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Abstract—Due to remarkable advances in computer, communi-
cations and sensing technologies over the past three decades,
large-scale urban systems are now far more heterogeneous
and automated than their predecessors. They may, in fact, be
connected to other types of systems in completely new ways. These
characteristics make the tasks of system design, analysis and
integration of multi-disciplinary concerns much more difficult
than in the past. We believe these challenges can be addressed
by teaching machines to understand urban networks. This paper
explores opportunities for using a recently developed graph
autoencoding approach to encode the structure and associated
network attributes as low-dimensional vectors. We exercise the
proposed approach on a problem involving identification of leaks
in urban water distribution systems.

Keywords-Systems Engineering; Machine Learning; Graph Em-
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I. INTRODUCTION

This paper is concerned with the integration of recently
developed graph embedding procedures with machine learning
tasks, which together can enhance digital twin design and
decision making in urban settings. It builds upon our previous
work [1] on teaching machines to understand urban networks
with graph analytics techniques.

A. Problem Statement

The concept of creating digital replicas to serve as
tools to improve decision-making has long been used in engi-
neering. During the past three decades, however, remarkable
advances in technology – including Internet of Things, artificial
intelligence, and augmented and virtual reality (AR/VR) –
have created opportunities to develop “digital twins,” a cyber
representation of an object, process or place that mirrors
its implementation in the physical world through real-time
monitoring, and synchronization of data with events. To this
end, sensor and actuator systems, and algorithms and software
are provided for observation, reasoning and physical systems
control. NASA initially proposed the digital twin concept in
the late 90s as a way to support the design and operation
of air vehicles [2]. More recently, cities around the world
have entertained use of the digital twin concept as a way to

transform processes for day-to-day management and long-term
urban planning and design.

The design of strategies to achieve superior levels of
urban operation, even when available resources are limited,
is complicated by the distributed, concurrent, and multi-
disciplinary nature of large-scale urban systems. It is well
known that when a disruption to urban operations requires
the instantiation of recovery procedures, it is essential that
the participating domains share information at key points in
the system operation to enhance common knowledge, and
their individual ability to make decisions appropriate to their
understanding of the system state, its goals and objectives.

Despite the abundance of available urban data, current
urban systems’ potential for reaching enhanced capabilities
in the decision-making and management of city infrastructure
is hampered by lack of systematic knowledge exchange. The
digital twins concept can overcome this barrier through its
ability to integrate domains into the real-time knowledge
discovery process from heterogeneous urban data. At this
time, however, many challenges remain in digital twin design
and implementation. First, there is a lack of unified models
or a generic digital twin architecture in the literature, with
no consensus on how to build a digital twin system [3].
Second, urban environments create further design difficulties,
mainly related to the complexity of city-wide modeling and the
lack of standards supporting cross-disciplinary data exchange.
Research is needed to understand how to design the digital
twin elements and their interactions so that collectively they
can overcome these challenges.

B. Architecting Urban Digital Twins

Requirements for architecting urban digital twins include
the need for systems that can identify anomalies (faults) in
system performance, and model the behavior of processes and
interactions among the different domains within a city. Since a
generic (or unifying) digital twin architecture does not exist at
this time, we believe that the best pathway forward for digital
twin design is with architectures that combine Machine Learn-
ing (ML) formalisms and Semantic Model representations that
work side-by-side as a team, providing supportive roles for
the collection and processing of data, identification of events,
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Figure 1. High-level representation for an urban water supply network digital
twin (cyber) working alongside a physical urban water supply network.

and real-time management of city operations. Figure 1 shows
the application of this concept to a small urban water supply
system.

Figure 2 shows the proposed architecture, building upon
our recent work in semantic modeling for (multi-domain)
system of systems [4]–[6] and exploration of a combined
semantic and ML framework exercised in energy-efficient
buildings and brain cancer profiles [7], [8]. The proposed
architecture is comprised of three sections: (1) multi-domain
semantic modeling, (2) data mining, and (3) machine learning
of graphs.

