
A Further Look at the Distance-Availability Weighted Piece Selection Method
A BitTorrent Piece Selection Method for On-Demand Media Streaming

Petter Sandvik and Mats Neovius
Department of Information Technologies

Åbo Akademi University
and

Turku Centre for Computer Science
Turku, Finland

e-mail: {petter.sandvik, mats.neovius}@abo.fi

Abstract—During the last few years, BitTorrent has become a
popular way of transferring large files over the Internet.
However, the original out-of-order nature of the BitTorrent
protocol has made it difficult to enable playback of media files
that have not yet been fully transferred. In this paper we
describe a piece selection method which we believe will enable
simultaneous playback of the transferred media file without
impacting on the speed and quality of the transfer. The
distance-availability weighted method compromises between
selecting rare pieces and pieces which are soon to be played
back, making playback possible before the transfer is
complete. In our simulations, we have compared our piece
selection method with other proposals for on-demand
streaming media using a BitTorrent-like setup, with our
method giving similar or better results.

Keywords-media, on-demand, peer-to-peer, streaming,
BitTorrent, simulation

I. INTRODUCTION
In [1], we presented the distance-availability weighted

method; a BitTorrent piece selection method for on-demand
streaming. BitTorrent is originally a peer-to-peer file sharing
protocol and an application, designed by Bram Cohen and
first released in July 2001 [2]. During the following years
BitTorrent evolved into one of the most popular peer-to-peer
protocols [3][4]. Unlike earlier popular peer-to-peer file
sharing applications such as Napster and Kazaa, the use of
BitTorrent usually starts by clicking a link in a web browser,
and Cohen suggests that “ease of use has contributed greatly
to BitTorrent's adoption, and may even be more important
than [...] the performance and cost redistribution features”
[5]. Another major difference between the earlier peer-to-
peer file sharing applications and BitTorrent is the lack of
central server in the latter, in the sense that BitTorrent users
are not all connected to each other through one server.

While BitTorrent is popular, there are also other reasons
for choosing it as the basis for a peer-to-peer based media
streaming system such as the one we have in mind. Several
applications using the protocol, as well as the protocol itself,
are open, which makes understanding and modifying more
easily possible than if the staring point was a proprietary
product. For our purposes an even more important aspect is
that all the logic involved in the file transfer is contained on

the client side, which makes it possible, at least in theory, to
have an on-demand content streaming BitTorrent client
participate in content transfer with regular, non-streaming,
BitTorrent clients.

While the original BitTorrent protocol was not designed
for streaming, it has already been argued [6] that with some
modifications, it would be possible to create a streaming
media solution based on BitTorrent. Indeed, there are
proprietary and commercial efforts to create exactly such a
thing, for instance “to turn BitTorrent into a point-click-
watch experience much more similar to YouTube” [7], and
in [1] we described our proposal for a solution that would
enable file sharing in such a way that content could be
played back while downloading. In this paper we will further
describe our proposal and show that it is a modification to
the BitTorrent protocol, which would allow it to function as
an on-demand media streaming solution.

The rest of this paper is organised as follows: in
Section II, we describe BitTorrent and its terminology, as
used throughout this paper. Section III consists of the
requirements of an on-demand streaming media application
in general, and what assumptions we will make for a
BitTorrent streaming application to be feasible. In Section IV
we present our proposed piece selection method, and in
Section V, we compare it to existing piece selection methods
that could be used for on-demand streaming. In Section VI,
we list a selection of related works. The paper is concluded
in section VII with a discussion about our findings and
possible future work on this subject.

II. BITTORRENT
Since BitTorrent was introduced by Bram Cohen in 2001

it has evolved. While the terminology used in [5] could be
seen as a standard, the terminology used in this paper will be
based on that of [8]. This terminology is close to that of the
application Vuze, formerly known as Azureus, a BitTorrent
client often used as a basis for research applications
[9][10][11].

A. BitTorrent Terminology
• Torrent. A torrent consists of a single file, or a

collection of files, to be shared, and the associated
metadata. The metadata, and therefore the torrent
itself, is uniquely identified by its info-hash [12].

473

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Tracker. A tracker is a piece of software that is
involved in keeping track of which peers are
involved in the transfer of a particular torrent, using
the info-hash of the torrent. Each torrent can be
associated with many trackers. Additions to the
BitTorrent protocol have enabled peer discovery
through other means, such as distributed hash tables
and peer exchange, and thus the use of trackers is no
longer required. Whether a tracker is used or not
does not affect the file transfer, and this is of little
importance to us.

