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Abstract—This paper considers a minimum mean-squared error 

(MMSE) single user adaptive receiver for the asynchronous 

direct-sequence code-division multiple-access (DS-CDMA) 

system, based on the least-mean-square (LMS) algorithm. It is 

known that in this context the adaptive algorithm can be iterated 

several times during the same bit interval in order to achieve a 

faster convergence rate, which further reduces the length of the 

training sequence. The objective of this paper is twofold. First, 

instead of using such multiple iterations, we propose a single 

equivalent formula for updating the receiver coefficients, saving 

significant time processing. Secondly, in order to further increase 

the convergence rate, a division-free version of the gradient 

adaptive lattice (GAL) algorithm is proposed. Since the lattice 

predictor orthogonalizes the input signals, this algorithm 

achieves a faster convergence rate than the transversal LMS 

algorithm. 

Keywords: Code-division multiple-access (CDMA) system; 

gradient adaptive lattice (GAL) algorithm; least-mean-square 

(LMS) algorithm; minimum mean-squared error (MMSE) receiver. 

I.  INTRODUCTION 

There are a lot of mobile communications systems that 
employ the code-division multiple-access (CDMA) technique, 
where the users transmit simultaneously within the same 
bandwidth by means of different code sequences. This 
technique has been found to be attractive because of such 
characteristics as potential capacity increases over competing 
multiple access methods, anti-multipath capabilities, soft 
capacity, narrow-bandwidth anti-jamming, and soft handoff. In 
the Direct Sequence CDMA (DS-CDMA) system [1], each 
code sequence is used to spread the user data signal over a 
larger bandwidth and to encode the information into a random 
waveform. A simple multiplication between the data signal and 
the code sequence waveform is needed, and the resulted signal 
inherits its spectral characteristics from the spreading sequence. 
Due to its linear signal processing function this scheme may be 
a subject for possible performance improvements by 
developing new signal processing techniques for the receiver. 

In DS-CDMA systems the conventional matched filter 
receiver distinguishes each user’s signal by correlating the 
received multi-user signal with the corresponding signature 

waveform. The data symbol decision for each user is affected 
by multiple-access interference (MAI) from other users and by 
channel distortions. Hence, the conventional matched filter 
receiver performances are limited by its original purpose. It 
was designed to be optimum only for a single user channel 
where no MAI is present and to be optimum for a perfect 
power control, so it suffers from the near-far problem. 
Motivated by these limitations, adaptive minimum mean-
squared error (MMSE) receivers have been introduced [2], [3]. 
The principle consists of a single user detector that works only 
with the bit sequence of that user. In this case, the detection 
process is done in a bit by bit manner, and the final decision is 
taken for a single bit interval from the received signal. The 
complexity of an adaptive MMSE receiver is slightly higher 
than that of a conventional receiver, but with superior 
performance. Besides its facile implementation the adaptive 
MMSE receiver has the advantage that it needs no 
supplementary information during the detection process.  

The “brain” of an adaptive MMSE receiver is the adaptive 
algorithm. There are two major categories of such algorithms 
[4]. The first one contains the algorithms based on the mean 
square error minimization, whose representative member is the 
least-mean-square (LMS) algorithm. The second category of 
algorithms uses an optimization procedure in the least-squares 
(LS) sense, and its representative is the recursive-least-squares 
(RLS) algorithm. The LMS algorithm with its simple 
implementation suffers from slow convergence, which implies 
long training overhead with low system throughput. On the 
other hand, LS algorithms offer faster convergence rate, paying 
with increased computational complexity and numerical 
stability problems. Due to these reasons, LMS based 
algorithms are still preferred in practical implementations of 
adaptive MMSE receivers. Lattice structures have also been 
considered for this type of applications [5], [6], [7]. Since the 
lattice predictor orthogonalizes the input signals, the gradient 
adaptation algorithms using this structure are less dependent on 
the eigenvalues spread of the input signal and may converge 
faster than their transversal counterparts. The computational 
complexity of these algorithms is between transversal LMS and 
LS algorithms. In addition, several simulation examples and 
also numerical comparison of the analytical results have shown 
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that adaptive lattice filters have better numerical properties than 
their transversal counterparts [8], [9]. Moreover, stage-to-stage 
modularity of the lattice structure has benefits for efficient 
hardware implementations. 