Box 1: Multi-domain Semantic Modeling. By their very
nature, urban systems are a composition of many different
types of domains and their interactions. These domains are
geographically dispersed and intertwined, and have behaviors
that are distributed and concurrent. Box 1 of Figure 2 shows
that instead of modeling the dynamic behavior of systems
with a centralized control and one large catch-all network, we
explore opportunities for modeling systems as collections of
domain-specific networks that dynamically evolve in response
to events. Individual urban domains will operate as concurrent
processes, each having their own thread of execution, and
will respond to incoming data from external domains. Each
domain will have a graph that evolves according to a set of
domain-specific rules, and subject to satisfaction of constraints.
Domains will interact when they need to in order to achieve
collective objectives. If goals are in conflict, or resources are
insufficient, then negotiation will need to take place. The model
uses Semantic Web technologies for the implementation of
ontologies, rules checking, and message passing mechanisms.
The distinguishing feature of this framework is the concurrent
development of ontologies, rules and data models, which are
placed on an equal footing. When used in an urban context as
part of the digital twin architecture, this approach to semantic
modeling forces cross-domain data exchange that is more
homogeneous than it would otherwise be, and establishes
common knowledge among domains. Rule-based reasoning
procedures can also be developed to impose fairness in domain
operations and prevent deadlocks.

Box 2: Data Mining. Recent developments in the field of com-
putational intelligence are sometimes termed machine learning
(ML). Machine learning techniques deviate from traditional

models of computation in their ability to perform data analytics
by learning patterns and hidden insights in data. Box 2 of
Figure 2 shows ML for three classes – classification, clustering
and association – of data mining. For the most part, these
three data mining techniques were developed in the 1980s
and 90s, and so the associated algorithms and software [9]
are now quite mature. Data mining techniques also include
use of recurrent neural network architectures to represent
temporal sequences, and algorithms to detect anomalies in
expected temporal behavior. For our purposes, these anomalies
are events that can trigger the activation of urban recovery
procedures modeled in Box 1.

Box 3: Machine Learning of Graphs. Remarkable advances
in ML algorithms (2016-2019) include the ability of a machine
to learn the structure of a graph and its attributes. The so called
graph embedding methods learn a continuous vector space for
the graph, assigning each node (and/or edge) in the graph
to a specific position in the vector space. These embeddings
can be later used to advance various learning tasks, such
as node classification, node clustering, node recommendation,
link prediction, and so forth [10].

C. Scope and Objectives

During 2018, our studies [7], [8], [11] focused on seman-
tic foundations and data mining techniques working together as
a team. Data mining/ML techniques for the classification and
clustering of data provided useful feedback on the structuring
of ontologies. In 2019, our studies started to explore graph
embedding techniques for learning urban networks (i.e., see
Box 3 of Figure 2) [1]. The Dynamic Attributed Network Em-
bedding (DANE) [12] was used to generate low-dimensional
vectors for a water distribution network. The embeddings were
then fed to a Random Forest (RF) algorithm trained to identify
water leaks. Although these initial studies showed successful
results in identifying water leaks, the DANE framework did
not incorporate the capability to verify that the embedding
input to the RF Classifier was an accurate representation of the
physical network topology and node attribute information. This
lack of insight suggests that a better approach would replace
hand generation of features with learning models trained to
identify features encoded within embedding vectors, and then
validate that the trained machine models faithfully replicate the
physical graph topology. Research is also needed to understand
the effects of graph size on learning performance. The latter
is key for scalability of the proposed approach.

In a step toward resolving these problems, and extending
our previous work, the objectives of this work are three
fold: (1) identify an embedding framework that better fits
our need for minimizing the loss of information during the
network embedding process; (2) exercise the new embedding
framework on the problem of leaks identification in an urban
water distribution system; (3) explore the effects of network
size on the learning performance. The remainder of this
paper proceeds as follows: Related work in traditional and
ML approaches for graph modeling is covered in Section
II. An overview of different graph embedding techniques is
provided in Section III. We exercise graph embedding and
ML classification procedures in a water distribution system
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Figure 2. Digital twin architecture.

application involving identification of leaks in Section IV. We
discuss ideas for scaling up the simulations in Section V.
The conclusions and directions for future work are located
in Section VI.

II. RELATED WORK

This section covers related work in traditional and ML
approaches to graph modeling.

A. Graph Theory

In mathematical terms, a graph G = (V, E), where V
is a set of vertices (also called nodes or points), E = set of

edges (also called links or lines), and each edge is formed from
pair of distinct vertices in V. V and E are usually taken to be
finite. Graph theory is the study mathematical structures used
to model pairwise relations between node and edge objects. It
plays a central role in understanding how solutions to problems
on graphs (e.g., traversal of nodes; reachability) are affected
by the fundamental characteristics of the graph.