• Pieces and blocks. The data of a torrent is divided
into pieces, and each piece is divided into blocks,
also called sub-pieces. A piece is typically 256
kilobytes in size [8][13] while a block is typically 16
kilobytes in size [5][8]. A piece must be complete,
that is, all blocks of it must have been downloaded,
before the piece can be transferred to another peer.

• Torrent index file. Also known as a “.torrent” [5], a
torrent index file contains information about the
torrent, such as the universal resource locator (URL)
of the tracker (or trackers, if any), piece size of the
torrent, names and sizes of the files in the torrent, as
well as SHA-1 hashes of all the pieces. This file is
generally hosted on a web server and downloading
of a torrent starts by opening the file with a
BitTorrent application.

• Interested and to choke. If peer B has pieces,
which peer A does not have, peer A is interested in
peer B, otherwise peer A is uninterested in peer B. If
peer B decides not to send data to peer A, peer B
chokes peer A, and if peer B decides to send data to
peer A, peer B unchokes peer A.

• Peer set and active peer set. A peer set consists of
all the other peers one peer is connected to, and the
active peer set consists of those peers it is currently
sending data to, i.e., its unchoked peers.

• Seed. A peer that has all pieces of a torrent and
therefore only sends data is called a seed.

• Availability. We define availability of a piece as the
number of peers in the peer set who have that
specific piece.

B. How BitTorrent Data Transfer Works
When transferring data, BitTorrent needs to decide what

data to request (piece selection) and which peers to choke or
unchoke (peer selection). The reference BitTorrent
implementation begins by selecting pieces to download at
random, until one complete piece has been downloaded.
BitTorrent then switches to a rarest-first piece selection
method. The rarest-first selection method selects the piece
that the fewest peers have, i.e., the piece with the lowest
availability, as the first piece to request. This has the effect of
reducing the possibility that one piece may become
unavailable, as a lower number of peers having a piece
makes other peers more likely to request that particular
piece, thereby increasing the number of peers that will have
that piece. When a single block from a piece has been
downloaded, other blocks from that piece are given highest

priority, in order to have as few incomplete pieces
transferred as possible. BitTorrent then keeps selecting the
rarest pieces first, until all remaining blocks in all remaining
pieces have been requested, at which time all remaining
blocks are requested from all peers in the active peer set.
This is done so that one slow peer cannot prevent the whole
download from completing.

To create an incentive for peers to upload as well as
download, the reference BitTorrent implementation uses a
tit-for-tat (TFT) peer selection strategy. Every ten seconds,
which peers to unchoke is evaluated based on the rate of data
sent, with the fastest peers chosen as the peers to unchoke.
Additionally, there is also one interested peer unchoked at
random, re-evaluated every thirty seconds. This randomly
chosen peer is called the optimistic unchoke [5][8] and exists
for two reasons: to allow new peers a chance to enter the
TFT game, and to potentially discover faster peers that could
become regular, non-optimistic, unchokes [8][9]. This
approach is not necessarily the optimal way of peer selection,
and alternative approaches have been suggested, such as [9].
However, the basic TFT strategy remains an essential part of
the BitTorrent protocol as used today.

After a download is finished, the peer may continue to
participate in sending data to other peers, and in many cases
the peer is actually encouraged to do so. In this case
choosing peers based on how much they send is of course
not possible, and thus the reference BitTorrent
implementation then switches to sending to the peers that can
receive data the fastest [5]. However, this feature could be
exploited, and later clients have switched to choosing peers
to send to randomly [9].

III. REQUIREMENTS FOR STREAMING
We define streaming as the transport of data in a

continuous flow, in which the data can be used before it has
been received in its entirety. In this context, on-demand
streaming is essentially playback, as a stream, of pre-
recorded content, at the request of a user. This is in contrast
to live streaming, which is playback, as a stream, of content,
which is not pre-recorded but rather created and transmitted
practically simultaneously. Concerning an on-demand peer-
to-peer media streaming system, we make the following
initial observations:

Each peer must have a download bandwidth at least as
large as the playback bit rate of the media. Unlike a peer-to-
peer file sharing system, the media is played while being
received, and therefore cannot be received slower than it
should be played back. Furthermore, if the media is to be
received faster than real-time, it must also be sent faster than
real-time. Therefore, the average upload bandwidth of all
peers must be larger than the playback bit rate of the media,
although an individual peer may have an upload bandwidth
smaller than that.