A solution for increasing the convergence rate of the 
MMSE receiver is to adjust the filter tap weights iteratively 
several times every transmitted bit interval [10]. Moreover, this 
procedure can be combined with a parallel interference 
cancellation (PIC) mechanism for further reducing the multiple 
access interference (MAI) [11]. A drawback of these 
approaches is that they are time consumers. During a bit 
interval, every single iteration has to “wait” the result from the 
previous one, which is the natural function mode for every 
iterative process. Anyway, from the time processing reason, it 
would be more convenient to use a single formula instead of 
those multiple iterations. A first objective of this paper is to 
propose a relation for updating the LMS adaptive filter 
coefficients, which is equivalent with the multiple iterations 
algorithm [12]. We will demonstrate that the multiple iterations 
process is equivalent with an unique iteration with a particular 
step size of the algorithm. Secondly, for further increasing the 
convergence rate, a lattice MMSE receiver based on a division-
free gradient adaptive lattice (GAL) algorithm [13] is 
developed. 

The paper is organized as follows. In Section II we briefly 
describe the asynchronous DS-CDMA system model. The 
analytical expression equivalent with the multiple iterations of 
the LMS algorithm is developed in Section III. Section IV is 
focused on the lattice receiver, revealing in this context the 
division-free GAL algorithm. The experimental results are 
presented in Section V. Finally, Section VI concludes this 
work.  

II. DS-CDMA SYSTEM MODEL 

In the transmitter part of the DS-CDMA system, each user 
data symbol is modulated using a unique signature waveform 
ai(t), with a normalized energy over a data bit interval T, 

2
0

( ) 1
T

ia t dt =∫ , given by 1( ) ( ) ( )N
i i c cj

a t a j p t jT== −∑  [1], 

with i = 1, …, K, where K is the number of users in the system. 
Parameter ai(j) represents the jth chip of the ith user’s code 
sequence and pc(t) is the chip pulse waveform defined over the 
interval [0; Tc), with Tc as the chip duration (it is related to the 
bit duration through the processing gain N by Tc=T/N). In the 
following analysis we consider binary-phase shift keying 
(BPSK) transmission. The ith user transmitted signal is [1] 

 0( ) 2 ( ) ( ) cos( )i i i i is t P b t a t t= ω + θ , 1,i K=   (1) 

where 1( ) ( ) ( )bN
i im

b t b m p t mT== −∑  is the binary data 

sequence for ith user (Nb is the number of received data bits), 
with { }( ) 1, 1ib m ∈ − + , Pi is the ith user bit power, 0ω  and iθ  

represent the common carrier pulsation and phase, respectively.  

After converting the received signal to its baseband form 
using a down converter, the received signal is given by [1]: 

 0
1

( ) ( ) ( ) cos( ) ( ) cos( )
2

K
i

i i i i i
i

P
r t b t a t n t t

=
= − τ − τ θ + ω∑  (2) 

where n(t) is the  two-sided power spectral density N0/2 
additive white Gaussian noise. The asynchronous DS-CDMA 
system consists of random initial phases of the carrier 
0 2i≤ θ < π  and random propagation delays 0 i T≤ τ <  for all 

the users 1,i K= . There is no loss of generality to assume 

that 0kθ =  and 0kτ =  for the desired user k, and to consider 

only 0 i T≤ τ <  and 0 2i≤ θ < π for any i k≠  [2]. Assuming 
perfect chip timing at the receiver, the received signal from (2) 
is passed through a chip-matched filter followed by sampling at 
the end of each chip interval to give for the mth data bit 
interval: 
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where p(t) is the chip pulse shape, which is taken to be a 

rectangular pulse with amplitude 1/ N . Using (3) and taking 
the kth user as the desired one, the output of the chip matched 
filter after sampling for the mth data bit is given by: 
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with i i c iN Tτ = + ε ,  0 1iN N≤ ≤ − ,  0 i cT< ε < .  