The study of urban systems as networks, and networks
of interacting networks, draws upon many aspects of graph
theory. Urban networks may be homogeneous, heterogeneous,
and carry auxiliary information modeled as attributes. The
information to be preserved in the network is strongly affected
by the underlying characteristics of the system and, unfortu-
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Simple Graph Multigraph Pseudograph

Figure 3. Structure of simple graphs, multigraphs and pseudographs.
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nately, in urban settings this is complicated by a wide range
of possibilities. Figures 3 and 4 show, for example, that graph
structures include simple, multigraphs and pseudographs. Their
edges may be undirected, directed and/or weighted.

Kong and Simonovic [13] describe a few examples of how
urban systems can be modeled as graphs. A street network can
be represented as a graph composed of street junctions, end
points and street segments. Generally, the edges are undirected,
homogeneous, and the street network is fully connected. A
water distribution network can be represented as graph where
water works, storage facilities and pump stations are nodes
with different attributes, and the water distribution pipes are
directed edges, where the direction indicates the flow of water.
A power grid can be represented by a graph where power
plants, distribution and transmission substations are nodes with
different attributes, and power lines are directed edges for the
flow of electricity transmission. Information infrastructure can
be represented as a graph where the Internet Service providers
are nodes and cable connections are undirected edges, since
these networks provide a bidirectional flow of information.

Regardless of the type of graph and its purpose in an
urban setting, we observe that data mining techniques can be
employed to access the information stored in graphs. This
information can then be used to improve the design and
operation of urban systems. Techniques for graph data mining
can be divided into graph analysis and graph analytics.

B. Graph Analysis

Graph analysis tasks are mainly focused on exploring
the graph data to gain insights about its topological proper-
ties. Network topology (see Figure 3) nearly always affects
function; therefore, it is important to characterize it. For
instance, the topology of social networks affects the spread of
information and disease, and the topology of the power grid

affects the robustness and stability of power transmission [14].
Traditional approaches to network/graph modeling employ
adjacency matrices (or a simplified representation of network
adjacency) to model the topology of graphs. The topological
properties can then be explored through typical graph analysis
tasks including connectivity analysis, traceability analysis,
cycle detection, and shortest path identification.

C. Graph Analytics

For high-dimensional problems that are data sparse,
traditional approaches to graph representation and analysis can
quickly become computationally prohibitive. A second prob-
lem is these traditional approaches do not capture the semantics
of the network (i.e., node attributes). In recent years, there
has been a surge in ML approaches that automatically learn
to encode graph topology and attributes into low-dimensional
embeddings.

Figure 5 shows simplified representations for traditional
and machine learning approaches to graph representation. In
a significant departure from traditional approaches to repre-
senting and studying the the properties of a graph, graph
embedding methods learn a continuous vector space for the
graph, assigning each node (and/or edge) in the graph to
a specific position in the vector space, with the goal of
preserving local linkage structure (not global structure) and/or
network semantics. First the encoder maps the node to a low-
dimensional vector embedding, based on the node’s position
in the graph and/or its attributes. Next, the decoder extracts
information from the embedding vector (i.e., node’s local graph
neighborhood, or a classification label associated with the
node). By jointly optimizing the encoder and decoder, graph
embedding methods learn to compress information about graph
structure and semantics into the low-dimensional embedding
space. Because information can be lost in the embedding
transformation process – it can be viewed as dimensionality
reduction – the output embeddings are statistical in nature and,
as such, should be interpreted as graph analytics (not graph
analysis). Graph analytics can extract unseen or difficult to
obtain properties of the graph, either directly or by feeding
the learned representations to a downstream inference pipeline,
such as node classification, node clustering, and link predic-
tion.

III. TEACHING MACHINES TO UNDERSTAND GRAPHS

In recent years, many graph embedding approaches
have been developed. This section introduces these different
approaches, their advantages and limitations.

