
A Multipath Approach for Improving Performance of

Remote Desktop Transmission

Cao Lethanhman, Hiromi Isokawa, and Takatoshi Kato
Systems Development Laboratory, Hitachi Ltd.

Ohzenji 1099, Asao-ku, Kawasaki-shi, Kanagawa 215-0013 Japan
{lethanhman.cao.eq, hiromi.isokawa.yt, takatoshi.kato.bb}@hitachi.com

Abstract—Remote desktop systems enable business users to
access critical data located in the office from outside it with a
mobile thin client or any other portable ubiquitous devices
without having to worry about data leakage. However, high
latency and low bandwidth in wireless-network environments
may degrade the performance of remote desktop clients, such
as causing slow responses to keyboard/mouse input and low
speed in playing animated presentations. We therefore propose
a method of transmitting data to improve the way business
applications are perceived in wireless thin clients. It utilizes
multiple wireless-network paths to achieve short latency in
transmitting input signals and receiving responses as well as
increases the throughput of large desktop images. We
evaluated the performance of the proposed method using a
network simulator and a real network environment. The
experimental results revealed that the round trip time of a
small data packet was shorter and the throughput of large
amounts of data was higher than those with single network
paths or existing multipath transmission algorithms.

Keywords - remote desktop; multipath transmission; wireless
network; thin client

I. INTRODUCTION

 All data and applications are centralized in a server,
which provides a remote desktop service in remote desktop
systems, such as the Citrix XenDesktop [1], Microsoft
Remote desktop service [2], X-Window System [5] and
AT&T VNC [7]. The remote desktop client sends input
signals from the keyboard/mouse to the server and receives
differences in desktop images from the server. The remote
desktop client requires neither a large amount of CPU power
nor large amounts of data storage, and is, therefore, usually a
thin client, i.e., a resource-poor computer whose components
are limited to network interfaces and input/output devices.
Because the thin client does not have any confidential data
stored on its local hard disk, business users can use it outside
the office without having to worry about losing important
data. As information leakage has been an increasingly
serious problem for many enterprises, more thin clients and
remote desktop systems are currently rapidly emerging.

Thin clients depend heavily on the performance of
networks and remote desktop protocols have been designed
for reliable networks. However, a business user who works
outside the office would use a mobile thin client in a high
latency, high packet loss ratio and low bandwidth wireless
network environment. In these cases, there are often gaps
between the requirements of remote desktop protocols and

the capabilities of wireless-network services. The result is
that wireless thin clients perform badly and may not reach a
sufficiently acceptable level of service to be used for fast
typing or presenting an animated presentation.

We improved the quality of data transmission performed
by a wireless thin client using a method of multipath data
transmission, where the thin client simultaneously deploys
two or more wireless-network access attempts to
communicate with the server. Unlike existing multipath
transmission algorithms that can only be used for reducing
transmission latency [13] (duplicate-and-forward algorithm)
or aggregating network bandwidths [14, 15] (divide-and-
forward algorithm), our proposed algorithm, called the data-
aware multipath transmission (DAMT) algorithm,
dynamically changes from duplicate-and-forward to divide-
and-forward according to the size of the forwarded data. The
DAMT algorithm can accomplish short latency in
transmitting input signals and their responses and
simultaneously increase the throughput of large desktop
images.

We evaluated the DAMT algorithm in many network
conditions created by a network simulator. The results
revealed that when the thin client leveraged two network
connections using the DAMT algorithm, the round trip time
of a small data packet is smaller and the throughput of data is
higher in comparison with single network paths or existing
multipath transmission algorithms.

We also evaluated the DAMT algorithm in a real network
environment. We found that a thin client equipped with one
Worldwide Interoperability for Microwave Access
(WiMAX) and one High Speed Downlink Packet Access
(HSPA) data card could respond to key input faster while a
video file was being played with a lower dropped-frame rate
when it transmitted multipath data using the DAMT
algorithm, compared with when only a WiMAX or an HSPA
data card was used.

The remainder of this paper is organized as follows.
Section 2 explains limitations with wireless thin clients.
Section 3 discusses some related research. We then introduce
the DAMT algorithm in Section 4 and discuss its
implementation in Section 5. Sections 6 and 7 present the
results from evaluating the DAMT algorithm. Section 8
concludes the paper and mentions future work.

286

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. LIMITATIONS WITH WIRELESS THIN CLIENTS

This section first discusses the characteristics of data that
are sent and received by a thin client and it then points out
the reason for the degradation in performance of thin clients
in wireless network environments.