A block diagram of the transversal MMSE receiver 
structure is depicted in Fig. 1. In the training mode, the receiver 
adapts its coefficients using a short training sequence 
employing an adaptive algorithm. After training is acquired, the 
receiver switches to the decision-directed mode and continues 
to adapt and track channel variations. 

Let us consider the following vectors: 

 

where 
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with rm,l given by (4). The output signal y(m) will be an 
estimate of b(m). For the estimation of w(m) a stochastic-
gradient approach based on the LMS adaptive algorithm is 
used. The output signal is y(m)=w

T(m)r(m). The receiver forms 
an error signal e(m) = b(m) – y(m) and a new filter tap weight 
vector is estimated according to 

 ( 1) ( ) ( ) ( )m m m e m+ = + µw w r . (7) 

The parameter µ represents the adaptation step size of the 
algorithm; its value is based on a compromise between fast 
convergence rate and low mean squared error [4]. 

A solution to increase the overall performances of the 
MMSE receiver is to adjust the filter tap weights iteratively 
several times every transmitted bit interval [10]. The 
coefficients obtained after the Gth iteration of the mth data bit 
is used by the algorithm in the first iteration of the (m+1)th data 
bit. It is obvious that this multiple iterations process will 
increase the computational complexity. This procedure can be 
combined with a PIC mechanism for further reducing the MAI 
[11]. This approach also makes use of the available knowledge 
of all users’ training sequences at the base-station receiver to 
jointly cancel MAI and adapts to the MMSE optimum filter 
taps using the combined adaptive MMSE/PIC receiver. 

III. MULTIPLE ITERATIONS LMS ALGORITHM 

It can be noticed that the LMS adaptive algorithm used for 
MMSE receiver does not work in a sample-by-sample manner 
(chip-by-chip), as usually adaptive filters works, but in a block-
by-block mode (bit-by-bit).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, by using multiple iterations for every input data bit 
the converge rate of the adaptive algorithm increases. 
Nevertheless, this process is time consumer and it would be 
more convenient to use a one step formula instead of those 
multiple iterations per bit. Using the notations from the 
previous section, the multiple iterations LMS algorithm 
(without PIC mechanism) for the mth input data bit can be 
resume as follows: 

for 1,2, ,g G= …  (G is the number of iterations per bit) 

( ) ( ) ( ) ( ) ( )
T

g g
y m m m= w r  

( ) ( ) ( ) ( ) ( )g g
e m b m y m= −  

( ) ( ) ( ) ( ) ( ) ( ) ( )1g g g
m m m e m

+ = + µw w r  

end 

As we have mentioned in the previous section, the first 
iteration for the (m+1)th data bit begins with the initial values 

of the filter coefficients given by ( ) ( ) ( ) ( )1 11 G
m m

++ =w w . In 

order to simplify the presentation, we renounce at the temporal 
index m and we will use the following notations: ( )m =r r , 

( )b m b= , ( ) ( )1
0m =w w , 0 0

Ty = w r , ( ) ( )1
0 0e m b y e= − = , 

Ts = r r . In the first three iteration we have: 

g = 1: ( ) ( )1
0 0e m b y e= − =   

( )2
0 0e= + µw w r  

g = 2: ( ) ( ) ( ) ( )2 2
0 0 0 1

T T
e b b e e s= − = − + µ = − µw r w r r  

( ) ( ) ( ) ( )3 2 2
0 0 2e e s= + µ = + µ − µw w r w r  

t = Tc 

rm,l Tc 

w0(m) w1(m) wN-2(m) 

 
wN-1(m) 

t = T 

y(m) 
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Decision 
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b(m) 

- e(m) 

Tc Tc ∫∫∫∫ 

Figure 1. Transversal MMSE receiver scheme 
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g = 3: 
( ) ( ) ( )( )

( )

3 3
0 0

2 2
0

2

1 2

T T
e b b e s

e s s

= − = − + µ − µ =

= − µ + µ

w r w r r
 

( ) ( ) ( ) ( )4 3 3 2 2
0 0 3 3e e s s= + µ = + µ − µ + µw w r w r  

By performing simple polynomial operations we obtain in a 
similar manner: 
 