A. Graph Embedding Methods

Goyal and Ferrara [15] have organized embedding meth-
ods into three broad categories: factorization based, random
walk based, and deep learning based. Both the factorization
and random walk based approaches train unique embedding
vectors for each node independently, which results in several
limitations. First, there is an absence of parameter sharing
between the nodes, which leads to computational inefficiency
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Figure 5. Graph analysis vs graph analytics.

since the number of trainable parameters grows linearly with
the number of nodes in the graph. Second, these approaches
are not extensible and are only able to generate embedding
vectors for the nodes that were present during the training
phase and not for any unseen nodes. A third problem is that
these approaches lack an ability to incorporate node attributes
during embedding generation, when node attributes can be
highly informative about the node’s position and role in the
network.

In a concerted effort to mitigate these concerns, recent
research efforts have led to the emergence of deep learning
based methods. Deep learning based approaches use a deep
neural network architecture, generally referred to as Graph
Neural Networks (GNNs), to generate embeddings which
depend both on the structure and the attributes of the graph.
Wu et al. identified many types of GNNs among which are
graph autoencoders (GAEs) [16].

B. Graph Autoencoders

GAEs are deep neural network architectures that are
trained with the objective of reconstructing their original graph
input. Figure 6 shows a high-level GAE architecture. First,
an encoder takes a graph as its input and systematically
compresses it into a low-dimensional vector. The decoder then
takes the vector representation and attempts to generate a

reconstruction of some user-defined graph analysis tool (e.g.,
the adjacency matrix) of the original graph input. Encoder-
decoder pairs are designed to minimize the loss of information
between the input graph and the output (i.e., reconstructed)
graph. These frameworks may be deterministic or probabilistic
[17].

C. Network Embedding in an Urban Context

Figure 7 is a schematic for how the embedding process
might be integrated in an urban network digital twin. We start
by extracting a graph representation of the urban infrastructure
and determining the initial parameters of the system. As
time progresses, the digital twin will monitor changes in the
system. Embeddings will be generated, and machines will be
trained to understand a number of salient features of acceptable
and unacceptable behavior. When an unacceptable behavior is
identified, urban recovery procedures will be triggered. Since
embeddings are a central and essential part of the learning
process, there is a need to ensure the embedding input to
the machine is an accurate representation of the information
contained in the graph.

IV. CASE STUDY PROBLEMS

In this section, we exercise a graph autoencoding pro-
cedure that can encode the structure and network attributes
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Figure 6. Traditional encoder-decoder approach.

on problems involving the identification of leaks in an urban
water distribution system.

Topic 1. Case Study Applications

The two case study applications presented in this work
aim to explore the use of graph autoencoding (GAE) proce-
dures and ML classification techniques for the detection and
localization of leakages in water distribution systems (WDSs).
We start by extracting a graph representation of the system at
hand and determining the initial node attributes of the system.
Topics 2 through 5 follow the analysis procedure and describe:
(2) the encoding of the network topology and node attribute
information as node embeddings by a GAE framework; (3)
synthetic generation of hydraulic (node pressure) data by the
hydraulic simulation software EPANET [18]; (4) training and
testing of a Random Forest (RF) algorithm [19] with the node
embeddings to infer leak location; and (5) performance of the
proposed framework.

Topic 2. Node Embedding

The selection of an appropriate GAE is not a trivial
task. Water distribution networks are associated with a rich
set of node attributes that are in constant flux due to day-
to-day temporal variations in demand and, longer term, net-
work expansion and urban growth. These variations cause
the emergence of new content patterns and the fading of
old content patterns. Despite these complications, it has been
widely studied and reported that there exists a strong cor-
relation among the attributes of linked nodes [20]. These
node correlations and changing characteristics motivate us to
seek an effective embedding representation to capture network

structure and attribute evolving patterns, which is of fundamen-
tal importance to learning in a dynamic environment. Early
GAE algorithms such as Deep Neural Network for Graph
Representations (DNGR) [21] and Structural Deep Network
Embedding (SDNE) [22] only consider node structural infor-
mation (i.e., connectivity between pairs of nodes), and ignore
node attribute information. In 2016 Kipf et al. introduced
Graph Autoencoder (GAE*) [23], an algorithm that leverages
a ConvGNN [24] to encode node structural information and
node feature information at the same time. We employ this
algorithm in the two case studies of this work.