We will make the following assumptions regarding a
BitTorrent-based on-demand media streaming system: The
torrent will consist of only one complete media file, unlike in
file sharing where several files can be combined in one
torrent. Additionally, in a file sharing system the time an

474

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

individual peer participates is difficult to estimate and not
dependent on the content received. In an on-demand peer-to-
peer streaming system it can be estimated more easily, and
although peers may of course leave the system at any time,
our assumption is that a typical peer will enter the system
when starting playback and leave the system some time after
playback is complete, which means some time after all
pieces of the content have been received. We will also
assume that for each piece there will always be at least one
peer holding it, that is, we assume that we do not encounter
the situation where the availability of any piece is zero,
because that would lead to a situation where complete
playback is not possible.

Internet connections are typically symmetric, with the
same bandwidth available for sending and receiving data, or
asymmetric with a higher download bandwidth than upload
bandwidth. Therefore, a typical peer will be able to receive
data at least as fast as it can send data. Additionally, all
pieces must be requested, resulting in a complete file once
the transfer is complete, unless the peer leaves before
finishing playback. Furthermore, each peer will keep and
make available all the pieces it has received, for as long as
the peer is participating. Each peer must therefore have
enough space to store the entire media file.

Ideally, the piece selection algorithm in our BitTorrent-
based streaming system should comprise the following
behaviours: When the ratio of seeds to peers is high, our
piece selection method should prefer pieces close to being
played back rather than rare pieces, because with a large
number of complete sources there is no need for
downloading rare pieces to ensure the future availability of
all pieces. In the extreme case, where our client has the only
incomplete copy of the content, there is no obvious downside
to requesting pieces sequentially. On the other hand, when
the ratio of seeds to other peers is low, our piece selection
method should also choose rare pieces to improve the overall
availability of the pieces, while still requesting enough
pieces in sequence to make continuous playback possible.

Although we specified earlier that peers should be able to
download faster than the playback rate of the media, there
will be variations in how much faster the peers will be able
to receive data. Ideally, our piece selection method will be
able to adapt to these kinds of differing conditions. For
instance, if a peer can download data only slightly faster than
the playback rate, our piece selection method should ensure
that the peer requests data mostly sequentially, while a peer
that can download the media much faster than its playback
speed should also frequently request rare pieces in order to
improve the overall availability of the pieces. With that in
mind, we present our proposal for a piece selection method
for on-demand streaming.

IV. THE DISTANCE-AVAILABILITY WEIGHTED METHOD

The idea behind the distance-availability weighted

method for piece selection (DAW) is to strike a balance
between lots of consecutive pieces, which is good for
playback, and requesting rarest pieces first, which is good for
piece availability. In other words, we want to balance

requesting between distance (in the sequence of pieces) and
availability.

We start by having a small, fixed buffer of size k. The
priority for requesting the pieces in the buffer will be the
highest, here represented as 1. Outside the buffer we will
calculate the priority for each not yet requested piece as

Priority = 1/((Pr - Pc) * mr)

where Pr is the sequence number of a particular piece, mr

is the number of peers who hold that piece, and Pc is the
sequence number of the current last piece in the buffer. In
other words, Pr - Pc is the distance to a particular piece and
mr is the availability of that piece. The priority for a piece
outside the buffer is therefore never more than 1, with a
priority of 1 occurring only in the rare situation that the piece
immediately outside the buffer is held by exactly one peer.
Pieces that are further from being played back or held by
more peers are given lower priorities, while a short distance
from the buffer or a low availability increases the priority.

The availability of a particular piece and its distance from
the last piece in the buffer are here equally weighted when
determining the priority. However, we do not claim that
giving equal weights to distance and availability is in any
way the optimal solution. We have not extensively tested
different weights, but it seems likely that factors such as the
total number of pieces, the number of peers, and the network
speed of the peers, will have an effect on how the distance
and availability should be weighted for optimal performance.
As it would not be possible to test all different combinations
of weights under all circumstances, we choose here to weigh
them equally for the sake of simplicity.

It should be noted that when we talk about availability of
a piece we do not mean how many peers in total are involved
in the torrent and hold that particular piece. What we actually
look at is how many peers in one peer's active peer set hold
that particular piece. As one peer need not necessarily be
connected to all other peers, especially if the total number of
peers is very large, we must by necessity look at the system
from one peer's point of view. Another point worth
mentioning is that the above priority calculation holds even
if we allow playback to start somewhere else than from the
beginning. Not yet requested pieces earlier in sequence than
the last piece of our playback buffer will get negative
priorities, and therefore will not be requested until all pieces
higher in sequence have been requested.

V. COMPARISON WITH OTHER PIECE SELECTION
METHODS

We have done two separate sets of simulations. The first

set, the results of which also appeared in [1], is less
exhaustive and compares our DAW piece selection method
to two others:

• Sequential Method. This represents how a
straightforward streaming would work, by always
requesting pieces in the same order as they appear in
the torrent.