( ) ( )5 2 2 3 3
0 0 4 6 4e s s s= + µ − µ + µ − µw w r  

( ) ( )6 2 2 3 3 4 4
0 0 5 10 10 5e s s s s= + µ − µ + µ − µ + µw w r  

( ) ( )7 2 2 3 3 4 4 5 5
0 0 6 15 20 15 6e s s s s s= + µ − µ + µ − µ + µ − µw w r

 

Let us denote s−µ = α . It can be noticed that 

 ( ) ( )1
0 0

G
e F

+ = + µ αw w r , (8)  

where 

 ( ) ( ) ( ) ( )
1

0

TG
G G Gk

k
k

F f
−

=
α = α =∑ f α . (9) 

The column vectors from (9) are 

 ( ) ( ) ( ) ( )
0 1 1, , ,

T
G G GG

Gf f f −
 =   

f … , (10) 

 ( ) 2 11, , , ,
TG G− = α α α α … . (11) 

The first element of the vector from (10) is ( )
0

G
f G= . 

Comparing (8) with (7) we can conclude that the LMS 
algorithm with multiple iterations per bit is equivalent with a 
LMS algorithm with a single iteration per bit but using a 
particular step size parameter given by 

 ( ) ( )G
Fµ = µ α . (12) 

To compute this parameter we need for the elements of the 
vector from (10). Let us consider the row vectors: 

 ( ) ( )
( )1, , 1,

T
g g

G g g G× −
 

= = 
 

f f 0 . (13)  

It can be noticed that ( ) ( )TG G=f f . Using the vectors from 
(13) we can obtain the matrix 

 ( )

( )

( )

( )

1

2
G

G

 
 
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=  
 
 
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f

f
F

f

⋮
. (14) 

Each row of this matrix corresponds to a specific iteration. The 
elements of this matrix can be computed using  

 ( ) ( ) ( ) ( ) ( ) ( ), 1, 1 1, , , 2,G G G
i j i j i j i j G= − − + − =F F F .(15) 

It is obvious that ( ) ( ) ( )
0,1

jG j f j= =F , with 1,j G= , and 

( )
( )

1
1 11, G× −

 =   
f 0 . Once we have set the value of parameter 

G, this matrix can be computed a priori and we will use only 
the elements of its last row. For example, assuming that we 
choose G = 10, the matrix from (14) results 

( )10

1 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

3 3 1 0 0 0 0 0 0 0

4 6 4 1 0 0 0 0 0 0

5 10 10 5 1 0 0 0 0 0

6 15 20 15 6 1 0 0 0 0

7 21 35 35 21 7 1 0 0 0

8 28 56 70 56 28 8 1 0 0

9 36 84 126 126 84 36 9 1 0

10 45 120 210 252 210 120 45 10 1

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
   

F . 

 

The last row of this matrix contains the elements of f(10) which 
will be a priori computed in this manner. Of course, there is a 
need for the elements of the vector from (11), which have to be 
computed for each input data bit. After that, the parameter from 
(9) has to be computed, which requires G multiplication 
operations and (G – 1) addition operations. Finally, we update 
the filter coefficients according to (8). From the computational 
complexity point of view our approach requires almost the 
same number of operations as the multiple iterations per bit 
algorithm. Nevertheless, there is a significant time processing 
gain because our final result from (8) does not “wait” for the 
previous G iterations results, as in the multiple iterations 
process. 

According to the theory of stability [4], the LMS adaptive 
algorithm is stable if the value of the step size parameter 
(which is a positive constant) is smaller than λmax, which is the 
largest eigenvalue of the correlation matrix of the input signal 
(i.e., the input data bit). In the case of the multiple iterations 
LMS algorithm, the stability condition has to take into account 
the number of iteration per bit. In our approach this is very 
facile because we use a single iteration as in (8), with the step 
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size parameter given by (12). Consequently, the stability 
condition become 

 ( )
max

2Gµ <
λ

. (16) 

Even if the multiple iterations algorithm is used, the previous 
condition can be used to determine the stability upper bound 
value of the step size parameter µ. According to (12) and (16) 

 
( )max

2
F

µ <
λ α

. (17)  