Although GAE* is the graph embedding approach most
suitable for our purposes, a key research question remains:
Are the procedures for reconstruction of the graph topology
guaranteed to give the correct answer only most of the time or
all of the time? An essential prerequisite for understanding the
robustness of GAE* reconstruction procedures is to first un-
derstand the procedure itself (i.e., graph encoding, embedding
optimization and reconstruction). Hence, the objective of our
first case study is to walk step by step through the application
of the GAE* framework to urban graphs from input to output.
We deliberately keep the network layout and node attributes
very simple, and begin with encoding for a 4 node graph and
its node attributes.

Figure 8 shows the architecture of the GAE* framework
applied to this use case. The encoder consists of two graph
convolutional layers and a simple inner product decoder, which
aims to decode node relational information from generated
embeddings by reconstructing the graph adjacency matrix. The
first convolutional layer takes as input the graph’s node feature
matrix X and the symmetrically normalized adjacency matrix
Ã = D−1/2AD−1/2, where A is the adjacency matrix with
added self connections and D is the diagonal node matrix of
A. For the purposes of keeping the case study as simple as
possible, all of the node features are simply assigned a value of
1. Note, however, in the later case study, different system nodes
will have different feature values that are naturally changing.

The first convolutional layer generates a lower-
dimensional feature matrix defined as:

X̄ = ReLu(ÃXW 0)

where W 0 is a trainable parameter matrix. The second convo-
lutional layer takes as input the output of the previous layer
and generates the node embeddings:

Z = ÃReLu(ÃXW 0)W 1

where W 1 is also a trainable parameter matrix. The purpose
of the decoder is to reconstruct the adjacency matrix A (with
added self-connections) from Z. By applying the inner product
on the latent variable Z and ZT , the algorithm learns the simi-
larity of each node inside Z. By applying the sigmoid function
σ(·) the algorithm computes the probability of edges existing
between the range of 0 and 1. Therefore, the reconstructed
adjacency matrix is defined as:

A′ = σ(ZZT )

In order to arrive at the optimal embedding matrix Z, the
W 0 and W 1 parameters are systematically updated through
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Figure 7. Process flowchart for training and executing machine.

an Adam optimization [25] of the weighted cross-entropy loss
between the adjacency matrix A and the soft reconstruction
A′. Adam optimization uses a combination of extensions (i.e.,
adaptive gradient estimation and root mean square propaga-
tion) to stochastic gradient descent to estimate gradients and
their moments as a moving average. These gradient estimates
allow us to find the direction in which the weights should be
adjusted in order to reduce the weighted cross-entropy loss.

By applying the GAE* architecture to the layout of
Case Study 1, we obtain successful reconstruction of the test
network topology. However, GAE* does not have the ability
to reconstruct graph attribute information. Thus, an important
research question that remains open is whether the embedding
obtained using GAE* is an accurate representation of node
attribute information needed for leak detection in WDS. In
the following case study, we aim to answer this question by
applying GAE* architecture to a leaking WDS, and use the
generated embedding as input for a RF classifier trained to
identify leaks.

Topic 3. Data Generation

Automatic water leakage detection can be performed with
ML classification algorithms. These algorithms require training
data involving normal operation conditions and abnormal op-
eration conditions. In the case of a WDS, training data should
involve hydraulic parameters at different locations, and pertain
to normal operations and leaks from the past. Ideally, one
would like to train a network using data measurements from
a real-world network. For security reasons, however, WDS
data (i.e., geographical layout of pipes, tanks, and demands)
are kept confidential by the water utility companies and are
not readily available to the public. A second option is to use
simulators to synthetically generate data for machine learning.
This study employs the simulation tool EPANET [18] to
generate the training data for the WDS under consideration
[26]. EPANET is a computerized model produced by the
Environmental Protection Agency of the USA that simulates
the dynamic hydraulic and water quality behavior within a
WDS operating over an extended period of time. WDSs are
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Figure 8. Flowchart of GAE* computations applied to Case Study 1.

composed by pipes (edges), nodes (junctions), pumps, valves,
and storage tanks or reservoirs. During a simulation period,
EPANET can track the flow of water in each pipe, the pressure
at each node, the height of the water in each tank, the type of
chemical concentration throughout the network, the age of the
water, and source tracing. Various characteristics of a network
element can be edited and a simulation can be performed to
observe its effect on the overall system. For simplicity, we will
limit the hydraulic parameter of interest in this study to node
pressure. We obtain the pressure data by making two additional
assumptions: (1) The data obtained through simulation does
not involve any noise in it (i.e., the sensors are ideal), and (2)
Water leakage is assumed to occur only at the junction nodes.

