an update step [3]: 

(i) prediction: 

𝒎𝑘
− = 𝐀𝑘−1𝒎𝑘−1                              (6) 

𝑷𝑘
− = 𝐀𝑘−1𝑷𝑘−1𝐀𝑘−1

𝑇 + 𝑸𝑘−1                  (7) 

(ii) update: 

𝐒𝑘 = 𝐇. 𝐏𝑘
−. 𝐇𝑇 + 𝐑                              (8) 

𝐊𝑘 = 𝐏𝑘
−. 𝐇𝑇 . 𝐒𝑘

−1                              (9) 

𝐦𝑘 = 𝐦𝑘
− + 𝐊𝑘 . {𝒚𝑘 − 𝐇. 𝐦𝑘

−}             (10) 

𝐏𝑘 = 𝐏𝑘
− − 𝐊𝑘 . 𝐒𝑘 . 𝐊𝑘

𝑇                              (11) 

In which 

𝒚𝑘 is the measurement at the time step k; 

𝐏𝑘 is the covariance of a Kalman/Gaussian filter at 
the time step k; 

𝐏𝑘
− is the predicted covariance of a Kalman/Gaussian 

filter at the time step k just before the measurement 

𝒚𝑘; 

𝑺𝑘is the innovation covariance of a Kalman/ Gaussian 
filter at step k; 

𝐊𝑘 is the gain matrix of a Kalman/Gaussian filter; 

𝐦𝑘  is the mean of a Kalman/Gaussian filter at the 
time step k; 

𝐦𝑘
− is the predicted mean of a Kalman/Gaussian filter 

at the time step k just before the measurement 𝒚𝑘. 
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Before the filtering process starts, both the state vector 

𝐢𝐧𝐢𝐭𝐢𝐚𝐥_𝐬𝐭𝐚𝐭𝐞  (which is a column vector) and the state 
covariance vector 𝐢𝐧𝐢𝐭𝐢𝐚𝐥_𝐕 have to be initialized thus: 

𝐢𝐧𝐢𝐭𝐢𝐚𝐥_𝐬𝐭𝐚𝐭𝐞 = (

10
10
0
0

) 

𝐢𝐧𝐢𝐭𝐢𝐚𝐥_𝐕 = (

10
0
0
0

0
10
0
0

0
0

10
0

0
0
0

10

) 

C. Algorithm Simulation 

To simulate the scenario studied, the true mobile user 
locations are generated by MATLAB, producing a stochastic 
linear dynamical system, which is a type of hidden state [30]. 
This is because the mobile node states cannot be directly 
measured by neighboring mobile subscribers and KF 
algorithms are used for estimation. Figure 1 illustrates the 
results of simulated KF algorithms using 50 individual states 
in each time step. These are the true states that simulate the 
real locations of the mobile subscriber during a continuous 
period of time, and that are represented by the black squares. 
The trajectory shown by the black line linking the black 
squares is the ‘real path’ of the motion of a certain mobile 
node. The blue stars indicate the observed location of the 
mobile device which simulates the measurements from 
another neighboring mobile terminal. The red crosses show 
the KF outcomes, processed by the neighboring mobile smart 
device with the estimated path represented by the red dotted 
line. 

 

Fig. 1. Results of the prediction simulation for the filtering model. 

It may be seen in Figure 1 that for most of the time, the 
filtered trace represents the true path well. Only when the 
mobile user’s movement is more dynamic (close to the 
maneuvering model) [32], particularly the right hand side of 
Figure 1, does the algorithm have difficulty following the 
true path. Nevertheless, when the motion of the object 
exhibits behavior that is close to the non-maneuvering 

scenario, the outcomes still reflect the real motion of the 
target very well as in the top and bottom parts of the 
trajectory, and the mismatched portion is relatively small. 

D. Protocol Simulation 

The simulation testbed for this part used the 
Opportunistic Network Environment (ONE) simulator and a 
JAVA based protocol for the KF routing scheme was 
developed. For testing the performance, resilience and 
tolerance of the protocol designed, the sample dataset that 
comes with the ONE simulator package (collected from the 
downtown Helsinki area) was utilized to simulate a complex 
wireless network condition. The parameters for the 
simulation configurations are specified in Table I. These are 
chosen to be of the same order as the parameters in [2] with 
the buffer size large enough that it does not impact 
performance [2]. 