An interesting situation appears if we use the Normalized 
LMS (NLMS) adaptive algorithm [4], which is another 
member of the stochastic gradient family. In this case, the 
algorithm step size parameter is computed as 

 NLMS T s

µ µ
µ = =

r r
. (18) 

where µ  is a positive constant. In the case of the classical 
NLMS algorithm the previous constant has to be smaller than 
2, in order to assure the stability of the algorithm [4]. 
Following the same procedure, it will result that 

 ( ) ( )1
0 0

G
NLMS e F+ = + µ µw w r , (19) 

where 

 ( ) ( ) ( ) ( ) ( )
1

0

TG kG G G
k

k

F f
−

=
µ = −µ =∑ f β , (20) 

 ( ) ( ) ( )2 1
1, , , ,

T
GG − 

= −µ −µ −µ  
β … . (21) 

Similarly, the NLMS algorithm with multiple iterations per bit 
is equivalent with a NLMS algorithm with a single iteration per 
bit but using a step size parameter given by 

 ( ) ( ) ( )G
NLMSNLMS T

F
F

µ µ
µ = µ µ =

r r
 (22) 

The following condition has to be satisfied for the stability: 

 ( )0 2F< µ µ <  (23) 

Because it is more facile to compute the elements of the vector 
from (21), as compared with the elements of the vector from 
(11), the NLMS algorithm could be an attractive alternative to 
the LMS algorithm. Moreover, it is a more robust algorithm 
because it overcomes in some sense the gradient noise 
amplification problem associated with the LMS algorithm [4]. 
Nevertheless, a division operation is required for computing the 
step size parameter from (22), which could be a difficulty and a 
source of numerical errors especially in a fixed-point 
implementation. 

IV. GAL ALGORITHM FOR MMSE RECEIVER 

Expected advantages of the adaptive lattice filters over the 
conventional LMS transversal filters include faster 
convergence rates with spectrally deficient inputs, automatic 
determination of the system’s order, stage-to-stage modularity 
for efficient hardware implementations, and better data tracking 
abilities. 

The (N – 1)-th-order multistage lattice predictor from Fig. 2 
is specified by the recursive equations 

 
*

1 1

1 1

( ) ( ) ( ) ( 1)

( ) ( 1) ( ) ( )

f f b
p pp p

fb b
p pp p

e l e l k l e l

e l e l k l e l

− −

− −

= + −

= − +
 (24) 

with p=1,…,N–1. We denoted by ( )f
pe l  the forward prediction 

error, by ( )b
pe l  the backward prediction error, and by kp(l) the 

reflection coefficient at the pth stage and chip-time l. The initial 

prediction errors are ,0 0( ) ( )f b
m le l e l r= = . 

The cost function used for the estimation of kp(l) is [4] 

 ( )
2 21

( ) ( )
2

f b
p p pJ l E e l e l

 
= + 

 
 (25) 

where E is the statistical expectation operator. Substituting (24) 
into (25), then differentiating the cost function Jp(l) with 
respect to the complex-valued reflection coefficient kp(l) and 
imposing the gradient equal to zero, the optimum value of the 
reflection coefficient for which the cost function is minimum 
results  

 
{ }*

1 1

2 2

1 1

2 ( 1) ( )

( ) ( 1)

fb
p popt

p
f b
p p

E e l e l
k

E e l e l

− −

− −

−
= −

 
+ − 

 

 (26) 

Assuming that the input signal is ergodic, the expectations can 
be substituted by time averages, resulting the Burg estimate 
for the reflection coefficient kp

opt for stage p: 
 
 
 



35

International Journal On Advances in Networks and Services, vol 1 no 1, year 2008, http://www.iariajournals.org/networks_and_services/

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

*
1 1

1

2 2

1 1
1

2 ( 1) ( )

( )

( ) ( 1)

l
fb

p p
q

p l
f b
p p

q

e q e q

k l

e q e q

− −
=

− −
=

−

= −
 

+ − 
 

∑

∑
 (27) 

Let us denoted by Wp–1(l) the total energy of both the forward 
and backward prediction errors at the input of the pth lattice 
stage. It is expressed as: 

 