While EPANET does not explicitly support the modeling
of leakages, its computational engine is demand-driven and,
thus, leaks can be modeled as additional demand, and in a way
that is independent of the pressure in a consumption node. The
water output data at each node is defined as the base demand,
and the demand can be increased at different times during the
simulation. The network layout used to perform the hydraulic
simulations in this work is shown in Figure 9, which from

here on forth we will refer to as Case Study 2. The network
contains 4 junctions, 4 links, a pump station, a water source,
and a tank. The same network configuration was also used in
our previous work [1].

ML training sets require data for a large number of
positive (i.e., leaking) and negative (i.e., non leaking) cases,
meaning that EPANET simulations also need to be performed
for a large number of cases. A practical way of automating
this process is with the EPANET-Python Toolkit, an open-
source scripting software that interfaces with the latest version
of EPANET.

With data from the hydraulic network simulations in hand,
the next step is to perform the graph embedding. For this
case study we are interested in obtaining a low-dimensional
node vector representation for each node in the network. The
hope is that the learned embeddings will advance various
learning tasks, particularly leak detection by node classifi-
cation. Applying GAE* to the pressure data outputted from
EPANET simulation, yields 2-dimensional node embedding
vectors for each node of Case Study 2. The next challenge to
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Figure 9. Elevation view of urban water distribution networks and junction
(node) numbers used by EPANET simulation.

address is how to determine the optimal number of embedding
dimensions? Since answers to this question are still an open
research problem, we chose a set up for which the best
topology reconstruction results were observed.

Topic 4. Node Classification

With the node embeddings obtained from GAE*, leakage
detection can be performed. To be specific, we wish to identify
the node or nodes where leakage has occurred during hydraulic
simulation. To this end, the target function assigns a value
of 1 to leaking nodes and a value of 0 to the non-leaking
nodes. The embedding and target data are passed to a Random
Forest classification algorithm. There are a number of good
reasons to choose this pathway of analysis. First, the random
forest classifier is composed of a number of decision trees.
This problem solving strategy is well known to be accurate
and robust. In addition, it does not suffer from the overfitting
problem often encountered in other ML algorithms, since it
takes the average of all the predictions of decision trees,
and cancel out the biases. Random forests can also handle
missing values, by using median values to replace continuous
variables, or computing the proximity-weighted average of
missing values. Finally, random forest provides a measurement
of relative feature importance, which helps in the selection of
contributing features for the classifier [19].

In this case study, we select a training data set that max-
imizes the expected variation in the target and environment,
by building a hydraulic simulations where all of the nodes are
leaking for half of the simulation duration, and for the other
half of the duration none of the nodes are leaking. Since the
simulation was set to last 24 hours, with pressure readings at
every hour, the training set contains 24 cases for each node.
The top portion of Figure 10 shows the plots for each node in
Case Study 2, where the first of the embedding dimensions is
plotted against time. Note that when a leak occurs at a specific
time step, the embedding value for that dimension will also

change; thus, this problem can be framed as anomaly detection.

In order to test the trained RF classifier, we generate a test
set from a hydraulic simulation where none of the nodes are
leaking for half of the simulation duration, and for the other
half of the simulation duration only one of the nodes is leaking.
In this use case we chose the leaking node in the testing set to
be Node 3. Similar to the training set, the test set also contains
24 cases for each node. The bottom of Figure 10 shows the
first of the embedding dimensions plotted against time. Notice
that the embedding values change slightly compared to the
previous scenario where all the nodes where leaking; therefore,
the goal of the ML process is not only to detect the anomalies,
but also identify which anomalies are actual leaks and which
ones are just a propagation of the leak effects. Moreover,
since the initial objective of this work is identification of leak
location (and not timing of incipient leakage), leak durations
are kept constant through all simulations. We do acknowledge,
however, that the hour at which a leak occurs is relevant and
future work will need to address variations in leakages in both
space and time.

