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Abstract—Remote desktop systems enable business users to 
access critical data located in the office from outside it with a 
mobile thin client or any other portable ubiquitous devices 
without having to worry about data leakage. However, high 
latency and low bandwidth in wireless-network environments 
may degrade the performance of remote desktop clients, such 
as causing slow responses to keyboard/mouse input and low 
speed in playing animated presentations. We therefore propose 
a method of transmitting data to improve the way business 
applications are perceived in wireless thin clients. It utilizes 
multiple wireless-network paths to achieve short latency in 
transmitting input signals and receiving responses as well as 
increases the throughput of large desktop images. We 
evaluated the performance of the proposed method using a 
network simulator and a real network environment. The 
experimental results revealed that the round trip time of a 
small data packet was shorter and the throughput of large 
amounts of data was higher than those with single network 
paths or existing multipath transmission algorithms.  

Keywords - remote desktop; multipath transmission; wireless 
network; thin client 

I.  INTRODUCTION 

 All data and applications are centralized in a server, 
which provides a remote desktop service in remote desktop 
systems, such as the Citrix XenDesktop [1], Microsoft 
Remote desktop service [2], X-Window System [5] and 
AT&T VNC [7]. The remote desktop client sends input 
signals from the keyboard/mouse to the server and receives 
differences in desktop images from the server. The remote 
desktop client requires neither a large amount of CPU power 
nor large amounts of data storage, and is, therefore, usually a 
thin client, i.e., a resource-poor computer whose components 
are limited to network interfaces and input/output devices. 
Because the thin client does not have any confidential data 
stored on its local hard disk, business users can use it outside 
the office without having to worry about losing important 
data. As information leakage has been an increasingly 
serious problem for many enterprises, more thin clients and 
remote desktop systems are currently rapidly emerging.  

Thin clients depend heavily on the performance of 
networks and remote desktop protocols have been designed 
for reliable networks. However, a business user who works 
outside the office would use a mobile thin client in a high 
latency, high packet loss ratio and low bandwidth wireless 
network environment. In these cases, there are often gaps 
between the requirements of remote desktop protocols and 

the capabilities of wireless-network services. The result is 
that wireless thin clients perform badly and may not reach a 
sufficiently acceptable level of service to be used for fast 
typing or presenting an animated presentation. 

We improved the quality of data transmission performed 
by a wireless thin client using a method of multipath data 
transmission, where the thin client simultaneously deploys 
two or more wireless-network access attempts to 
communicate with the server. Unlike existing multipath 
transmission algorithms that can only be used for reducing 
transmission latency [13] (duplicate-and-forward algorithm) 
or aggregating network bandwidths [14, 15] (divide-and-
forward algorithm), our proposed algorithm, called the data-
aware multipath transmission (DAMT) algorithm, 
dynamically changes from duplicate-and-forward to divide-
and-forward according to the size of the forwarded data. The 
DAMT algorithm can accomplish short latency in 
transmitting input signals and their responses and 
simultaneously increase the throughput of large desktop 
images.  

We evaluated the DAMT algorithm in many network 
conditions created by a network simulator. The results 
revealed that when the thin client leveraged two network 
connections using the DAMT algorithm, the round trip time 
of a small data packet is smaller and the throughput of data is 
higher in comparison with single network paths or existing 
multipath transmission algorithms.  

We also evaluated the DAMT algorithm in a real network 
environment. We found that a thin client equipped with one 
Worldwide Interoperability for Microwave Access 
(WiMAX) and one High Speed Downlink Packet Access 
(HSPA) data card could respond to key input faster while a 
video file was being played with a lower dropped-frame rate 
when it transmitted multipath data using the DAMT 
algorithm, compared with when only a WiMAX or an HSPA 
data card was used.  