TABLE I.  PARAMETERS OF SIMULATION CONFIGURATIONS 

Simulation Time (s) 86400 

Buffer Size (MB) 50 

Packet Lifetime  100 minutes 

Message Interval (s) 3, 5, 10, 20, 30, 60 

Message Size (kB) 500 

Number of Nodes 40, 100, 200, 300, 400, 500 

The message interval simulated the information rate of 
the sender. The parameters for this category tested the 
circumstances from a low packet generation rate of 1 packet 
per minute (67 kbps) to a high packet generation rate of 20 
packets per minute (1.33 Mbps). The number of nodes varied 
the density of the wireless system from a low-density (40 
nodes) mobile network to an extremely high-density (500 
nodes) system. 

In this work, there are four key factors of wireless 
systems that are addressed to evaluate the overall 
performance of proposed mobile routing strategy, which are: 
Delivery Probability, Overhead Ratio, Average Latency and 
Average number of hops [33]. 

 

(a) (b) 

Fig. 2. (a) Delivery probability; (b) average hop count for different 
network densities. 

Figure 2 shows the performance of the proposed protocol 
at the maximum bit rate considered. It provides good 
resilience for different network densities and maintains a 
delivery probability in excess of 0.7 for all circumstances. 
Moreover, as the algorithm is able to predict the movement 
of portable nodes, the protocol delivers an average hop count 
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of between 2.1 and 3.7, leading to the involvement of fewer 
intermediate nodes in the relaying path saving retransmission 
energy and improving efficiently. 

Figure 3 shows the increase in overhead ratio with the 
number of nodes resulting from more possible packet relay 
candidates. However, there is a corresponding decrease in 
the average latency since more nodes can complete delivery. 
The balance of these two factors maintains useful protocol 
performance when the network setup changes. 

 

(a) (b) 

Fig. 3. (a) overhead ratio; (b) average latency for different network 
densities. 

To test the capability of the protocol to deal with various 
traffic volumes, the packet generation rate in a network 
comprising 40 nodes was varied. Figure 4 illustrates the 
variation in delivery probability and hop count as the data 
rate increases. The former drops with increasing traffic 
volumes but the KF protocol still maintains a probability of 
approximately 0.6 whilst the hop count falls from almost 
three to a little over two with increasing bit rate. 

 

(a) (b) 

Fig. 4. (a) Delivery probability; (b) average hop count as a funcion of data 
rate for low node density. 

Figure 5 shows that the overhead ratio decreases from 
148% to 31% as the bit rate increases but this is 
accompanied by an increase in average Latency from 1875 
seconds to 3153 seconds. 

 

(a) (b) 

Fig. 5. (a) Overhead ratio; (b) average hop count as a funcion of data rate 
for low node density. 

The KF relaying scheme exhibits a good overall 
performance which benefits from the portable device 
movement predication ability allowing more packets to 
arrive successfully at the receiver or be relayed to the correct 
intermediate nodes. This feature maintains the delivery 
probability at a high value whilst keeping the average hop 
count at a low level. 

V. SIMULATION RESULTS 

To obtain the comprehensive performance of the protocol 
designed, the algorithm was tested in two kinds of networks: 
a simple wireless network and a complex wireless network. 
The dataset of the simple wireless network was the real trace 
of mobile users downloaded from CRAWDAD (A 
Community Resource for Archiving Wireless Data At 
Dartmouth) datasets [34]. This dataset contains mobility and 
connectivity traces extracted from GPS traces collected from 
the regional Fire Department of Asturias, Spain. The original 
data source is one year of GPS traces extracted from a 
Geographical Information System (GIS). The traces were 
generated by GPS devices embedded mainly in cars and 
trucks, but also in a helicopter and a few personal radios. A 
total of 229 devices reported 19,462,339 locations. A new 
location is reported with an interval of approximately 30 
seconds when the GPS device detects movement. To convert 
GPS traces into ONE connectivity traces, the circular 
communication range was been assumed be 200 meters. The 
complex wireless network dataset is the same ONE simulator 
dataset used for the protocol simulation in Section IV. 

Parameters for the simulation configurations are specified 
in Table II. 