Topic 5. Results

As noted in the previous topic, the Random Forest
classifier was trained on both leak and non leak data for
each node. We were then able to test whether the classifier
is able to detect a leak in the system. The test procedure
involved feeding the node embeddings for a scenario where
initially none of the nodes were leaking, and later only one
node was leaking (node 3). As classification problems are
perhaps the most common type of ML problem, there are
a myriad of metrics that can be used to evaluate outputted
classifications, the most common being classification accuracy
(i.e., the ratio of number of correct predictions to the total
number of input samples). After training and testing an RF
classifier, we obtained a classification accuracy of 100 percent
(i.e., the classifier correctly predicted the location of test leaks
in the network). We recognize such a high performance may
be due to several simplifications made in this experiment.
First the network maintained a constant base demand for each
node through the hydraulic simulation, when in reality WDSs
experience changes in water demand depending on time of
day. Second, the decoder component of GAE* framework
successfully reconstructed network topologies in case study
1 and 2, and consequently generated accurate embeddings
representations of the networks, in part because the topologies
were relatively simple and static. An unresolved question from
these initial experiments is if the same success can be obtained
for larger or dynamic topologies. Section V discusses the
effects of size on GAE* performance. Third, we assumed
sensor nodes were deployed in each junction of the network;
however, in our resource limited world, placing as many
sensors as there are junction nodes to monitor all of the nodes
in real time is extremely infeasible. In Section VI we discuss
ideas for addressing these simplification issues in future work.

V. DISCUSSION

The automated identification of leaks in WDSs depends
critically on accurate representations of network topology and
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Figure 10. Case study 2 node embeddings (1st dimension) obtained for train
and test sets plotted against time.

node attribute information. The embedding obtained by using
GAE* framework is fed to downstream classifiers that will
determine presence of leaks in the system. If the embedding
is not accurate enough, errors could cascade across the fault
detection mechanism and lead to false positive or false negative
leakage identifications. Therefore, it is important to understand
the limitations of GAE* in generating a representation of the
network at hand. This section discusses these limitations and
potential solutions.

A. GAE* Limitations

Our results have indicated that when network topologies
are simple, GAE* is capable of providing network embeddings
that can be decoded to perfectly reconstruct the input network.
One important research question that remains open is the effect
of network size on GAE* learning performance. In order to
address this concern, we have attempted to reconstruct three
attributed WDSs of varying sizes using GAE*. The goal of this
experimental study was to learn for what ranges of embedding
dimensions the algorithm was able to reconstruct the input
network accurately. In order to measure the accuracy of the
reconstruction, the graph edit distance (GED) between the
input graph and the reconstructed graph was used. GED is
a graph similarity measure defined as the minimum cost of
a sequence of node and edge edit operations transforming the
reconstructed graph into the input graph. A GED value of zero
shows that the reconstructed graph is isomorphic to the input
graph. The higher the GED value, the higher the dissimilarity

between the reconstructed graph and the input graph. In order
to maintain a sense of GED importance for different graph
sizes, the GED values obtained in our experiments were then
normalized by the size of the input graph.

Figure 11 summarizes the results of the numerical
experiments, and shows that if the neural network used to
train the GAE* has an insufficient number of neurons, then
the reconstruction performance is poor. This makes perfect
sense. But when the same network is modeled with too many
neurons, the reconstruction performance is also poor. The
results suggest that there is a window of convergence where
good reconstruction can be achieved. For the networks with
6 and 11 nodes the algorithm is able to perfectly reconstruct
(i.e., GED is zero) certain network configurations, but for the
network with 36 nodes the algorithm is not able to reach
perfect reconstruction. From Case Study 1, we now understand
the inner architecture of GAE* and what limitations it may
encounter, as well as the ways in which it might be changed
to adapt to specific problems. To obtain a good reconstruction
of the input graph, the underlying algorithm needs to work.
In turn, the latter depends on: (1) convergence of the Adam
optimization, (2) the encoder architecture design, and (3) the
decoder architecture design. We suspect that the phenomena
observed in Figure 11 may be related to limitations in these
three GAE* components.

A. Convergence of the Adam Optimizer

One of the key hyper-parameters to set in order to
construct an Adam optimizer is the learning rate. This pa-
rameter scales the magnitude of our weight updates in order
to minimize the network’s loss function. If the learning rate is
set too low, then training will progress very slowly as we are
making very small updates to the weights values. However, if
your learning rate is set too high, then it can cause undesirable
divergent behavior in the loss function (i.e., the gradient of the
weight oscillates back and forth, and it is difficult to make the
loss reach the global minimum).