A. Characteristics of traffic in thin clients

We first investigated the characteristics of data sent and
received by thin clients in remote desktop systems. Figure 1
shows the size of data that was received by a thin client when
it used Microsoft’s Remote Desktop Protocol (RDP) to
download desktop information from a remote desktop server.
As we can see, the data includes two types of data blocks,
small and large. The small blocks occur when a user is
typing and the large ones occur when he/she is playing a
presentation. That reason for this is that when the user
presses a key on the keyboard, the change in the desktop
image is much smaller than when he/she plays a presentation
on the remote desktop server. The desktop server only sends
differences in desktop images to thin clients, instead of the
entire image. Thus, the data received by the thin client in the
remote desktop system can be in the form of both small and
large data blocks.

We next examined the data that a thin client sends to the
remote desktop server while the user is operating the thin
client. As shown in Figure 2, the data only compounds small
blocks, regardless of the kinds of applications the user is
using. This is because the thin client only sends the input
signals from the keyboard/mouse to the server.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 35 67 97 120

D
a

ta
 (

B
yt

e
)

Time (s)

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 35 67 97 120

D
a

ta
 (

B
yt

e
)

Time (s)

Typing Playing
a file

Typing Playing
a file

10M

1M

100K

10K

1K

100100

10

1

10M

1M

100K

10K

1K

100100

10

1

Typing Playing
a file

Typing Playing
a file

D
at
a
si
ze
 (
B
yt
e)

0 35 67 97 120
Time(s)

Figure 1: Data received by thin client when using RDP

1

10

100

1000

0 35 67 97 120

Time (s)

1

10

100

1000

0 35 67 97 120

Time (s)

1

10

100

1000

0 35 67 97 120

Time (s)

10M

1M

100K

10K

1K

100100

10

1

Typing Playing
a file

Typing Playing
a file

D
at
a

si
ze
 (
B
yt
e)

0 35 67 97 120

Time(s)
Figure 2: Data sent by thin client when using RDP

From the above-mentioned results, we can conclude that
the data that are sent and received by thin clients generally
include two different-sized data blocks.

1. Small data blocks (several KB): These kinds of data
often appear with keyboard/mouse input. The thin
client sends small-capacity keyboard/mouse input
signals to the server. The server then sends small
differences in desktop images (that occur when the
user is typing) to the thin client as the responses to
the input.

2. Large data blocks (several MB): These kinds of data
appear when desktop images change dramatically,
such as when animated presentations are played,
desktops are scrolled, or new documents are opened.

B. Limitations with wireless thin clients

Thin clients have two main limitations with above-
mentioned two characteristics of transmission data, in
wireless-network environments with long latency and narrow
bandwidth:
 Long latency in the transmission of small data

blocks. This causes extended responses to
keyboard/mouse input. The user will feel difficult
typing a document because the stress because the
key pressed does not appear on the screen
immediately.

 Low throughput of large data blocks. This causes
long delays in the time it takes to download desktop
images and therefore decreases the speed at which
animated presentations are played. The user of thin
client will find difficult browsing web pages with
animated pictures.

We will next discuss some related research on improving
how applications are perceived in thin clients.

III. RELATED RESEARCH

A great deal of research related to improving the QoS of
remote desktop systems has been conducted thus far. Some
of this work [8, 9] has introduced the concept of localization
within the context of the thin client computing model and its
ability to be applied to wireless and mobile environments.
Their work focused on decreasing the number of short yet
frequent exchanges of communication between the thin
client and the server to solve the problem of high-latency
networks. However, it did not deal with the problem of
narrow-bandwidth networks that occurs when the thin client
transmits large data blocks. Other researchers [10, 11] have
proposed QoS-aware mechanisms in remote desktop
protocols. Their solution was able to compensate for
temporary decreases in network performance or disruptions
in transmission between a client and a server. Optimizing the
use of resources by making remote desktop protocols QoS-
aware, introduces efficient control over differentiated
application-level traffic. Their work was similar to
Distortion-based Packet Marking [12], an on-the-fly
relocation of network resources in a shared link for multiple
data flows with different QoS requirements. However, both
the mechanisms worked on a single network path and

287

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

therefore could not exceed the physical limitations of the
network.

 Various multipath approaches have thus far been
proposed to achieve higher rates of data transmission than
those in a single network. Some studies [12] have improved
the robustness of data transmission by sending the same data
on multiple network paths. This approach is effective in
networks with high packet-loss ratios. Others have increased
the throughput of data transmission by sending different
parts of the data over different network path simultaneously
[14, 15]. However, as we will explain in the next section,
existing multipath algorithms are not suitable for data
transmission in remote desktop systems that have the
characteristics described in Section 2.

We proposed a multipath transmission algorithm for
remote desktop systems and evaluated the performance using
network simulator in [6]. This paper describes the algorithm
in more details and provides some experiment results in the
real network environment.