475

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Rarest-First Method with Buffer (RFB). This is
the original BitTorrent piece selection method,
slightly modified to better support streaming media.
This is done as follows: we add a small buffer of
fixed size, so that k pieces after the currently playing
one are requested with the highest priority. If all k
buffer pieces have been requested, we use the rarest-
first method on the remaining part of the media.
Another small modification is that if more than one
piece have the same availability the original rarest-
first method chooses between them randomly [12],
while we always choose the one closest to being
played back, as in the rarest-first method mentioned
in [6].

In our second set of simulations, we add another piece
selection method to the comparison:

• BitTorrent Streaming (BiToS). This piece
selection method is described in [6]. Pieces not yet
downloaded are divided between a small high-
priority set, with pieces close to being played back,
and a larger remaining pieces set, with lower
priority. The probability of choosing a piece from
the high-priority set is p and the probability of
choosing a piece from the remaining pieces set is
similarly 1-p. Within each set, pieces are chosen
rarest-first, with the aforementioned modification
that if there is more than one piece with equal
availability, the one closest to being played back is
chosen. In [6], p was chosen to be 0.8 and we have
used the same number here.

A. Our First Set of Simulations
In these simulations, we have focused on the piece

selection algorithms, and the results therefore do not reflect
real-world performance of applications. Our main focus has
been on two things: the percent of requests going to the
original source over time, and the availability of the last
piece (which is also the rarest piece, in these cases) over
logical time. The first one of these we want to be as low as
possible, because a good peer-to-peer system should
distribute the load equally over as many peers as possible
and therefore not have a proportionally high amount of
requests directed to the original source. The second one we
want to be high, as we want the availability of the rarest
piece to increase, as that signifies redundancy and robustness
of the system. In these simulations we also assume that peers
have the ability to send data to as many other peers as
necessary, effectively creating a situation where a peer will
always get the piece it requests.

The number of pieces was chosen to be 1000; large
enough to study the behaviour of different piece selection
methods over long periods of time. The buffer size for both
DAW and RFB was set to 8 pieces; large enough for smooth
playback but small enough that filling the buffer should not
impact n overall performance. All simulations were done up
to 800 logical time units; at the rate of one request per time
unit we therefore never reach the situation that any peers

have finished downloading, instead focusing on what
happens from the start onwards.

In the first simulation, to stress the system we chose to
have one seed and 100 regular peers, the latter arriving at
regular intervals (one new peer every two logical time units).
Fig. 1 shows that DAW here results in a lesser burden for the
seed than RFB, although it is not as good as the sequential
method. However, as Fig. 2 shows, the DAW does not
increase the availability of the last piece as much as RFB.
With RFB many rare pieces are requested early. These
pieces are only available from the seed, and as seen in Fig. 1
the burden on the seed drops only after 100 logical time
units. This corresponds to the point where there is no piece
left where the seed is the only source, as can be seen in Fig.
2. The same drop can be seen, less dramatically, for DAW
around logical time 170, with the same explanation.

The second simulation is identical to the first one, except
that all regular peers join simultaneously. As can be seen in
Fig. 3, the sequential method does not work in this
theoretical situation, while DAW is the better suited one of
the other two. Fig. 4 shows the situation as very similar to
the one in Fig. 2, except that with more peers from the start it
takes less time to increase the availability of the last (rarest)
piece with DAW and RFB.

For our third simulation, we chose a similar setup to the
first one, but with ten seeds instead of one. Fig. 5 shows the
average percentage of requests over logical time to each one
of the ten seeds, and DAW is again a less taxing choice than
RFB. A possible reason for this can be seen in Fig. 6;

Figure 1. Seed requests as percentage of total requests over logical
time, with peers joining at regular intervals.

Figure 2. Availability of last piece over logical time, with peers joining
at regular intervals.

476

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

compared to DAW, RFB spends a lot of time requesting rare
pieces although there is no immediate reason for doing so.

Our fourth simulation is a combination of the second and
third ones, with ten seeds and all the regular peers starting at
the same time. In Fig. 7 we see that the DAW piece selection
method is again less demanding on the seeds than the RFB
method, with the sequential method making on average a
constant ten percent of the requests to each seed in this
theoretical case. Fig. 8 is very much like Fig. 6, showing that
the distance-availability weighted method does not spend a
lot of time requesting the rarest piece until fairly late.