The remainder of this paper is organized as follows. 
Section 2 explains limitations with wireless thin clients. 
Section 3 discusses some related research. We then introduce 
the DAMT algorithm in Section 4 and discuss its 
implementation in Section 5. Sections 6 and 7 present the 
results from evaluating the DAMT algorithm. Section 8 
concludes the paper and mentions future work. 
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II. LIMITATIONS WITH WIRELESS THIN CLIENTS  

This section first discusses the characteristics of data that 
are sent and received by a thin client and it then points out 
the reason for the degradation in performance of thin clients 
in wireless network environments.  

A. Characteristics of traffic in thin clients  

We first investigated the characteristics of data sent and 
received by thin clients in remote desktop systems. Figure 1 
shows the size of data that was received by a thin client when 
it used Microsoft’s Remote Desktop Protocol (RDP) to 
download desktop information from a remote desktop server. 
As we can see, the data includes two types of data blocks, 
small and large. The small blocks occur when a user is 
typing and the large ones occur when he/she is playing a 
presentation. That reason for this is that when the user 
presses a key on the keyboard, the change in the desktop 
image is much smaller than when he/she plays a presentation 
on the remote desktop server. The desktop server only sends 
differences in desktop images to thin clients, instead of the 
entire image. Thus, the data received by the thin client in the 
remote desktop system can be in the form of both small and 
large data blocks. 

We next examined the data that a thin client sends to the 
remote desktop server while the user is operating the thin 
client. As shown in Figure 2, the data only compounds small 
blocks, regardless of the kinds of applications the user is 
using. This is because the thin client only sends the input 
signals from the keyboard/mouse to the server.  
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Figure 1: Data received by thin client when using RDP 
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Figure 2: Data sent by thin client when using RDP 

From the above-mentioned results, we can conclude that 
the data that are sent and received by thin clients generally 
include two different-sized data blocks. 

1. Small data blocks (several KB): These kinds of data 
often appear with keyboard/mouse input. The thin 
client sends small-capacity keyboard/mouse input 
signals to the server. The server then sends small 
differences in desktop images (that occur when the 
user is typing) to the thin client as the responses to 
the input.  

2. Large data blocks (several MB): These kinds of data 
appear when desktop images change dramatically, 
such as when animated presentations are played, 
desktops are scrolled, or new documents are opened. 

B. Limitations with wireless thin clients 

Thin clients have two main limitations with above-
mentioned two characteristics of transmission data, in 
wireless-network environments with long latency and narrow 
bandwidth: 
 Long latency in the transmission of small data 

blocks. This causes extended responses to 
keyboard/mouse input. The user will feel difficult 
typing a document because the stress because the 
key pressed does not appear on the screen 
immediately. 

 Low throughput of large data blocks. This causes 
long delays in the time it takes to download desktop 
images and therefore decreases the speed at which 
animated presentations are played. The user of thin 
client will find difficult browsing web pages with 
animated pictures. 

We will next discuss some related research on improving 
how applications are perceived in thin clients. 

 

III. RELATED RESEARCH 

A great deal of research related to improving the QoS of 
remote desktop systems has been conducted thus far. Some 
of this work [8, 9] has introduced the concept of localization 
within the context of the thin client computing model and its 
ability to be applied to wireless and mobile environments. 
Their work focused on decreasing the number of short yet 
frequent exchanges of communication between the thin 
client and the server to solve the problem of high-latency 
networks. However, it did not deal with the problem of 
narrow-bandwidth networks that occurs when the thin client 
transmits large data blocks. Other researchers [10, 11] have 
proposed QoS-aware mechanisms in remote desktop 
protocols. Their solution was able to compensate for 
temporary decreases in network performance or disruptions 
in transmission between a client and a server. Optimizing the 
use of resources by making remote desktop protocols QoS-
aware, introduces efficient control over differentiated 
application-level traffic. Their work was similar to 
Distortion-based Packet Marking [12], an on-the-fly 
relocation of network resources in a shared link for multiple 
data flows with different QoS requirements. However, both 
the mechanisms worked on a single network path and 
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therefore could not exceed the physical limitations of the 
network. 