2 2
1 1 1

1

2 2
1 1 1

( ) ( ) ( 1)

( 1) ( ) ( 1)

l
f b

p p p
q

f b
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It can be demonstrated [4] that the GAL algorithm updates the 
reflection coefficients using 

* *
1 1

1
( 1) ( ) ( ) ( 1) ( ) ( )

( )
f fb b

p p p pp p
p

k l k l e l e l e l e l
W l − −

−

η  + = − ⋅ − +
 

  (29) 

where the constant η controls the convergence of the algorithm. 
For a well-behaved convergence of the GAL algorithm, it is 
recommended to set η  < 0.1. In practice, a minor modification 
is made to the energy estimator from (28) by writing it in the 
form of a single-pole average of squared data: 
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1 1 1 1( ) ( 1) (1 ) ( ) ( 1)f b

p p p pW l W l e l e l− − − −
 

= β − + − β ⋅ + − 
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 (30) 

where 0 < β < 1. The introduction of parameter β in (30) 
provides the GAL algorithm with a finite memory, which helps 
it to deal better with statistical variations when operating in a 
nonstationary environment. As it was reported in [8] and it was 
demonstrated in [14], the proper choice is β = 1 – η. 

As we see in Fig. 2, the basic structure for the estimation of 
the user desired response b(m), is based on a multistage lattice 
predictor that performs both forward and backward predictions, 
and an adaptive ladder section. We have an input column 
vector of the backward prediction errors 

 0 1 1( ) [ ( ), ( ), , ( )]b b b b T
N Nm e m e m e m−=e …  (31) 

and a corresponding column vector w(m) containing the N 
coefficients of the ladder section of the adaptive filter. For the 
estimation of w(m), we may use a stochastic-gradient approach. 
The discrete output signal y(m) is given by: 

 ( ) ( ) ( )T b
Ny m m m= w e  (32) 

The receiver forms the error signal e(m) and a new filter tap 
weight vector is estimated according to: 
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Figure 2. Lattice MMSE receiver scheme. 
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 ( 1) ( ) ( ) ( )b
Nm m e m m+ = + µw w eɶ  (33) 

The parameter µɶ  is the ladder structure adaptation step size, 
chosen to optimize both the convergence rate and the 
misadjustment of the algorithm. 

Summarizing, we will use (24), (30), and (29) for the lattice 
predictor part of the scheme, together with (32) and (33) for the 
ladder section. As compared to its transversal counterpart based 
on the LMS algorithm, the lattice MMSE receiver implies an 
increased computational complexity due to the multistage 
lattice predictor. Nevertheless, due to the fact that the lattice 
predictor orthogonalizes the input signals, a faster convergence 
rate is expected. 

It can be noticed that in the lattice predictor part of the 
classical GAL algorithm a division operation per stage is used, 
which significantly grows the computational complexity in a 
fixed-point implementation context. Due to cost considerations, 
equipment manufactures generally prefer the use of fixed-point 
Digital Signal Processors (DSPs) over floating-point ones in 
their products. In fixed point DSPs, every division operation 
requires a number of iterations equal to the word length (i.e., 
the number of representation bits), while the multiplication and 
addition operations can be performed in a single iteration. In 
the following, we will propose an approximate version of the 
GAL algorithm that replaces the division operation using three 
multiplication operations and one addition operation instead. 
This is much more convenient from the computational 
complexity point of view in a fixed-point DSP implementation. 

We start from equation (30) and we may write: 
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Let us denote 
 

           1
1

1
( 1)

( 1)p

p

T l
W l

−
−

− =
−

                       (35) 

 
and 

 

         
2 2

1 1 1( ) ( ) ( 1)f b
p p pc l e l e l− − −= + −         (36) 

 
Using the previous notations we may rewrite equation (34) as 
follows: 
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 (37) 
 
Supposing that the sum of the squared prediction errors at 

time l, i.e., 1( )pc l− , is much smaller than the sum of all 

squared prediction errors until that moment of time, 

1( 1)pW l− − , we may write that 

 

1 1( ) ( 1) 1p pc l T l− − − <<                        (38) 

 
Taking into account that 
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we may use the following approximate relation instead of 
equation (37): 