IV. PROPOSED METHOD OF DATA TRANSMISSION

We introduce a multipath approach to improve the data
transmission of remote desktop systems. This section first
introduces a TCP proxy that transmits multipath data in a
remote desktop system. We next discuss our evaluations of
the existing multipath transmission algorithm and then
introduce our proposed algorithm.

A. Overview

We inserted a TCP proxy between the thin client and the
server on both sides. The proxy programs were called
multipath communication control proxies (MCCPs). The
MCCPs received the data from remote desktop software and
forwarded them over multiple wireless-network connections.

Figure 3 outlines an example of the placement of MCCPs
in remote desktop systems. The MCCPs do not require any
changes in the OS components of the server, thin client, or
the remote desktop protocol. The remote desktop server
passes the data to the MCCP in the server (server-side
MCCP) and then the server-side MCCP sends the data over
Network A and Network B to the MCCP thin client (client-
side MCCP). The Client-side MCCP then passes the data it
received to the remote desktop client. Thus, the MCCPs
simultaneously deploy two networks (networks A and B) to
send and receive data exchanged between the thin client and
server.

The server-side MCCP can be installed outside the remote
desktop server. As seen in Figure 4, it can work in a gateway.
The gateway receives data from the server and forwards the
data to the thin client over two networks using a multipath
data-transmission protocol. Here, no software needs to be
installed in the server while the thin client can perform
multipath data transmission.

Remote desktop
server

NIC

TCP/IP

Remote desktop
client

SOCKETSOCKET

TCP/IP

NIC NIC

MCCP MCCP

Network A

Network B

Server Thin client

Figure 3: Placement of MCCPs

Remote desktop
server

NIC

TCP/IP

Remote desktop
client

SOCKETSOCKET

TCP/IP

NIC

MCCP MCCP

Network

Network

A

B

NIC

Server Thin clientGateway

NIC

SOCKET

TCP/IP

Figure 4: MCCPs with gateway

The client-side MCCPs can also be installed outside the
thin client. For example, the client-side MCCP can work in a
gateway that redirects the data flow from the thin client to
the server. Here, the gateway will transmit the multipath data
through the server instead of the thin client. It needs two
network interfaces that are connected to two different
networks.

B. Existing algorithms for multipath data transmission

We next discuss the algorithms for the MCCPs to send
and receive data over multiple network connections. The
existing algorithms in the domain of multipath
communication can be divided in two types. The first
decreases transmission delay and increases the robustness of
transmission [13]. Figure 5 outlines the flow of data when
the MCCPs deploy this algorithm. When the server-side
MCCP receives data from a remote desktop’s server program,
it duplicates the received data and then forwards them to
both networks, A and B.

The client-side MCCP forwards data that arrive sooner to
the remote desktop client and disposes of the later. We called
this the duplicate-and-forward algorithm. It could transmit a
small data block through a network with lower latency but
could not improve the throughput especially for a large data
block.

288

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5: Duplicate-and-forward algorithm

Figure 6: Divide-and-forward algorithm

The second algorithm aggregates the bandwidths of
multiple network connections to increase the throughput of
data transmission [14, 15]. Figure 6 shows the flow of data
when the MCCPs deploy the algorithm. When the server-
side MCCP receives data from the remote desktop server
program, it divides the received data and then forwards
different parts of the data to networks A and B. The client-
side MCCP combines the data received and then forwards
them to the remote desktop client. We called this the divide-
and-forward algorithm. It could improve throughput
especially for a large data block but did not decrease the
transmission latency of a small data block.

As existing multipath transmission algorithms can only
optimize transmission delay or aggregate bandwidths, they
cannot be used to solve the above-mentioned two limitations
with wireless thin clients.

C. Data-aware multipath transmission algorithm

We propose an algorithm called the data–aware multipath
transmission (DAMT) algorithm that improves the efficiency
of thin clients in wireless environments. The algorithm
combines the two existing transmission algorithms:
duplicate-and-forward and divide-and-forward. The DAMT
algorithm can transmit small data blocks with short latency
and large data blocks with high throughput. First, when a
data block arrives, an MCCP runs the duplicate-and-forward
algorithm. While transmitting the data, the MCCP also
monitors the access network of the server. If the access
network becomes congested, the MCCP determines that the
block that is being transmitted is large. The MCCP then
changes the algorithm to divide-and-forward. Thus, the
DAMT algorithm dynamically changes from duplicate-and-
forward to divide-and-forward according to the size of the
data being transmitted. The details on the MCCP algorithm
are described in what follows.