B. Encoder Architecture Design

Although Kipf et al. used 2 hidden layers, 32 neurons
in the first hidden layer, and 16 neurons in the second hidden
layer when presenting the GAE* architecture [24], it is possi-
ble to modify these characteristics of the framework in order
to adapt to specific needs. When considering the structure of
GAE*, there are really two decisions that must be made: how
many hidden layers to actually have in the neural network, and
how many neurons will be in each of these layers? Prior to
deep learning, problems that required more than two hidden
layers were rare. Two or fewer layers will often suffice with
simple data sets. However, with complex datasets additional
layers can be helpful. According to Heaton a neural network
with no hidden layers is only capable of representing linear
separable functions or decisions, a network with one hidden
layer can approximate any function that contains a continuous
mapping from one finite space to another, and a network with
two hidden layers can represent an arbitrary decision boundary
to arbitrary accuracy with rational activation functions and
can approximate any smooth mapping to any accuracy. And
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Figure 11. GAE* reconstruction accuracy for networks of varying sizes.

a network with more than two layers can learn complex rep-
resentations (i.e., feature engineering) for layered layers [27].
For our purposes, we are interested in investigating whether
adding more layers to GAE* algorithm can bring benefits (i.e.,
faster convergence, lower loss, fewer nodes, etc.). Deciding the
number of hidden layers is only a small part of the problem,
we must also determine how many neurons will be in each
of these hidden layers. Using too few neurons in the hidden
layers can result in underfitting. Underfitting occurs when there
are too few neurons in the hidden layers to adequately process
information in a complicated data set. Too many neurons on the
other hand can result in overfitting. Overfitting occurs when the
neural network has so much information processing capacity
that the limited amount of information contained in the training
set is not enough to train all of the neurons in the hidden layers
[27]. Computational requirements also need to be taken into
account. Generally speaking, a large number of neurons in the
hidden layers will increase the time it takes to train the net-
work, possibly to a point where it is computationally infeasible
to adequately train the neural network [27]. Obviously, some
compromise must be reached between too many and too few
neurons in the hidden layers. Ultimately, the selection of an

architecture for our neural network will come down to avoiding
underfit, overfit and convergence issues. Learning curves are
widely used in machine learning for algorithms that learn (i.e.,
optimize their internal parameters) incrementally over time.
The shape and dynamics of a learning curve can be used to
diagnose the behavior of a machine learning model and, in
turn, suggest changes that may be made to improve learning
and/or performance. For our purposes, we are interested in
investigating how learning curves can help us adapt the GAE*
architecture to avoid the abovementioned issues.

C. Decoder Architecture Design

Much of the node embedding research work performed
in recent years has focused on refining and improving the
encoder architecture. Most methods still rely on basic pair-
wise decoders (e.g., inner-product decoders), which predict
pairwise relations between nodes and ignore higher-order
graph structures involving more than two nodes [17]. Higher-
order structural sub-graphs are essential to the structure and
function of complex networks. Hence, testing the performance
of decoding algorithms other than inner-product decoders will
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be an important step in unveiling GAE* limitations.

VI. CONCLUSIONS AND FUTURE WORK

The long term objective of this research is to understand
how ML and semantic-modeling can work hand-in-hand to
build digital twins architectures that enhance the collection
of data, identify events, and manage operations of systems in
an urban context. In this paper, we started by exploring the
recently developed GAE* framework in Case Study 1, where
a simple graph was encoded to a low-dimensional vector while
minimizing the loss information in the encoding process. Then,
we investigated the possibility of using a GAE* generated
embedding as input for a RF classier trained to identify
leaks in WDSs in Case Study 2. Finally, we examined the
effects of network size on learning performance by generating
embeddings for larger size networks. Although procedures for
encoding network information (i.e., structure and attributes)
with the GAE* framework, and using RF classifier to identify
water leaks have shown to be successful, the work reported
in this paper takes an initial step toward exploring potential
applications of ML to the identification of leaks in urban
networks. Many questions and issues remain either unanswered
or unresolved. Opportunities for future work include varying
base node demands according to time of day, experimenting
with more complex topologies and topologies that are dynamic
(i.e., edges are removed or created), investigating how many
sensor nodes are needed and where to place them in the
network, exploring the use of learning curves in finding the
optimal number of neurons, layers, and learning rate values
for optimizing learning performance, and exploring different
decoder architectures with the aim of improving reconstruction
results for more complex graphs.
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