 

1 1 1 1

1 1
( ) ( 1) 1 ( ) ( 1)p p p pT l T l c l T l− − − −

 − β
≅ − ⋅ − − β β 

 

  (40) 
 

In order to prevent any unwanted situations that can affect the 
supposition made in equation (38) (e.g., impulse perturbation 
of the input signal) we may compute the following minimum 
value: 

 

       1 1 1

1
( ) min , ( ) ( 1)p p pt l c l T l− − −

 − β
= λ − β 

        (41) 

 
where 1λ <  is a positive constant, and than rewrite the 
equation (40) as follows: 
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1
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Finally, the reflection coefficients are updated using 
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The new step-size parameter of the division-free GAL 
algorithm is 1( )pT l−η  and it acts similar to 1/ ( )pW l−η  from the 

classical GAL algorithm. It can be noticed that the “unwanted” 
division operation from the classical GAL algorithm is 
replaced by three multiplication operations and one addition 
operation, which is more suitable in a fixed-point 
implementation context. 
 

(34) 
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V. SIMULATION RESULTS 

In order to analyze the convergence of the multiple-
iteration LMS algorithm, a first set of experimental tests is 
performed in a simple “system identification” configuration. In 
this class of applications, an adaptive filter is used to provide a 
linear model that represents the best “fit” to an unknown 
system. The adaptive filter and the unknown system are driven 
by the same input. The unknown system output supplies the 
desired response for the adaptive filter. These two signals are 
used to compute the estimation error, in order to adjust the 
filter coefficients. The input signal is a random sequence with 
an uniform distribution on the interval (–1;1). In this first set of 
experiments the adaptation process is performed in a sample-
by-sample manner. The mean square error (MSE) is estimated 
by averaging over 100 independent trials. In Fig. 3 are depicted 
the convergence curves for the multiple iterations LMS 
algorithm and the proposed equivalent algorithm, for different 
values of G. As expected, the curves for these two algorithms 
are  perfectly  matched,  due  to  the  mathematical equivalency 

 

 

 

 

 

 

 

between them. It can be notice that the convergence rate of the 
algorithms increases with the value of G and the MSE 
decreasing. In Fig. 4 we plot the evolution of the step size 
parameter of the proposed algorithm, given by (12), for G =10.  

A second set of simulations employs the asynchronous DS-
CDMA system, using the transversal MMSE iterative receiver. 
A BPSK transmission in a training mode scenario was 
considered. The binary spreading sequences are pseudo-
random. The system simulation parameters are N = 16 and K = 
8. The signal-to-noise ratio (SNR) is 15 dB. The LMS adaptive 
algorithm is iterated several times for each data bit using the 
proposed equivalent relation from (8). The adaptive process 
works now in a block-by-block manner. The MSE is also 
estimated by averaging over 100 independent trials. The results 
are presented in Fig. 5. It can be noticed that the MSE is 
decreased every new iteration. 

Next, we investigated the steady-state BER (Bit Error Rate) 
performance as a function of the energy per bit to noise power 

Figure 3. Convergence for the multiple iterations LMS algorithms.  

Figure 4. Evolution of the step size parameter µ(10) given by (12).  

Figure 5. Convergence of the MMSE receiver based on the multiple 
iterations LMS algorithm. K = 8, N = 16, SNR = 15dB. 

Figure 6. BER performance of the MMSE receiver based on the multiple 
iterations LMS algorithm. Other conditions as in Fig. 5. 
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spectral density ratio (Eb/N0) of the iterative MMSE receiver 
considered above. These results are shown in Fig. 6, where we 
compared the performance of the iterative MMSE receiver 
using 1 to 6 additional iterations (i.e., G = 2 to 7) with the 
conventional adaptive LMS receiver, using one iteration per bit 
(i.e., G =1). The simulation results were obtained using 2000 
bits training period for each value of Eb/N0, in order to assure 
that the steady-state is reached.  It is very important to note that 
under the same conditions the BER is improved every new 
iteration. Nevertheless, one should make a compromise 
between the computational complexity and the BER 
performances. 