111

1

3
2

4 2
2

3

4

2

3

4Change from duplicate-
and-forward to divide-

and-forward

MCCP
Remote desktop

server MCCP Remote desktop
client

Divide-and-
forward

Duplicate-and-
forward

Duplicate-and-
forward

Figure 7: DAMT algorithm

Figure 7 shows the flow of data when the DAMT algorithm

is used. First, the server-side MCCP receives data 1 from the
remote desktop’s server program, duplicates them and
forwards them to both networks, A and B. Next, when a
large block of data that includes data 2, 3, and 4 arrives, the
server-side MCCP also duplicates data 2 and forwards them
to networks A and B. Suppose that when data 2 are being
transmitted, the server-side MCCP finds that the buffers for
the TCP connections are full. The server-side MCCP then
switches from duplicate-and-forward to divide-and-forward
and performs the latter on data 3 and 4

Sender-side MCCP:

a) Wait until data that need to be transmitted arrive. Go
to step b) when the data arrive.

b) Perform duplicate-and-forward tranmission while
monitoring the buffer for TCP connections (e.g., by
checking the return value of the send() function). If the
buffer is full, go to step c). Go to step a) if data transmission
has been completed.

c) Perfom divide-and-forward tranmission on the
remaining part of the data block and then go to step a).
Receiver-side MCCP:

a) Wait until data have arrived. Go to step b) when the
data arrive.

b) Receive the data. Combine the divided data. Delete
the duplicated data. Go to step a) when no more data arrive
after a certain interval.

Thus, the DAMT algorithm uses duplicate-and-forward

transmission for small-capacity data and divide-and-forward
transmission for large-capacity data. This means that
interactive data, which are always small capacity, are
transmitted with short latency while large desktop images
caused by animated presentations are transmitted at high
throughput.

V. IMPLEMENTATION ISSUES

This section discusses some issues concerning the
implementation of MCCPs. Our prototype was implemented
in the Windows XP environment using Winsock for data
transmission. We will first explain the sequence for the
remote desktop client and remote desktop server to

289

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

establish/close the TCP connections for transmitting desktop
information. We then explain the functions of the main
components in MCCPs.

A. Establishing/closing sequence for TCP sessions

The flow chart in Figure 8 outlines the sequence for
establishing TCP sessions before the remote desktop client
can exchange data with the remote desktop server. Before
the TCP sessions are started, the server-side MCCP and
client-side MCCP must wait in certain ports for the
connection requests. First, the remote desktop client
establishes a TCP session with the client-side MCCP (Step
1). If the client-side is installed at the thin client, the remote
desktop client connects to a local port where the MCCP is
listening. Second, the client-side MCCP establishes two
TCP sessions with the server-side MCCP. In Step 2, the
client-side MCCP uses network interface NIC A to connect
to port X on the server and in Step 3, it uses network
interface NIC B to connect to port Y. Thus, the client-side
MCCP uses different network interfaces for each TCP
session. In Windows, the metric parameter in the routing
table of the two network interfaces A and B must have the
same value, otherwise only an interface with a smaller
metric will be deployed for both TCP sessions because the
two sessions will have the same destination.

In Step 4, the server-side MCCP establishes a session
(TCP session 4) with the remote desktop server after
establishing a session with the client-side MCCP. The
server-side MCCP needs to know the port where the remote
desktop server is listening. This will be the connection to a
local port if the server-side MCCP is located on the same
machine as the remote desktop server. After TCP session 4
has been established, the MCCPs start forwarding the data
exchanged by the remote desktop client and server using the
DAMT algorithm.

The closing sequence for TCP sessions is as follows.
When the user finishes work on the thin client and signs out,
the remote desktop server will close session 4 in Step 5. The
send-side MCCP then closes sessions 2 and 3 right after
session 4 has closed. The receive-side MCCP will also close
session 1 if one of two sessions, 2 or 3, has closed. The
closing sequence will occur in the reserve direction if the
user closes session 1 before signing out, e.g., by closing the
remote desktop client.

Remote desktop
server

Remote
desktop

client

Server-side
MCCP

Client-side
MCCP

Wait for connection

Send and receive data with DAMT algorithm

1．Establish
TCP session 12. Establish TCP session 2

(Connect to port X)

5. Close
session 4

6. Close session 2
7. Close session 3

Wait for connection

8.Close
session 1

3. Establish TCP session 3
(Connect to port Y)4．Establish

TCP session 4

NIC A

NIC B

Figure 8: Sequence for establishing TCP session

R eceive Buffer

Multipath
R eceive
Module

S end
Module

Multipath
S end
Module

R eceive
Module

S end Buffer

R emote
desktop
server

S end Buffer

Multipath
R eceive
Module

S end
Module

Multipath
S end
Module

R eceive
Module

R eceive Buffer

R emote
desktop
client

Network
A

S erver‐s ide
MC C P

C lient‐s ide
MC C P

Network
B

Figure 9: Structure of MCCPs

B. Structure of MCCP

We will next explain the components of MCCP and give
details on the data processing flow of the components.