 Various multipath approaches have thus far been 
proposed to achieve higher rates of data transmission than 
those in a single network. Some studies [12] have improved 
the robustness of data transmission by sending the same data 
on multiple network paths. This approach is effective in 
networks with high packet-loss ratios. Others have increased 
the throughput of data transmission by sending different 
parts of the data over different network path simultaneously 
[14, 15]. However, as we will explain in the next section, 
existing multipath algorithms are not suitable for data 
transmission in remote desktop systems that have the 
characteristics described in Section 2.    

We proposed a multipath transmission algorithm for 
remote desktop systems and evaluated the performance using 
network simulator in [6]. This paper describes the algorithm 
in more details and provides some experiment results in the 
real network environment. 

 

IV. PROPOSED METHOD OF DATA TRANSMISSION  

We introduce a multipath approach to improve the data 
transmission of remote desktop systems. This section first 
introduces a TCP proxy that transmits multipath data in a 
remote desktop system. We next discuss our evaluations of 
the existing multipath transmission algorithm and then 
introduce our proposed algorithm. 

A. Overview 

We inserted a TCP proxy between the thin client and the 
server on both sides. The proxy programs were called 
multipath communication control proxies (MCCPs). The 
MCCPs received the data from remote desktop software and 
forwarded them over multiple wireless-network connections. 

Figure 3 outlines an example of the placement of MCCPs 
in remote desktop systems. The MCCPs do not require any 
changes in the OS components of the server, thin client, or 
the remote desktop protocol. The remote desktop server 
passes the data to the MCCP in the server (server-side 
MCCP) and then the server-side MCCP sends the data over 
Network A and Network B to the MCCP thin client (client-
side MCCP). The Client-side MCCP then passes the data it 
received to the remote desktop client. Thus, the MCCPs 
simultaneously deploy two networks (networks A and B) to 
send and receive data exchanged between the thin client and 
server.  

The server-side MCCP can be installed outside the remote 
desktop server. As seen in Figure 4, it can work in a gateway. 
The gateway receives data from the server and forwards the 
data to the thin client over two networks using a multipath 
data-transmission protocol. Here, no software needs to be 
installed in the server while the thin client can perform 
multipath data transmission. 
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Figure 3: Placement of MCCPs 
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Figure 4: MCCPs with gateway 

The client-side MCCPs can also be installed outside the 
thin client. For example, the client-side MCCP can work in a 
gateway that redirects the data flow from the thin client to 
the server. Here, the gateway will transmit the multipath data 
through the server instead of the thin client. It needs two 
network interfaces that are connected to two different 
networks. 

B. Existing algorithms for multipath data transmission  

We next discuss the algorithms for the MCCPs to send 
and receive data over multiple network connections. The 
existing algorithms in the domain of multipath 
communication can be divided in two types. The first 
decreases transmission delay and increases the robustness of 
transmission [13]. Figure 5 outlines the flow of data when 
the MCCPs deploy this algorithm. When the server-side 
MCCP receives data from a remote desktop’s server program, 
it duplicates the received data and then forwards them to 
both networks, A and B.  

The client-side MCCP forwards data that arrive sooner to 
the remote desktop client and disposes of the later. We called 
this the duplicate-and-forward algorithm. It could transmit a 
small data block through a network with lower latency but 
could not improve the throughput especially for a large data 
block. 
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Figure 5: Duplicate-and-forward algorithm 

 
Figure 6: Divide-and-forward algorithm 

The second algorithm aggregates the bandwidths of 
multiple network connections to increase the throughput of 
data transmission [14, 15]. Figure 6 shows the flow of data 
when the MCCPs deploy the algorithm. When the server-
side MCCP receives data from the remote desktop server 
program, it divides the received data and then forwards 
different parts of the data to networks A and B. The client-
side MCCP combines the data received and then forwards 
them to the remote desktop client. We called this the divide-
and-forward algorithm. It could improve throughput 
especially for a large data block but did not decrease the 
transmission latency of a small data block. 

As existing multipath transmission algorithms can only 
optimize transmission delay or aggregate bandwidths, they 
cannot be used to solve the above-mentioned two limitations 
with wireless thin clients.  