B. Our Second Set of Simulations
Compared to our first set of simulations, our second set is

a step or two closer to reality. Unlike our first set of
simulations, where a peer would always get the piece it
requested, we have here introduced limits to how many other
peers the seeds and regular peers can send to. This introduces
the possibility that a peer will not have the piece that it is
supposed to be playing back. In our simulations we have
dealt with that situation in three different ways:

• Skip. We ignore the piece we should be playing
back and just note that that piece has been skipped.
This is the method favoured by BiToS [6], and it
should be noted that for this to work in practise the
format of the media content must be tolerant of
missing data.

• Stop. If we are missing the piece that should be
played back, we stop playback until we have been
able to receive all pieces in our buffer (or high-
priority set), after which we resume playback. From
an end user point of view this is similar to how many
current on-demand streaming media systems work,

Figure 3. Seed requests as percentage of total requests over logical
time, with peers joining simultaneously.

Figure 4. Availability of last piece over logical time, with peers joining
simultaneously.

Figure 5. Average requests to a seed as percentage of total requests
over logical time, with peers joining at regular intervals.

Figure 6. Availability of last piece over logical time, with peers joining
at regular intervals.

Figure 8. Availability of last piece over logical time, with peers joining
simultaneously.

Figure 7. Average requests to a seed as percentage of total requests
over logical time, with peers joining simultaneously.

477

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in that not receiving data fast enough means that
playback is paused until an amount of consecutive
data has been received.

• Skip and stop. If we are missing the piece we are
supposed to play back we skip it, but if our buffer (or
high-priority set) is completely empty we stop
playback until we have received all pieces in it. This
should in theory generate less complete stops than
by always stopping, and possibly also less skips than
by just skipping.

What we actually measure in these simulations is three
things: firstly, the playback position of the peers after a
certain time; secondly, the number of skips and/or stops
encountered before that time; and thirdly, the percentage of
pieces that should have been transferred that were actually
skipped and/or the number of stops per 100 pieces played
back, respectively. What we are looking for is thereby a high
number for the playback position, but low numbers for the
amount of skips and stops.

In all these simulations, we have 10 seeds and 90 regular
peers. The seeds can upload to 8 peers simultaneously and
the regular peers to 2 peers simultaneously, at the rate of half
the playback speed for each peer. The regular peers request
new pieces twice as fast as the playback speed. In all the
following figures we look at the situation after a logical time
of 800. In simulations 5, 6 and 7 the regular peers join
simultaneously, while in simulations 8, 9 and 10 they join at
regular intervals; similarly to simulations 1 and 3. All
simulations were run multiple times and the maximum
reported here is the maximum for any peer during any run,
the minimum reported is the minimum for any one peer
duing any run, and the average reported is the average for all
peers over all runs.

Our simulation number five concerns the situation where
any pieces not transferred are skipped completely. Fig. 9
shows the maximum, average and minimum playback
positions of peers using the BiToS, DAW, RFB and
sequential piece selection methods. BiToS seems worse than
the others in this case, but it must be pointed out that in
BiToS we always spend about 20% of our time downloading
pieces not close to being played back, and therefore it is
reasonable to expect it to take longer for playback to start. In
a best-case scenario this would lead to a lower number of
pieces skipped later on, but as we see in Fig. 10, there is not
a significant difference in the absolute number of skipped
pieces, and if we look at the relative numbers, i.e., the
percentage of pieces that should have been played back that
were skipped, as in Fig. 11, we find that arguably BiToS is
worse than the other three, although the differences are
small.

Our simulation number six concerns the situation where
the piece to be played back not being available leads to a
complete stop of the playback. Fig. 12 shows that the
distance-availability weighted method here leads to the
furthest playback position. In Fig. 13 we see that despite the
good results for the playback position, DAW also does pretty
well in the absolute number of stops by coming in second.
Fig. 14 shows the relative number of stops, i.e., the number

of stops per 100 pieces played back, and there is not a big
difference between the four piece selection methods.

Simulation number seven seems to be the one with the
most diverse results so far. Here we have the situation that if
the piece to be played back is not received, we skip it, but if
we do not have any of the pieces in our buffer or high-
priority set, we stop. Fig. 15 shows the playback positions of
the peers, and the situation is not very different from in the
two preceding simulations, with DAW slightly ahead of the
others and BiToS slightly behind. However, in Fig. 16 we
notice that BiToS seems to skip a lot more than the others,
and in Fig. 17 we notice that BiToS stops a lot less often.

Figure 9. Playback positions of peers when playback stops for missing

pieces, with peers joining simultaneously.

Figure 10. Number of playback stops for each peer when playback

stops for missing pieces, with peers joining simultaneously.