The MCCPs on the client-side and server-side have
exactly the same functions. These MCCPs have five main
components.
1. Data buffers

The MCCP has two buffers for storing data before it
forwards them to the networks (Send Buffer) or to the
server/client (Receive Buffer).
2. Receive Module

The Receive Module of the server-side MCCP receives
data from the remote desktop server and saves the data in
the Send Buffer. The Receive Module of the client-side
MCCP receives data from the remote desktop client. If the
Send Buffer is full, it stops reading data from the socket of
the TCP session and waits until some space clears.
3. Send Module

The Send Module of the server-side MCCP sends the data
in the Receive Buffer to the remote desktop server. The
Send Module of the client-side MCCP sends the data in the
Receive Buffer to the remote desktop client.
4. Multipath Send Module

The Multipath Send Module runs the DAMT algorithm. It
sends the data in the Receive Buffer to the remote desktop
server or remote desktop client over multipath network
paths. It will not act if there are no data in the Receive
Buffer.

290

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SeqLenPayload

Figure 9: Program data unit (PDU)

TCP session 2
(Network A)

TCP session 3
(Network B)

Server-side
MCCP

3

Duplicate
and
forward

2 1

3 2 1

3 2 1

Figure 10: PDU allocation in duplicate-and-forward mode

TCP session 2
(Network A)

TCP session 3
(Network B)

Server-side
MCCP

5

Duplicate
and
forward

4 3

5 4 3

7

7 6

6

Figure 11: PDU allocation in duplicate-and-forward mode

The Multipath Send Module divides the data in the Send
Buffer into small data blocks called Program Data Units
(PDUs). Figure 9 outlines the structure of a PDU. Each
PDU includes a sequence number (Seq), the length of the
data (Len), and the data (Payload). The maximum size of
the Payload is 500 KB. The Payload may be smaller than
500 KB if the amount of data remaining in the Send Buffer
is less than 500 KB. Here, the module creates one PDU
from all the data remaining in the buffer.

The Send Buffer Module continuously monitors the
buffer of the two TCP sessions, 2 and 3, using select()
commands. When the sessions are available for transmitting
more data, the module chooses a PDU in the Send Buffer
and sends it over TCP sessions 2 and 3. As previously
mentioned, the Send Buffer Module first sends the PDU in
duplicate-and-forward mode while monitoring the returned
value of the send() function. It will change to the divide-
and-forward mode if the send() function return value is
smaller than the size of the PDU that the module requested
to be sent, because this is the sign indicating that the TCP
session’s buffer is full. We will now explain how the Send
Buffer Module chooses a PDU in the Send Buffer to send to
the network.

In the duplicate-and-forward mode, the Send Buffer
Module selects the PDU with the following sequence
number: N = R + 1, where R is the largest number of PDUs
that have already been sent at that time. The module sends
the PDU twice, once over network session 2 and the second
over session 3 (Figure 10).

However, in the divide-and-forward mode for session 2,
the next PDU to be sent to the network is:
N = R + K + 1, where R is the largest Seq of PDUs sent at
that time; K is the number of PDUs that is sent by session 3
when session 2 sends one PDU. The value of K reflects the
transmission speed of networks A and B. Similarly, the
PDU that session 3 will send is N = R+K’+1, where K’ is
the number of PDUs that is sent by session 3 when session 2
sends one PDU. Thus, the module sends data with larger
Seq in the sessions that have low transmission speed. By
doing so, the receiver can receive the data in the right order,
saving time in buffering and in sorting disordered data.
Figure 11 shows an example where network A is four times
faster than network B. Transmitting one PDU on network B
(with session 3) takes the same amount of time as
transmitting four PDUs on network A. Here, the Send
Buffer Module sends PDUs 3, 4, 5, and 6 in session 2 and
PDU 7 in session 3. The PDUs will then arrive at the
receiver in the right order.
5. Multipath Receive Module

The Multipath Receive Module receives PDUs from
networks A and network B. It stores received data into the
Receive Buffer. If the Receive Buffer is full, the module
stops reading data from the socket of sessions 2 and 3; it
will wait until the buffer becomes available for more data.

The Multipath Receive Module monitors TCP sessions 2
and 3 using the command select() of Winsock. Whenever a
PDU arrives, the module first checks if the PDU is a
duplicate of any PDU that has previously arrived. If the
PDU is a duplicate, then the PDU will be disposed of.
Otherwise, the PDU will be stored in the Receive Buffer
(Figure 12). Note that the processing flow in the Multipath
Receive Module does not need to change when the
Multipath Send Module changes from duplicate-and-
forward to divide-and-forward.