C. Data-aware multipath transmission algorithm 

We propose an algorithm called the data–aware multipath 
transmission (DAMT) algorithm that improves the efficiency 
of thin clients in wireless environments. The algorithm 
combines the two existing transmission algorithms: 
duplicate-and-forward and divide-and-forward. The DAMT 
algorithm can transmit small data blocks with short latency 
and large data blocks with high throughput. First, when a 
data block arrives, an MCCP runs the duplicate-and-forward 
algorithm. While transmitting the data, the MCCP also 
monitors the access network of the server. If the access 
network becomes congested, the MCCP determines that the 
block that is being transmitted is large. The MCCP then 
changes the algorithm to divide-and-forward. Thus, the 
DAMT algorithm dynamically changes from duplicate-and-
forward to divide-and-forward according to the size of the 
data being transmitted. The details on the MCCP algorithm 
are described in what follows.  
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Figure 7: DAMT algorithm 

 
Figure 7 shows the flow of data when the DAMT algorithm 

is used. First, the server-side MCCP receives data 1 from the 
remote desktop’s server program, duplicates them and 
forwards them to both networks, A and B. Next, when a 
large block of data that includes data 2, 3, and 4 arrives, the 
server-side MCCP also duplicates data 2 and forwards them 
to networks A and B. Suppose that when data 2 are being 
transmitted, the server-side MCCP finds that the buffers for 
the TCP connections are full. The server-side MCCP then 
switches from duplicate-and-forward to divide-and-forward 
and performs the latter on data 3 and 4 

 
Sender-side MCCP: 

a) Wait until data that need to be transmitted arrive. Go 
to step b) when the data arrive. 

b)  Perform duplicate-and-forward tranmission while 
monitoring the buffer for TCP connections (e.g., by 
checking the return value of the send() function). If the 
buffer is full, go to step c). Go to step a) if data transmission 
has been completed. 

c) Perfom divide-and-forward tranmission on the 
remaining part of the data block and then go to step a). 
Receiver-side MCCP: 

a) Wait until data have arrived. Go to step b) when the 
data arrive. 

b) Receive the data. Combine the divided data. Delete 
the duplicated data. Go to step a) when no more data arrive 
after a certain interval. 

 
Thus, the DAMT algorithm uses duplicate-and-forward 

transmission for small-capacity data and divide-and-forward 
transmission for large-capacity data. This means that 
interactive data, which are always small capacity, are 
transmitted with short latency while large desktop images 
caused by animated presentations are transmitted at high 
throughput. 

V. IMPLEMENTATION ISSUES 

This section discusses some issues concerning the 
implementation of MCCPs. Our prototype was implemented 
in the Windows XP environment using Winsock for data 
transmission. We will first explain the sequence for the 
remote desktop client and remote desktop server to 
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establish/close the TCP connections for transmitting desktop 
information. We then explain the functions of the main 
components in MCCPs. 

A. Establishing/closing sequence for TCP sessions 

The flow chart in Figure 8 outlines the sequence for 
establishing TCP sessions before the remote desktop client 
can exchange data with the remote desktop server. Before 
the TCP sessions are started, the server-side MCCP and 
client-side MCCP must wait in certain ports for the 
connection requests. First, the remote desktop client 
establishes a TCP session with the client-side MCCP (Step 
1). If the client-side is installed at the thin client, the remote 
desktop client connects to a local port where the MCCP is 
listening. Second, the client-side MCCP establishes two 
TCP sessions with the server-side MCCP. In Step 2, the 
client-side MCCP uses network interface NIC A to connect 
to port X on the server and in Step 3, it uses network 
interface NIC B to connect to port Y.  Thus, the client-side 
MCCP uses different network interfaces for each TCP 
session. In Windows, the metric parameter in the routing 
table of the two network interfaces A and B must have the 
same value, otherwise only an interface with a smaller 
metric will be deployed for both TCP sessions because the 
two sessions will have the same destination. 