TABLE II.  PARAMETERS OF SIMULATION CONFIGURATIONS 

 
Label on 

the graphs 
Value of parameters 

Buffer Size B 10, 20 MB 

Message TTL T 30 minutes 

Message Interval I 1, 5 seconds 

Message Size M 10, 20, 200 kB 

Number of Nodes H 
50, 75, 100, 160, 200(only for 
simple network) 

Simulation Time  86400 Seconds 

Protocol  

The KF, 
Epidemic, 
Direct Delivery, 
Spray and Wait (Binary version), 
Spray and Focus 

 

A. Simple Network 

Figure 6 shows that in a simple mobile network, when it 
is sparse, the KF relaying scheme and other routing plans 
give approximately the same delivery probability around 
0.03 in various scenarios. For the Spray and Focus scheme, 
when the message interval is high, delivery probability is 
higher than 0.08, however, when the message rate is high, 
delivery probability is at most 0.05. 
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Fig. 6. Delivery Probability for Sparse (50 nodes) Simple Network 

In Figure 7 and Figure 8, it is shown that the delivery 
probabilities of different wireless routing strategies do not 
change significantly from Low Density to High Density 
networks, which indicates for the simple network, when the 
network density reaches a certain level, the growth of 
number of mobile nodes cannot help to increase the delivery 
probability, as the opportunities for node encounters 
relatively low and this limits the chance for messages to be 
received by the destination nodes. 

 

Fig. 7. Delivery Probability for Low Dense (75 nodes) Simple Network 

 

Fig. 8. Delivery Probability for High Dense (200 nodes) Simple Network 

The KF routing protocol uses statistical methods to 
determine the next hop selection. For the simple system, it is 
easy for a source node to learn whether it will encounter the 
destination by statistical inference. The protocol can keep its 
Overhead Ratio close to zero, which close to the Direct 
Delivery relaying scheme. 

 

Fig. 9. Overhead Ratio for Sparse (50 nodes) Simple Network 

 

Fig. 10. Overhead Ratio for Low Dense (75 nodes) Simple Network 

 

Fig. 11. Overhead Ratio for High Dense (200 nodes) Simple Network 

In Figure 9, Figure 10 and Figure 11, the overall 

Overhead Ratio of the sparse network is a little lower than 

other dense networks. After the population of nodes reaches 

75, then the Overhead Ratio becomes steady. 
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Fig. 12. Average Latency for Sparse (50 nodes) Simple Network 

 

Fig. 13. Average Latency for Low Dense (75 nodes) Simple Network 

 

Fig. 14. Average Latency for High Dense (200 nodes) Simple Network 

 

Fig. 15. Average Hopcount for Sparse (50 nodes) Simple Network 

In Figure 12, Figure 13 and Figure 14, all protocols, 

except the Spray and Focus scheme, deliver low degrees of 

average latency avoiding long packet delivery delays. 

 

Fig. 16. Average Hopcount for Low Dense (75 nodes) Simple Network 

 

Fig. 17. Average Hopcount for High Dense (200 nodes) Simple Network 

As the KF protocol tends to use the Direct Delivery 
method, these two protocols keep the average hop count at 
one hop. Figure 15, Figure 16 and Figure 17 indicate that 
there is no significant difference between various network 
densities for simple networks but for some scenarios, Spray 
and Focus presents a slightly higher average hop count than 
other protocols. 

B. Complex Network 

 

Fig. 18. Delivery Probability for Sparse (50 nodes) Complex Network 
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Fig. 19. Delivery Probability for Low Dense (75 nodes) Complex Network 

 

Fig. 20. Delivery Probability for MidLow Dense (100 nodes) Complex Network 

 

Fig. 21. Delivery Probability for Dense (160 nodes) Complex Network 

 From Figure 18 to Figure 21, the delivery probabilities of 
the KF and Epidemic routing plans show a stable increase 
and tolerance when the number of wireless nodes increases, 
especially, in a dense network, they are the best two relaying 
schemes as long as the message rate is low. In contrast, the 
delivery probabilities of Spray and Wait and Direct Delivery 
drop slightly when the network density grows. Spray and 
Focus provides a significantly higher delivery probability 
than other protocols and also benefits from the increasing 
number of portable nodes, however, Spray and Focus is 
unable to work well in the dense network. 

 

Fig. 22. Overhead Ratio for Sparse (50 nodes) Complex Network 

 

Fig. 23. Overhead Ratio for Low Dense (75 nodes) Complex Network 

 

Fig. 24. Overhead Ratio for MidLow Dense (100 nodes) Complex Network 

 

Fig. 25. Overhead Ratio for Dense (160 nodes) Complex Network 
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From Figure 22 to Figure 25, we see that in a complex 
network, the KF protocol does not rely mainly on a Direct 
Delivery strategy. Instead, it predicts the movement of 
neighboring nodes to find the best relaying node, so the 
overhead ratio does not remain at zero since prediction of the 
probability of a source node encounter with a destination 
node becomes increasing difficult with the number of nodes. 
As the outcomes show from Figure 26 to Figure 29, the 
average hop count for the KF scheme also does not remain at 
zero as in the simple network but rather grows with the 
network scale. 