Start

Save PDU to
Receive Buffer

NO

YES

PDU arrived?

PDU is duplicated?

NO

YES

Figure 12: Algorithm for Multipath Receiver Module

291

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. EVALUATION WITH NETWORK SIMULATOR

This section discusses our evaluation of the proposed
algorithm in a laboratory network environment. We
implemented MCCPs and installed programs on a thin client
as well as a remote desktop server, as shown in Fig. 13. The
simulator was a FreeBSD [3] machine with a Dummynet
program [4] installed. There were two networks (A and B) in
the simulator. The thin client communicated with the server
through the two networks. The delay and bandwidth of the
networks varied in each experiment.

A. Evaluation of tranmission delay

We first checked the round trip time (RTT) of a probe
packet traversing between the thin client and the server when
the DAMT algorithm was applied. We also investigated a
case where the thin client only used network A or B to
compare them. The propagation delay of networks A and B
varied in a range from 100 ms to 300 ms. The bandwidth of
both networks was set to 100 Mbps; this value was
sufficiently large that the bandwidth did not cause additional
delay in transmitting the probe packets. The settings for
networks A and B are listed in Table I. The propagation
delays of the two networks were set to the values shown in
Figure 14.

Figure 13: Network topology

TABLE I. SETTINGS FOR NETWORK METRICS

Propagation delay

(one way)
Bandwidth

Network A
Varies within range
from 50 to 150 ms

100 Mbps

Network B
Varies within range
from 50 to 150ms

100 Mbps

0

0.05

0.1

0.15

0.2

0.25

0.3

100 125 150 175 200 225 250 275 300

%

RTT (ms)

Distribution of propagation delay

Figure 14: Distribution of propagation delay (round-trip)

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

R
T

T

Sample

Path 1
Path 2

Multipath

Single path (Network A)
Single path (Network B)

Multipath (DAMT algorithm)

Probe sequence

R
TT

 (
m

s)

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

R
T

T

Sample

Path 1
Path 2

Multipath

Single path (Network A)
Single path (Network B)

Multipath (DAMT algorithm)

Probe sequence

R
TT

 (
m

s)

182 ms on average

214 ms on average 210 ms on average

Figure 15: RTT-measurement results

The probe packet was 30 bytes and was sent from the
thin client to the server and then immediately sent back from
the server to the client.

Figure 15 shows the RTT values of the probe packet
when it traversed network A, network B, and when it was
forwarded by MCCPs with the DAMT algorithms. The RTT
of the probe packets on average was 182 ms when using the
multipath control algorithm, 214 ms when using network A
and 210 when using network B. This means that DAMT
could successfully reduce delay in the transmission of small
packets.

B. Evaluation of data-transmission throughput

We evaluated the throughput of transmitted data in an
experiment. The propagation delay for networks A and B
was kept constant at 2 ms. The bandwidths of both networks
were set to various values such as 500 Kbps, 1 Mbps, 1.5
Mbps and 2 Mbps (See Table II). For each value of
bandwidth, we compared the throughput for bulk data
transmitted between the client and the server when a single
path (network A or B) was used and when multipath
algorithms were used.

TABLE II. SETTINGS FOR NETWORK METRICS

Propagation delay

(one way)
Bandwidth

Network A 2 ms
500 Kbps, 1 Mbps,
1.5 Mbps, 2 Mbps

Network B 2 ms
500 Kbps, 1 Mbps,
1.5 Mbps, 2 Mbps

The results obtained from measuring throughputs are in

the bar chart in Figure 16. The DAMT algorithm always
outperformed the single paths (A and B) by up to 1.9 times.
We can also see the throughput for multipath transmission
when existing algorithms were used. We can see that DAMT
achieved the same performance as the divide-and-forward
algorithm, which is proposed for an aggregate bandwidth for
multiple network connections.

292

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16: Throughput-measurement results

C. Performance of thin client when using PowerPoint

We next evaluated the performance of the thin client
when Microsoft’s PowerPoint program, which is a popular
business application, was used. The settings for networks A
and B are listed in Table III. The settings were determined
according to the measured characteristics of two popular
commercial mobile networks in Japan in May 2008. The
remote desktop protocol used was RDP [12].

Figure 17 shows the PowerPoint file used in the
experiment. The playing time of the file is about 4(s), the
amount of data that was transmitted in the network when the
file was being played was a total of 1626 KB.

Figure 18 is a bar chart of the average delay in response
to keyboard input. This was calculated as the time from
when the packet (including the input signal) left the thin
client to when the first response packet returned back to it.
We can see that the DAMT algorithm responded as quickly
as the duplicate-and-forward algorithm.