In Step 4, the server-side MCCP establishes a session 
(TCP session 4) with the remote desktop server after 
establishing a session with the client-side MCCP. The 
server-side MCCP needs to know the port where the remote 
desktop server is listening. This will be the connection to a 
local port if the server-side MCCP is located on the same 
machine as the remote desktop server.  After TCP session 4 
has been established, the MCCPs start forwarding the data 
exchanged by the remote desktop client and server using the 
DAMT algorithm.  

The closing sequence for TCP sessions is as follows. 
When the user finishes work on the thin client and signs out, 
the remote desktop server will close session 4 in Step 5. The 
send-side MCCP then closes sessions 2 and 3 right after 
session 4 has closed. The receive-side MCCP will also close 
session 1 if one of two sessions, 2 or 3, has closed. The 
closing sequence will occur in the reserve direction if the 
user closes session 1 before signing out, e.g., by closing the 
remote desktop client. 
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Figure 8: Sequence for establishing TCP session  
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Figure 9: Structure of MCCPs 

B. Structure of MCCP 

We will next explain the components of MCCP and give 
details on the data processing flow of the components. 

The MCCPs on the client-side and server-side have 
exactly the same functions. These MCCPs have five main 
components.  
1. Data buffers 

The MCCP has two buffers for storing data before it 
forwards them to the networks (Send Buffer) or to the 
server/client (Receive Buffer). 
2. Receive Module 

The Receive Module of the server-side MCCP receives 
data from the remote desktop server and saves the data in 
the Send Buffer. The Receive Module of the client-side 
MCCP receives data from the remote desktop client. If the 
Send Buffer is full, it stops reading data from the socket of 
the TCP session and waits until some space clears. 
3. Send Module 

The Send Module of the server-side MCCP sends the data 
in the Receive Buffer to the remote desktop server. The 
Send Module of the client-side MCCP sends the data in the 
Receive Buffer to the remote desktop client. 
4. Multipath Send Module 

The Multipath Send Module runs the DAMT algorithm. It 
sends the data in the Receive Buffer to the remote desktop 
server or remote desktop client over multipath network 
paths. It will not act if there are no data in the Receive 
Buffer.  
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Figure 9: Program data unit (PDU) 
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Figure 10: PDU allocation in duplicate-and-forward mode 
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Figure 11: PDU allocation in duplicate-and-forward mode 

The Multipath Send Module divides the data in the Send 
Buffer into small data blocks called Program Data Units 
(PDUs). Figure 9 outlines the structure of a PDU. Each 
PDU includes a sequence number (Seq), the length of the 
data (Len), and the data (Payload). The maximum size of 
the Payload is 500 KB. The Payload may be smaller than 
500 KB if the amount of data remaining in the Send Buffer 
is less than 500 KB. Here, the module creates one PDU 
from all the data remaining in the buffer. 

The Send Buffer Module continuously monitors the 
buffer of the two TCP sessions, 2 and 3, using select() 
commands. When the sessions are available for transmitting 
more data, the module chooses a PDU in the Send Buffer 
and sends it over TCP sessions 2 and 3. As previously 
mentioned, the Send Buffer Module first sends the PDU in 
duplicate-and-forward mode while monitoring the returned 
value of the send() function. It will change to the divide-
and-forward mode if the send() function return value is 
smaller than the size of the PDU that the module requested 
to be sent, because this is the sign indicating that the TCP 
session’s buffer is full. We will now explain how the Send 
Buffer Module chooses a PDU in the Send Buffer to send to 
the network. 

In the duplicate-and-forward mode, the Send Buffer 
Module selects the PDU with the following sequence 
number: N = R + 1, where R is the largest number of PDUs 
that have already been sent at that time. The module sends 
the PDU twice, once over network session 2 and the second 
over session 3 (Figure 10). 