Figure 11. Playback stops per 100 pieces when playback stops for

missing pieces, with peers joining simultaneously.

478

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This can be explained by how these piece selection methods
work. BiToS always requests pieces in a rarest-first, out-of-
order fashion, and therefore it is likely that even if the piece
to be played back is missing, the high-priority set is not
empty, and therefore we just skip. DAW and RFB as
described in this paper both have a small buffer in which
pieces are requested in-order, and therefore it is likely that if
the piece to be played back is missing, the whole buffer is
empty, and therefore we stop. In the case of the sequential
method, we always request sequentially, and therefore if the
piece to be played back is missing, the following k pieces are
also missing and we stop.

The following three simulations are similar to the
previous ones, except that the regular peers do not join
simultaneously. Figures 18, 19 and 20 show the result of
simulation 8, where playback stops if the piece to be played
back is not available, and the regular peers join at intervals.
Because peers do not join at once, the difference between the
maximum playback position and the minimum playback
position is larger than in simulation 5 (compare Figures 9
and 18). Fig. 19 shows the absolute number of playback
stops and Fig. 20 the number of playback stops per 100
pieces, and we see that the DAW and sequential piece
selection methods are almost equal in this case, with both

Figure 12. Playback positions of peers when playback skips missing

pieces, with peers joining simultaneously.

Figure 13. Number of pieces skipped for each peer when playback

skips missing pieces, with peers joining simultaneously.

Figure 14. Percent of pieces skipped for each peer when playback

skips missing pieces, with peers joining simultaneously.

Figure 15. Playback positions of peers when playback skips and stops,

with peers joining simultaneously.

Figure 16. Number of pieces skipped for each peer when playback

skips and stops, with peers joining simultaneously.

Figure 17. Number of playback stops for each peer when playback

skips and stops, with peers joining simultaneously.

479

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

being better than the RFB method and in the relative case
also better on average than BiToS.

Fig. 21 is comparable to Fig. 12, and again the larger
difference between the maximum and minimum playback
positions is caused by peers joining at intervals, instead of
simultaneously. Comparing Fig. 22 and Fig. 13 we notice
that not having all peers joining at once improves the result
for the piece selection method utilising some form of
sequential requests, leaving BiToS behind. This is
emphasised in Fig. 23 where we see the percent of skipped
pieces instead of the absolute amount.

Simulation 10 is comparable to simulation 7, and
comparing Fig. 24 with Fig. 15 shows that also in this case
the peers joining at intervals has the effect of putting BiToS
further behind when it comes to playback position. Fig. 25
and Fig. 26 show that as in simulation 7, the nature of BiToS
makes it skip more often than stop, while the sequential
buffer used in the DAW and RFB piece selection methods
make them behave more like the sequential method.

So far, we have only compared the piece selection
methods to each other but not discussed the actual figures.
While this is of course a very theoretical simulation, the
bandwidth figures we have used suggest that playback

Figure 18. Playback positions of peers when playback stops for

missing pieces, with peers joining at regular intervals.

Figure 19. Number of playback stops for each peer when playback

stops for missing pieces, with peers joining at regular intervals.

Figure 20. Playback stops per 100 pieces when playback stops for

missing pieces, with peers joining at regular intervals.

Figure 21. Playback positions of peers when playback skips missing

pieces, with peers joining at regular intervals.

Figure 22. Number of pieces skipped for each peer when playback

skips missing pieces, with peers joining at regular intervals.

Figure 23. Percent of pieces skipped for each peer when playback

skips missing pieces, with peers joining at regular intervals.

480

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

should theoretically be possible for all peers without
interruption. Instead, we get figures up to above 40% of all
pieces skipped (for instance in Fig. 10) with average levels
of more than 1/8 of all pieces skipped (for instance in Fig. 10
and 16). The situation for stops is not very good either, with
an average of at least one stop for every 100 pieces played
back (Fig. 14). Neither of these results is very good from an
end-user point of view. The conclusion we can draw from
this is that we need a better way of determining when to
start, or restart, playback, as the methods we have used here
do not seem to work in that regard. As for comparing the
performance of DAW to the others, we note that in there

three simulations DAW always comes up as the method that
gives the best results with regard to playback position,
without ever being the worst in any other regard.