TABLE III. SETTINGS FOR NETWORK METRICS

Propagation time

(one way)
Bandwidth

Network A 52 ms 380 Kbps

Network B 150 ms 600 Kbps

228 KB228 KB 57 KB57 KB 20 KB20 KB 94 KB94 KB 149 KB149 KB

149 KB149 KB 120 KB120 KB 127 KB127 KB 132 KB132 KB 490 KB490 KB

228 KB228 KB 57 KB57 KB 20 KB20 KB 94 KB94 KB 149 KB149 KB

149 KB149 KB 120 KB120 KB 127 KB127 KB 132 KB132 KB 490 KB490 KB

Figure 17: PowerPoint slides

Figure 18: Response time to keyboard input

Figure 19: Time to play presentation file

Figure 19 is a bar chart that shows the time it takes to
play a presentation file. The speed at which the file is played
depends on the throughput of the desktop images transmitted
from the server to the client. We can see that the DAMT
algorithm takes the same time as the divide-and-forward
algorithm. And the time is far shorter than the playing time
when only network A or B is deployed.

The DAMT algorithm thus shortens the response to
keyboard input to that of the duplicate-and-forward
algorithm, and the speed at which the presentation file is
played is as high as that of the divide-and-forward algorithm.

VII. EVALUATION IN REAL NETWORK ENVIRONMENT

We next evaluated the performance of the proposed
method DAMT in a real network environment. The network
used in the experiment is outlined in Figure 20. A thin client
equipped with two high-speed wireless network access cards
was used. The two cards had different data-transmission
methods and different access networks. The first used
WiMAX and the other used HSPA. The thin client was
located in an office on the top floor of a six-storey office
building. The thin client accessed an RDP server located in a
data center through a gateway located in the same local
network as the server. A server-side MCCP was installed in
this gateway. The data center was connected to a WAN by a
high-speed network (20 Mbps).

We first evaluated the time it took for a TCP packet to
traverse from the thin client to the server and back again.
This time indicated how fast a letter appeared on the screen
of the thin client when the user pressed a key.

293

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Network 1

Gateway
with server‐side
MCCPRDP

Server

Network 2

Office

Data center

Internet

WiMAX

HSPA

Thin client
with client‐
side MCCP

Figure 20: Experimental network

We also evaluated the amount of RDP traffic transmitted
from the RDP server to the thin client when the user watched
a 15-s video. This amount of data reflected the quality of the
video shown on the screen of the thin client. If the amount of
data was small then the video had many too lost frames. We
checked the amount of data when WiMAX access and HSPA
access were used singly and when DAMT was used.

Figure 21 has bar charts of the average value (in 50
experiments) of the round trip time of a TCP data packet
when it used network 1 (through WiMAX access), and
network 2 (through HSPA access). The figure also indicates
the round trip time when the multipath algorithm was
deployed. We can see that when the thin client used HSPA
access, the response time was about 159 ms, and the
WiMAX access was 201 ms. However, the response time
when the proposed algorithm DAMT was deployed was only
139 ms. The results attained when using WiMAX access and
HSPA access may change if we carry out the experiments in
other places. However, as the DAMT algorithm will choose
the shortest access for all data packets, we can rest assured
that DAMT will introduce a shortened response time in any
environment.

We next checked the amount of data that the thin client
received during the time it took to play a 15-second video
file. In a LAN environment, the thin client played the video
with almost no difference to playing it directly. Here, the thin
client received about 20 MB of data for the video file. Table
4 lists the amount of data when WiMAX, HSPA, and the
proposed multipath data transmission algorithm were used.

Responce time (ms)

WiMAX

DAMT
HSPA

0

50

100

150

200

250

Figure 21: Average value of response time

As seen in Table IV, when using HSPA access, the thin
client could receive only 21.5% of the data in comparison
with the LAN environment. In WiMAX access, the ratio was
23.8%. However, the DAMT algorithm performed better
when the ratio was 43.8%. The reason for the higher
throughput of DAMT is that, the thin client can use the
bandwidth of both wireless networks to transmit the desktop
information (Figure 22). From Figure 22, we can see that
DAMT deployed both network interfaces to receive data
from the HSPA and WiMAX networks.

We could test and confirm the superior performance of the
proposed algorithm through a real-network environment.
Similar to the results we obtained in the laboratory, the
DAMT algorithm could introduce short response times for
small packets such as the RDP packets that occur when users
are typing. As they also increased the bandwidth of the
network path between the thin client and RDP server, video
files could play more smoothly than when using a single
wireless network.