However, in the divide-and-forward mode for session 2, 
the next PDU to be sent to the network is:   
N = R + K + 1, where R is the largest Seq of PDUs sent at 
that time; K is the number of PDUs that is sent by session 3 
when session 2 sends one PDU. The value of K reflects the 
transmission speed of networks A and B. Similarly, the 
PDU that session 3 will send is N = R+K’+1, where K’ is 
the number of PDUs that is sent by session 3 when session 2 
sends one PDU.  Thus, the module sends data with larger 
Seq in the sessions that have low transmission speed. By 
doing so, the receiver can receive the data in the right order, 
saving time in buffering and in sorting disordered data. 
Figure 11 shows an example where network A is four times 
faster than network B. Transmitting one PDU on network B 
(with session 3) takes the same amount of time as 
transmitting four PDUs on network A. Here, the Send 
Buffer Module sends PDUs 3, 4, 5, and 6 in session 2 and 
PDU 7 in session 3. The PDUs will then arrive at the 
receiver in the right order. 
5. Multipath Receive Module 

The Multipath Receive Module receives PDUs from 
networks A and network B. It stores received data into the 
Receive Buffer. If the Receive Buffer is full, the module 
stops reading data from the socket of sessions 2 and 3; it 
will wait until the buffer becomes available for more data.  

The Multipath Receive Module monitors TCP sessions 2 
and 3 using the command select() of Winsock. Whenever a 
PDU arrives, the module first checks if the PDU is a 
duplicate of any PDU that has previously arrived. If the 
PDU is a duplicate, then the PDU will be disposed of. 
Otherwise, the PDU will be stored in the Receive Buffer 
(Figure 12). Note that the processing flow in the Multipath 
Receive Module does not need to change when the 
Multipath Send Module changes from duplicate-and-
forward to divide-and-forward. 
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Figure 12: Algorithm for Multipath Receiver Module 
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VI. EVALUATION WITH NETWORK SIMULATOR 

This section discusses our evaluation of the proposed 
algorithm in a laboratory network environment. We 
implemented MCCPs and installed programs on a thin client 
as well as a remote desktop server, as shown in Fig. 13. The 
simulator was a FreeBSD [3] machine with a Dummynet 
program [4] installed. There were two networks (A and B) in 
the simulator. The thin client communicated with the server 
through the two networks. The delay and bandwidth of the 
networks varied in each experiment. 

A. Evaluation of tranmission delay 

We first checked the round trip time (RTT) of a probe 
packet traversing between the thin client and the server when 
the DAMT algorithm was applied. We also investigated a 
case where the thin client only used network A or B to 
compare them. The propagation delay of networks A and B 
varied in a range from 100 ms to 300 ms. The bandwidth of 
both networks was set to 100 Mbps; this value was 
sufficiently large that the bandwidth did not cause additional 
delay in transmitting the probe packets. The settings for 
networks A and B are listed in Table I. The propagation 
delays of the two networks were set to the values shown in 
Figure 14. 

 
Figure 13: Network topology 

TABLE I.  SETTINGS FOR NETWORK METRICS 
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Varies within range  
from 50 to 150 ms 

100 Mbps 

Network B 
Varies within range  
from 50 to 150ms 

100 Mbps 
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Figure 14: Distribution of propagation delay (round-trip) 
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Figure 15: RTT-measurement results 

The probe packet was 30 bytes and was sent from the 
thin client to the server and then immediately sent back from 
the server to the client.  

Figure 15 shows the RTT values of the probe packet 
when it traversed network A, network B, and when it was 
forwarded by MCCPs with the DAMT algorithms. The RTT 
of the probe packets on average was 182 ms when using the 
multipath control algorithm, 214 ms when using network A 
and 210 when using network B. This means that DAMT 
could successfully reduce delay in the transmission of small 
packets. 

B. Evaluation of data-transmission throughput 

We evaluated the throughput of transmitted data in an 
experiment. The propagation delay for networks A and B 
was kept constant at 2 ms. The bandwidths of both networks 
were set to various values such as 500 Kbps, 1 Mbps, 1.5 
Mbps and 2 Mbps (See Table II). For each value of 
bandwidth, we compared the throughput for bulk data 
transmitted between the client and the server when a single 
path (network A or B) was used and when multipath 
algorithms were used. 