One major concern regarding piece selection methods is
whether they work well with the peer selection methods, in
other words, whether the method of selecting pieces to
request is compatible in practise with the methods used to
determine which peers to send data to. The original tit-for-tat
method from BitTorrent requires that data is exchanged both
ways between peers in order to function well, and therefore
is not a good solution when combined with the sequential
method, where data is received from peers with more pieces
and sent to peers with fewer pieces, exclusively. RFB would
obviously work rather well in this fashion also, and the
division of pieces into a high-priority set and a remaining
pieces set as in BiToS is because the acquisition of pieces
from the latter is “beneficial due to the Tit-for-Tat policy”
[6]. We have not done any testing of the distance-availability
weighted method on this subject, but our estimate is that it
would be compatible. When the ratio of seeds to regular
peers is low, the availability of pieces is important and the
distance-availability weighted method selects pieces in a
manner reminiscent of the rarest-first method, where the tit-
for-tat policy has been proved as working. Conversely, when
the ratio of seeds to regular peers is high, the distance-
availability weighted method behaves similarly to the
sequential method, but as the seeds do not require data to be
sent to them, the need for out-of-order transfers in order to
get the tit-for-tat policy working diminishes. We therefore
believe our method would work in such a case as well.

VI. RELATED WORK
This paper is an extended version of [1], which is a

further development of a concept introduced in [14].
Whether due to its popularity or some other factor, such as
its lack proprietarity, BitTorrent has been the subject of
several other research projects during the last few years;
some of which are directly relevant to ours.

The BitTorrent protocol has been analysed in real-world
usage and found to be an efficient and viable solution for file
sharing [8][15]. When it comes to the idea of on-demand
streaming with BitTorrent as a basis, one of the more
interesting propositions is the previously mentioned BiToS
[6]. The main difference between BiToS and our distance-
availability weighted method is that BiToS seems designed
to maximise the amount of received pieces in a situation
where the media bit rate is the same as the download rate of
the client, while our solution is designed for a situation
where the download bit rate is higher than the media bit rate,
and all pieces should be received is such a way that playback
is possible before all of the file has been transferred.

The approach used in BiToS is further expanded in [16],
which also adds modifications to how the peers choose
which peers to send data to, effectively replacing the tit-for-
tat peer selection method used in BitTorrent with a method
called Give-to-Get. The application Tribler uses Give-to-Get
[17], while its protocol also contains other additions such as
social networking. Another project combining social
networking with BitTorrent and media streaming is

Figure 24. Playback positions of peers when playback skips and stops,

with peers joining at regular intervals.

Figure 25. Number of pieces skipped for each peer when playback

skips and stops, with peers joining at regular intervals.

Figure 26. Number of playback stops for each peer when playback

skips and stops, with peers joining at regular intervals.

481

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

OneSwarm [10], adding “friend-to-friend” file sharing and,
as of version 0.6 and later, the ability to choose between
“streaming” media files (downloading sequentially) or not
(downloading using rarest-first) [18]. As mentioned in
Section I, there is also a project underway to “turn BitTorrent
into a point-click-watch experience much more similar to
YouTube”, based on the popular, closed source BitTorrent
application µTorrent [7].

Another BitTorrent-based service is LiveBT [19], which
replaces the rarest-first method with Most-wanted-Block-
Download-First (MBDF). In MBDF, a peer has a set of most
wanted blocks (pieces), which is a fixed number of
undownloaded pieces. Each peer also knows the most
wanted blocks of its peers. With a probability p the peer’s
own most wanted piece is selected, and with probability 1-p
the most wanted piece of its peers.

The idea of using a weighted priority is not unique to the
DAW method. Wu et al [20] propose a weighted piece
selection method, but for downloading instead of streaming.
Their idea is that peers which hold many pieces are given
greater weight than peers with few pieces when computing
priorities. Whether this could improve performance also in
streaming remains to be seen.

Besides BitTorrent-based solutions, there are also other
projects underway to use peer-to-peer networks for on-
demand streaming. Peer-to-peer networks serve as the
backbone of both Spotify [21] and Voddler [22], the former a
platform for on-demand streaming music, while the latter
enables on-demand movies. Both these services distribute
commercial content and therefore have limitations on usage
as well as do not provide technical details on how their
networks function.

VII. CONCLUSION AND FUTURE WORK
In our first set of simulations, the distance-availability

weighted piece selection method seems to be a better
solution for on-demand streaming than either a
straightforward sequential method or a modified version of
the rarest-first method. Our second set of simulations, where
in addition to the previously mentioned piece selection
methods we also include the one presented in [6], do not
show results contradicting the first set of simulations.
However, the differences seem to be smaller than we
previously thought, and none of the piece selection methods
simulated seemed to be sufficiently good to work perfectly in
the conditions given. However, as we have still only
simulated the theoretical performance of the piece selection
methods, we cannot comment on how they would work in a
real-life environment. Future work on the subject could
include practical implementation and real-world testing of
the distance-availability weighted piece selection method, as
well as comparison to other piece selection methods for
streaming than the ones used for comparison here.