In contrast, Spray and Focus keeps the overhead ratio at a 
low level, and it reduces with the growth in the number of 
mobile nodes, reflecting into the average hop count, which 
shows the strategy needs very close to one hop for the entire 
message route. The overhead ratio and average hop count for 
Spray and Wait stay in narrow ranges of 9 to 14 for the 
overhead ratio, and 2 to 3 for the average hop count. 

 

Fig. 26. Average Hopcount for Sparse (50 nodes) Complex Network 

 

Fig. 27. Average Hopcount for Low Dense (75 nodes) Complex Network 

From Figure 30 to Figure 32, the graphs indicate that the 
average latency of Spray and Focus is significantly higher 
than the other protocols in some scenarios, and it goes down 
when nodes number goes up. The average latency for rest of 
the protocols stays at about the same level for all the tests. 

 

Fig. 28. Average Hopcount for MidLow Dense (100 nodes) Complex Network 

 

Fig. 29. Average Hopcount for Dense (160 nodes) Complex Network 

 

Fig. 30. Average Latency for Sparse (50 nodes) Complex Network 

 

Fig. 31. Average Latency for Low Dense (75 nodes) Complex Network 

66

International Journal on Advances in Networks and Services, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

Fig. 32. Average Latency for MidLow Dense (100 nodes) Complex Network 

C. Comparison with recent DTN protocol research 

DTN is a significant emerging paradigm in the wireless 

communication domain, and there has been much research 

concerning routing algorithms and relaying strategies to 

improve the system performance. Game Theoretic Approach 

for Context Based Routing (GT-ACR) is one of the latest 

DTN routing protocols. In [23], GT-ACR has been tested in 

delivery probability, average hop count, overhead ratio, 

average latency and number of messages dropped against 

various time to live, number of nodes and message interval. 

Here, the KF relaying scheme is tested in the same series of 

metrics to compare its overall performance to this latest 

routing protocol with the results in Figure 33 to Figure 35 

respectively, and the comparisons for each factor are listed in 

Table III. 

 
(a) (b) 

 
(c) (d) 

 
(e) 

Fig. 33. (a) Delivery probability; (b) average hop count; (c) overhead ratio; 
(d) average latency; (e) number of messages dropped for different 

TTL. 

 

(a) (b) 

 

(c) (d) 

 

(e) 

Fig. 34. (a) Delivery probability; (b) average hop count; (c) overhead ratio; 
(d) average latency; (e) number of messages dropped for different 

number of nodes. 

 

(a) (b) 

 

(c) (d) 

 

(e) 

Fig. 35. (a) Delivery probability; (b) average hop count; (c) overhead ratio; 
(d) average latency; (e) number of messages dropped for different 

message interval. 
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TABLE III.  COMPARISON BETWEEN KF AND GT-ACR ROUTING 

PROTOCOLS 

  

 Performance factor 
Mean of each factor 

KF GT-ACR 

TTL 
(Time To 

Live) 

Delivery Probability 0.60 0.54 

Average Hopcount 2.24 2.42 

Overhead Ratio 32.5 52.1 

Average Latency 3216.2 2513.2 

Messages Dropped 67381.4 91041.4 

Number 
of Nodes 

Delivery Probability 0.65 0.53 

Average Hopcount 2.35 2.54 

Overhead Ratio 44.9 66.5 

Average Latency 2501.6 2200.4 

Messages Dropped 101447 152661 

Message 
Interval 

Delivery Probability 0.71 0.69 

Average Hopcount 2.24 2.42 

Overhead Ratio 31.5 42.5 

Average Latency 2623.5 2361.3 

Messages Dropped 48233.6 66969.0 

 
In comparisons above between the KF routing scheme 

and GT-ACR routing protocol with various of Time To Live, 
number of nodes and message intervals, Table IV gives the 
various values for the test parameters. The KF routing 
protocol delivers an outstanding performance for almost all 
of the factors, particular in number of messages dropped and 
overhead ratio, the KF performs 35% to 50% and 35% to 60% 
better than GT-ACR respectively. For data packet delivery 
probability, the KF presents 3% to 22% better performance. 
Regarding average hop count, the proposed algorithm offers 
an average of 8% better. Only on average latency, is the KF 
11% to 28% behind GT-ACR. 