TABLE II.  SETTINGS FOR NETWORK METRICS 

 
Propagation delay 

(one way)  
Bandwidth 

Network A 2 ms 
500 Kbps, 1 Mbps, 
1.5 Mbps, 2 Mbps 

Network B 2 ms 
500 Kbps, 1 Mbps, 
1.5 Mbps, 2 Mbps 

 
The results obtained from measuring throughputs are in 

the bar chart in Figure 16. The DAMT algorithm always 
outperformed the single paths (A and B) by up to 1.9 times. 
We can also see the throughput for multipath transmission 
when existing algorithms were used. We can see that DAMT 
achieved the same performance as the divide-and-forward 
algorithm, which is proposed for an aggregate bandwidth for 
multiple network connections. 
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Figure 16: Throughput-measurement results 

C. Performance of thin client when using PowerPoint 

We next evaluated the performance of the thin client 
when Microsoft’s PowerPoint program, which is a popular 
business application, was used. The settings for networks A 
and B are listed in Table III. The settings were determined 
according to the measured characteristics of two popular 
commercial mobile networks in Japan in May 2008. The 
remote desktop protocol used was RDP [12].  

Figure 17 shows the PowerPoint file used in the 
experiment. The playing time of the file is about 4(s), the 
amount of data that was transmitted in the network when the 
file was being played was a total of 1626 KB.  

Figure 18 is a bar chart of the average delay in response 
to keyboard input. This was calculated as the time from 
when the packet (including the input signal) left the thin 
client to when the first response packet returned back to it. 
We can see that the DAMT algorithm responded as quickly 
as the duplicate-and-forward algorithm. 

TABLE III.  SETTINGS FOR NETWORK METRICS 

 
Propagation time 

(one way)  
Bandwidth 

Network  A 52 ms 380 Kbps 

Network  B 150 ms 600 Kbps 
 

228 KB228 KB 57 KB57 KB 20 KB20 KB 94 KB94 KB 149 KB149 KB

149 KB149 KB 120 KB120 KB 127 KB127 KB 132 KB132 KB 490 KB490 KB

228 KB228 KB 57 KB57 KB 20 KB20 KB 94 KB94 KB 149 KB149 KB

149 KB149 KB 120 KB120 KB 127 KB127 KB 132 KB132 KB 490 KB490 KB

 
Figure 17:  PowerPoint slides 

 
Figure 18: Response time to keyboard input 

 
Figure 19: Time to play presentation file  

Figure 19 is a bar chart that shows the time it takes to 
play a presentation file. The speed at which the file is played 
depends on the throughput of the desktop images transmitted 
from the server to the client. We can see that the DAMT 
algorithm takes the same time as the divide-and-forward 
algorithm. And the time is far shorter than the playing time 
when only network A or B is deployed.  

The DAMT algorithm thus shortens the response to 
keyboard input to that of the duplicate-and-forward 
algorithm, and the speed at which the presentation file is 
played is as high as that of the divide-and-forward algorithm.  

 

VII. EVALUATION IN REAL NETWORK ENVIRONMENT 

We next evaluated the performance of the proposed 
method DAMT in a real network environment. The network 
used in the experiment is outlined in Figure 20. A thin client 
equipped with two high-speed wireless network access cards 
was used. The two cards had different data-transmission 
methods and different access networks. The first used 
WiMAX and the other used HSPA. The thin client was 
located in an office on the top floor of a six-storey office 
building. The thin client accessed an RDP server located in a 
data center through a gateway located in the same local 
network as the server. A server-side MCCP was installed in 
this gateway. The data center was connected to a WAN by a 
high-speed network (20 Mbps). 

We first evaluated the time it took for a TCP packet to 
traverse from the thin client to the server and back again. 
This time indicated how fast a letter appeared on the screen 
of the thin client when the user pressed a key. 
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Figure 20: Experimental network 

We also evaluated the amount of RDP traffic transmitted 
from the RDP server to the thin client when the user watched 
a 15-s video. This amount of data reflected the quality of the 
video shown on the screen of the thin client. If the amount of 
data was small then the video had many too lost frames. We 
checked the amount of data when WiMAX access and HSPA 
access were used singly and when DAMT was used. 