For further increasing the convergence rate, the lattice 
MMSE receiver based on the division-free GAL algorithm is 
tested as compared with its transversal counterpart based on the 
LMS algorithm. The simulation parameters were fixed as 
follows. The processing gain is N = 64, the number of users is 
K = 32, and SNR = 15 dB. The MSE is estimated by averaging 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

over 100 independent trials. First, the conventional MMSE 
receivers are compared (Fig. 7). The superior convergence rate 
achieved by the GAL algorithm as compared to the transversal 
LMS algorithm is obvious. This faster convergence rate of the 
GAL algorithm over the transversal LMS algorithm can be 
explained by the fact that the lattice predictor orthogonalizes 
the input signals. Hence, the gradient adaptation algorithm 
using this structure is less dependent on the eigenvalues spread 
of the input signal. In order to support these remarks, in Fig. 8 
the mean autocorrelation function is depicted for both inputs, 
i.e. r(m) (used as the direct input for the transversal LMS 
receiver) and the sequence of backward prediction errors 

( )b
N me  (the input of the ladder section of the GAL receiver). It 

can be noticed that the input of the GAL ladder section has a 
higher variance as compared to the LMS input sequence. We 
should note that the faster convergence rate offered by the 
iterative MMSE receivers over the conventional receivers is 
mainly due to the interference rejection capability of the 
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Figure 7. Convergence of the MMSE receivers. K = 32, N = 64, SNR = 15dB. 

Figure 8. Autocorrelation functions for (a) r(m) - LMS input, (b) eb
N(m) - 

GAL ladder section input. Other conditions as in Fig. 7. 
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Figure 9. Convergence of the iterative LMS receiver. Other conditions as 
in Fig. 7. 

Figure 10. Convergence of the iterative GAL receiver. Other conditions as 
in Fig. 7.  
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multiple iterations procedure within the adaptive algorithm. 
This improvement leads to a reduced level of MAI, which 
translates into a convergence rate close to the single user case. 

Finally, a last set of simulations is performed in order to 
compare the multiple iterations MMSE receivers based on both 
LMS and GAL algorithms. Both algorithms are iterated for G = 
4 within each data bit. The results are presented in Figs. 9 and 
10. In both cases it can be noticed that MSE is decreased every 
new iteration. Also, the division-free GAL algorithm 
outperforms the LMS algorithm in terms of convergence rate.  

VI. CONCLUSION AND PERSPECTIVES 

In this paper we first propose a relation for updating the 
LMS adaptive filter coefficients, which is equivalent with a 
multiple iterations LMS algorithm used in MMSE receivers for 
DS-CDMA communications systems. It was demonstrated that 
the multiple iterations process is equivalent with an unique 
iteration with a particular step size of the algorithm. Our 
proposed solution requires almost the same number of 
operations as the multiple iterations per bit algorithm but a 
significant time processing gain is achieved. The stability 
condition for the proposed algorithm was also derived. The 
simulation results proved the equivalency between the classical 
multiple iteration LMS algorithm and our proposed approach. 

The MMSE iterative receiver considered in this paper was 
shown to improve the asynchronous DS-CDMA system 
performances. Thus, the MSE is decreased every new iteration 
by reducing MAI. This decrease offers a faster training mode 
for the receiver. A very important result is that the BER is 
considerably improved every new iteration. 

The lattice MMSE receiver based on the division-free GAL 
algorithm improves the convergence rate as compared to the 
transversal LMS receiver. The lattice predictor orthogonalizes 
the input signals, so that the GAL algorithm is less dependent 
on the eigenvalues spread of the input signal and it converges 
faster than their transversal counterpart, the LMS algorithm. As 
a practical consequence, the lattice receiver will require a 
shorter training sequence as compared to the transversal one. 
Also, the GAL iterative receiver was shown to improve the 
asynchronous DS-CDMA system performances. The MSE 
decrease offers a faster training mode for the receiver. Hence, 
the designing procedure may consider two aspects, i.e., to 

shorten the training sequence for maintaining the same MAI in 
the system or to strongly reduce the MAI by keeping the same 
length of the training sequence. An analytical estimation of 
BER for the GAL receiver will be considered in perspective.  
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