ACKNOWLEDGEMENT
We thank Professor Kaisa Sere who has been very

helpful during this project.

REFERENCES
[1] P. Sandvik and M. Neovius, “The Distance-Availability Weighted

Piece Selection Method for BitTorrent: A BitTorrent Piece Selection
Method for On-Demand Streaming”, In Proceedings of AP2PS '09,
Sliema, Malta, October 2009

[2] B. Cohen, “BitTorrent - a new P2P app”, Yahoo eGroups,
http://finance.groups.yahoo.com/group/decentralization/message/316
0 (Accessed August 2010)

[3] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy and M. Faloutsos,
“File-sharing in the Internet: A characterization of P2P traffic in the
backbone”, Technical report, November 2003.

[4] Ipoque Internet Study 2008 / 2009. Available from
http://www.ipoque.com/resources/internet-studies/internet-study-
2008_2009 (Accessed August 2010)

[5] B. Cohen, “Incentives Build Robustness in BitTorrent”, In Proc. of
IPTPS, 2003.

[6] A. Vlavianos, M. Iliofotou and M. Faloutsos, “BiToS: Enhancing
BitTorrent for Supporting Streaming Applications”, 9th IEEE Global
Internet Symposium 2006 (in Conjunction with IEEE INFOCOM
2006).

[7] µTorrent Labs: Project Falcon, http://www.utorrent.com/labs/falcon
(Accessed August 2010)

[8] A. Legout, G. Urvoy-Keller and P. Michiard, “Rarest First and Choke
Algorithms Are Enough”, In Proceedings of ACM
SIGCOMM/USENIX IMC’2006, Rio de Janeiro, Brazil, October
2006.

[9] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy and A.
Venkataramani, “Do incentives build robustness in BitTorrent?”, 4th
USENIX Symposium on Networked Systems Design &
Implementation (NSDI 2007).

[10] T. Isdal, M. Piatek, A. Krishnamurthy and T. Anderson, “Friend-to-
friend data sharing with OneSwarm”, Technical report, UW-CSE,
February 2009.

[11] D. Choffnes and D. Bustamante, “Taming the Torrent: A practical
approach to reducing cross-ISP traffic in P2P systems”, In
Proceedings of ACM SIGCOMM 2008, August 2008.

[12] A. Nordberg, “Introduction to BitTorrent”, Umeå University, 2006.
Available from
http://www.rasterbar.com/products/libtorrent/bittorrent.pdf (Accessed
August 2010)

[13] B. Cohen, “The BitTorrent Protocol Specification”, January 2008,
http://www.bittorrent.org/beps/bep_0003.html (Accessed August
2010)

[14] P. Sandvik, “Adapting Peer-to-Peer File Sharing for On-Demand
Media Streaming”, Master of Science Thesis, Åbo Akademi
University, May 2008.

[15] A. Legout, G. Urvoy-Keller and P. Michiardi, “Understanding
BitTorrent: An Experimental Perspective”, Technical Report (inria-
00000156, version 2 - 19 July 2005), INRIA, Sophia Antipolis, July
2005.

[16] J.J.D. Mol, J.A. Pouwelse, M. Meulpolder, D.H.J. Epema and H.J.
Sips, “Give-to-Get: Free-riding-resilient Video-on-Demand in P2P
Systems”, Proc. of SPIE, Multimedia Computing and Networking
Conference (MMCN), vol. 6818, article 681804, 2008.

[17] A. Bakker et al, “Tribler Protocol Specification v0.0.2”, January
2009, Available from http://www.tribler.org (Accessed August 2010)

[18] OneSwarm Changelog,
http://wiki.oneswarm.org/index.php/Changelog (Accessed August
2010)

[19] J. Lv, X. Cheng, Q. Jiang, J. Ye, T. Zhang, S. Lin and L. Wang,
“LiveBT: Providing Video-on-demand Streaming Service over
BitTorrent Systems”, pdcat, pp.501-508, Eighth International
Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT 2007), 2007

482

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[20] C. Wu, C. Li and J. Ho, “Improving the Download Time of
BitTorrent-like Systems”, IEEE International Conference on
Communications 2007 (ICC 2007), Glasgow, Scotland, June 2007

[21] Spotify, http://www.spotify.com/fi/help/faq/tech/ (Accessed August
2010)

[22] Voddler, http://www.voddler.com/help/topic/2721821230584819787
(Accessed August 2010)

483

International Journal on Advances in Networks and Services, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/networks_and_services/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