Figure 21 has bar charts of the average value (in 50 
experiments) of the round trip time of a TCP data packet 
when it used network 1 (through WiMAX access), and 
network 2 (through HSPA access). The figure also indicates 
the round trip time when the multipath algorithm was 
deployed. We can see that when the thin client used HSPA 
access, the response time was about 159 ms, and the 
WiMAX access was 201 ms. However, the response time 
when the proposed algorithm DAMT was deployed was only 
139 ms. The results attained when using WiMAX access and 
HSPA access may change if we carry out the experiments in 
other places. However, as the DAMT algorithm will choose 
the shortest access for all data packets, we can rest assured 
that DAMT will introduce a shortened response time in any 
environment. 

We next checked the amount of data that the thin client 
received during the time it took to play a 15-second video 
file. In a LAN environment, the thin client played the video 
with almost no difference to playing it directly. Here, the thin 
client received about 20 MB of data for the video file. Table 
4 lists the amount of data when WiMAX, HSPA, and the 
proposed multipath data transmission algorithm were used. 
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Figure 21: Average value of response time 

As seen in Table IV, when using HSPA access, the thin 
client could receive only 21.5% of the data in comparison 
with the LAN environment. In WiMAX access, the ratio was 
23.8%. However, the DAMT algorithm performed better 
when the ratio was 43.8%. The reason for the higher 
throughput of DAMT is that, the thin client can use the 
bandwidth of both wireless networks to transmit the desktop 
information (Figure 22). From Figure 22, we can see that 
DAMT deployed both network interfaces to receive data 
from the HSPA and WiMAX networks.  

We could test and confirm the superior performance of the 
proposed algorithm through a real-network environment. 
Similar to the results we obtained in the laboratory, the 
DAMT algorithm could introduce short response times for 
small packets such as the RDP packets that occur when users 
are typing. As they also increased the bandwidth of the 
network path between the thin client and RDP server, video 
files could play more smoothly than when using a single 
wireless network.  

TABLE IV.  AMOUNT OF DATA RECEIVED BY THIN CLIENT 

 
Received data 

(bytes)  
Compared 
with LAN 

Network  1 
(WiMAX) 

4,554,858  21.5% 

Network  2 
(HSPA) 

5,040,438 23.8% 

Multipath 
(DAMT) 

9,046,273 42.8% 

LAN 21,134,323 100% 
 

294

International Journal on Advances in Networks and Services, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Network 1 (Capacity 100Mbps)

Network 2 (Capacity 7Mbps)

5Mbps

6Mbps

 
Figure 22: Data transmission on network interfaces of thin client 

Also note that the thin client in the experiment was not 
located in the best place to achieve the best performance with 
WiMAX and HSPA access. The aims of the experiment were 
not to evaluate the performance of these wireless access 
networks, but just to confirm that DAMT could work well in  
a real-network environment. We also found that DAMT 
could outperform single network access by using the 
multipath approach. 

 

VIII. CONCLUSION AND FUTURE WORK 

We proposed an algorithm called DAMT that leveraged 
multiple wireless network connections to attain short latency 
in the transmission of input signals and its responses as well 
as to increase the throughput of large desktop images.  

Due to the large range of experiments in both the 
simulator and in a real network, we found that the thin client 
could quickly respond to keyboard input with the DAMT 
algorithm and could quickly play animated presentations. 

However, some future work still needs to be done in this 
respect. First, we intend to carry out more experiments in 
real networks to find what additional benefits DAMT can 
provide. We intend to assess the performance of thin clients 
in places other than offices, such as in trains or cafeterias. 
Implementing MCCPs that can work over three or more 
wireless networks is also within the scope of future work. 

INDICATION OF TRADEMARK REGISTRATION 
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