TABLE IV. AMOUNT OF DATA RECEIVED BY THIN CLIENT

Received data

(bytes)
Compared
with LAN

Network 1
(WiMAX)

4,554,858 21.5%

Network 2
(HSPA)

5,040,438 23.8%

Multipath
(DAMT)

9,046,273 42.8%

LAN 21,134,323 100%

294

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Network 1 (Capacity 100Mbps)

Network 2 (Capacity 7Mbps)

5Mbps

6Mbps

Figure 22: Data transmission on network interfaces of thin client

Also note that the thin client in the experiment was not
located in the best place to achieve the best performance with
WiMAX and HSPA access. The aims of the experiment were
not to evaluate the performance of these wireless access
networks, but just to confirm that DAMT could work well in
a real-network environment. We also found that DAMT
could outperform single network access by using the
multipath approach.

VIII. CONCLUSION AND FUTURE WORK

We proposed an algorithm called DAMT that leveraged
multiple wireless network connections to attain short latency
in the transmission of input signals and its responses as well
as to increase the throughput of large desktop images.

Due to the large range of experiments in both the
simulator and in a real network, we found that the thin client
could quickly respond to keyboard input with the DAMT
algorithm and could quickly play animated presentations.

However, some future work still needs to be done in this
respect. First, we intend to carry out more experiments in
real networks to find what additional benefits DAMT can
provide. We intend to assess the performance of thin clients
in places other than offices, such as in trains or cafeterias.
Implementing MCCPs that can work over three or more
wireless networks is also within the scope of future work.

INDICATION OF TRADEMARK REGISTRATION

XenDesktop(TM) is trademarks of Citrix Systems, Inc.
Remote Desktop(TM) is a trademark of Microsoft
Corporation.
X Window System(TM) is a trademark of The Open Group.
VNC is a trademark of AT&T Laboratories Cambridge.
FreeBSD is a trademark of the FreeBSD Foundation.
PowerPoint is a registered trademark of Microsoft Corp. in
the U.S. and other countries.
Windows is a registered trademark of Microsoft Corp. in the
U.S. and other countries.

REFERENCES
[1] Citrix Systems, http://www.citrix.com 05.05.2009
[2] Remote Desktop Protocol, http://msdn.microsoft.com/en-

us/library/aa383015.aspx 05.05.2009
[3] FreeBSD, http://www.freebsd.org 05.05.2009
[4] Luigi Rizzo, Dummynet,

http://info.iet.unipi.it/~luigi/ip_dummynet/ 05.05.2009
Article in a journal:
[5] R. W. Scheifler and J. Gettys, “The X Window Systems”,

ACM Transactions on Graphics, 5(2), 1986.
Article in a conference proceedings:
[6] ---------,“Multipath Data Tranmission for Wireless Thin

Clients”, Proc. UBICOMM 2009.
[7] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A.

Hopper, “Virtual Network Computing”, Proc. IEEE Internet
Computing, 1999.

[8] S. Ramamurthy and A. Helal, “Optimising Thin Client for
Wireless Computing via Localization of Keyboard Activity”,
Proc. IEEE Conference on Performance, Computing, and
Communications, pp. 249-252, 2001.

[9] C. Aksoy and S. Helal, “Optimising Thin Clients for Wireless
Active-media Applications”, Proc. Third IEEE Workshop on
Mobile Computing Systems and Applications, pp. 151-160,
2000.

[10] M. Lubonski, V. Gay, and A. Simmonds, “An Adaptation
Architecture to Improve User-Perceived QoS of Multimedia
Service for Enterprise Remote Desktop Protocols”, Proc. Next
Gerenation Internet Networks (NGI 2005), 2005.

[11] M. Lubonski, V. Gay, and A. Simmonds, “A Conceptual
Architecture for Adaptation in Remote Desktop Systems
Driven by the User Perception of Multimedia”, Proc. Asia-
Pacific Conference on Communications, pp. 891-895, 2005.

[12] J. C. De Martin and D. Quaglia, “Distortion-based Packet
Marking for MPEG Video Transmission over DiffServ
Networks”, Proc. IEEE International Conference on
Multimedia and Expo, 2001.

[13] J. Chen, K. Xu and M. Gerla, “Multipath TCP in Lossy
Wireless Environment,”Proc. IFIP Third Annual
Mediterranean Ad Hoc Networking Workshop, 2004.

[14] H. Hsieh and R. Sivakumar, “A transport layer approach for
achieving aggregate bandwidths on multi-homed mobile
hosts”, Proc. ACM MobiCom, 2002.

[15] K. Park, Y. Choi, D. Kim, and D. Park, “MTCP: A
Transmission Control Protocol for Multi-Provider
Environment”,Proc. IEEE CCNC, 2006.

295

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