TABLE IV.  PARAMETERS FOR COMPARISON 

Parameter Value Unit 

Time To Live (TTL) 100, 150, 200, 250, 300 Minute 

Number of nodes 66, 96, 126, 156, 186 Node 

Message intervals 25-35, 35-45, 45-55, 55-65, 65- 75 Second 

 
The comparison results show that the KF has a 

significant performance among the latest DTN routing 
protocols, it only make a small sacrifice in the message delay 
to get outstanding improvements on others wireless system 
performance metrics. 

D. Summary 

In simple mobile networks, the performance for all 
relaying schemes is very stable as there is little difference for 
various network densities. In comparison to other routing 
plans, the KF strategy delivers the same performance apart 

from Spray and Focus, with fewer hops, which can save 
transmission energy for the entire relaying process and help 
to improve network security. Spray and Focus offers a higher 
delivery probability but this comes at the cost of an 
extremely high average latency. Such a long delay might not 
be applicable for some applications, even in a DTN system. 

For complex wireless networks, the routing strategies test 
results show a significantly different performance in the 
various setups and network conditions, but the overall 
delivery probability gets substantially improved compared to 
that in simple networks. The delivery probabilities of Spray 
and Focus are much better than other methods with improved 
overhead ratio and average hop count but at the price of even 
greater latency; for some scenarios, this will be unacceptably 
high. Furthermore, as the node density increases further, this 
protocol is unable to achieve its function, which pulls down 
its overall performance. Comparing all key factors, the KF 
routing scheme shows a good overall performance, and it 
balances different factors for various scenarios, which 
presents a good resilience and tolerance. 

In comparison with the latest DTN routing techniques, 
the significant improvements for most factors of wireless 
system performance indicate that mobile subscribers take 
advantage of the prediction capability of the KF. 

VI. CONCLUSIONS AND FUTURE WORK 

The KF routing protocol shows itself to be a versatile and 
useful one that offers wide ranging good resilience and 
tolerance when compared to the other existing protocols 
tested, and even to the latest techniques. Thus, it is a general 
purpose paradigm that offers steady outcomes in a broad 
range of system conditions without significant changes to 
key network factors. This is a significant advantage since it is 
desirable in DTN networks for protocols to deliver near 
equal performance under unpredictable conditions. 

The KF algorithm enables smart devices to predict and 
track the motion of targeted mobile nodes and assist them to 
find the next hop as a better or best option for a message 
relaying route. In simple networks, it takes the most 
advantage of Direct Delivery routing to maintain the 
overhead ratio at zero and the number of hops as one. This 
means that the KF protocol offers efficiency without wasting 
any resource to transfer unnecessary packets. Meanwhile, 
employing fewer hops saves packet forwarding energy and 
avoids surplus intervention by intermediaries since portable 
devices have limited power and buffering space, which 
minimizes the negative effort to other mobile subscribers and 
the whole wireless system. For complex networks, the KF 
scheme benefits from the growing number of host nodes as 
there are more candidates in the prediction pool for the relay 
selection, so the delivery probability can steadily rise without 
affecting other key factors. 

The strength of the KF method is that the algorithm is 
rather small and simple and thus a wide range of smart 
portable gadgets are able to process the program easily. 
Moreover, the algorithm does not require substantial memory 
resources to store the movement history of targeted mobile 
nodes. With growing numbers of subscribers and more smart 
terminals offering connectivity in the mobile system, routing 
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strategies that rely on the encounter history could face an 
unprecedented challenge due to the exponential increase in 
processing load and memory requests, despite the fast 
growing capability of smart devices. The KF routing 
algorithm will be of yet further utility in mobile networks. 

As a classical optimal prediction and tracking algorithm, 
the KF is suitable for many scenarios, since only small 
portion of wireless users will exhibit high mobility [12]. The 
introduction of users who move rapidly according to a 
random walker model as described by Shang [35] would lead 
to significant prediction errors. Hence, to broaden the 
application of this smart relaying scheme to include such 
very mobile users, other algorithms that can improve the 
prediction and tracking performance for the manoeuvring 
model, such as the Extended KF (EKF) [36], Unscented KF 
(UKF), Particle Filter and other potential filtering schemes 
[29], and more applications in DTN will be examined in the 
future. 
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