
353

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Opportunistic Sensing in Train Safety Systems

Hans Scholten and Pascal Bakker
Pervasive Systems

University of Twente
Enschede, the Netherlands

hans.scholten@utwente.nl, aboe@aboe.nl

Abstract—Train safety systems are complex and expensive,
and changing them requires huge investments. Changes are
evolutionary and small. Current developments, like faster -
high speed - trains and a higher train density on the railway
network, have initiated research on safety systems that can
cope with the new requirements. This paper presents a novel
approach for a safety subsystem that checks the composition of
a train, based on opportunistic sensing with a wireless sensor
network. Opportunistic sensing systems consist of changing
constellations sensors that, for a limited amount of time, work
together to achieve a common goal. Such constellations are self-
organizing and come into being spontaneously. The proposed
opportunistic sensing system selects a subset of sensor nodes
from a larger set based on a common context. We show that it is
possible to use a wireless sensor network to make a distinction
between carriages from different trains. The common context is
acceleration, which is used to select the subset of carriages that
belong to the same train out of all the carriages from several
trains in close proximity. Simulations based on a realistic set
of sensor data show that the method is valid, but that the
algorithm is too complex for implementation on simple wireless
sensor nodes. Downscaling the algorithm reduces the number
of processor execution cycles as well as memory usage, and
makes it suitable for implementation on a wireless sensor node
with acceptable loss of precision. Actual implementation on
wireless sensor nodes confirms the results obtained with the
simulations.

Keywords-opportunistic sensing; wireless sensor network; con-
text awareness; activity recognition; train safety.

I. INTRODUCTION

In this paper, we show how opportunistic sensors, which
use a common pattern of movement, are deployed to detect
the composition of a train. The problem was introduced in
[1] and [2] describing how wireless sensor networks en-
hance safety in moving linear structures such as trains. The
wireless sensor network is a subsystem of a railway safety
system to monitor the initial composition of a train and to
detect changes in composition once the initial composition
has been established. Movement as a discriminating factor
for context awareness in wireless sensor networks has been
described earlier [3] [4], but not for trains.

A. Railway Safety Systems

Currently, the rail system in Europe consists of multiple
different safety systems: the countries still rely mostly on a
country-specific system. International European trains have

multiple systems onboard to be able to pass borders and
enter another country and hence another safety system.
Projects in different European countries are working on a
uniform system [5], the European Rail Train Management
System (ERTMS), under supervision of the European Rail-
way Agency [6]. The eventual goal is the adoption of the
system in all participating countries. The draft for the latest
version of ERTMS is known as ERTMS level 3. ERTMS
level 1 and level 2 still consider track sections instead of
trains as sections. Like the old system, a track is divided in
fixed length sections. When a train enters a section, called
a block, no other train is allowed in. The length of a block
is determined on the worst case, considering length, weight
and maximal speed of trains. This implies that a small light
train takes as much space as a large and heavy train. ERTMS
level 3 considers a train as a moving block, keeping a safety
zone around the train in accordance with its length, weight
and speed.

By representing trains as moving blocks, short and light
trains will form smaller blocks than heavier trains, which
have a much longer brake path. This allows more trains
on the same track when compared to a system that uses
static safety zones. Level 1 and level 2 ERTMS systems
use a straightforward approach to detect whether a block is
occupied. When a train enters or leaves a block, its axles
are counted. When the number of axles is equal at both
counts, the block is empty. If not, (part of) the train still
occupies the block. ERTMS level 1 uses signals located at
the side of track for the indication of the availability of
the next zone, whereas ERTMS level 2 communicates this
information by radio using GSM-Rail (GSM-R). ERTMS
level 3, in contrast to levels 1 and 2, does not rely on a
trackside signaling system. Instead, it uses an onboard safety
system that checks and controls the safety zone of the train.
It is imperative that a train can guarantee its integrity, i.e.
its composition is known and no carriages are lost. As no
trackside backup system is available, a dangerous situation
occurs when a train loses a carriage. The next train may
crash into the lost carriage if it is not informed in time. A
system that accurately monitors in real time the integrity of
the composition is a crucial part of ERTMS level 3. Leaving
a carriage behind is not as farfetched as it sounds. It happens
all the time, for example, in switchyards or at stations. In



354

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Freight carriage connection

any case, the train must know its composition and report
changes. Passenger trains are equipped with numerous wired
links between wagons, which can be used to monitor its
carriages.

Freight trains, however, are normally not equipped with
electrical connections between carriages (see Figure 1).
When a train rides at night in the Netherlands, the engineer
manually puts up a light at the last carriage, since the
carriages lack all electrical provisions.

A system for guaranteeing freight train integrity should
preferably operate wirelessly. Because carriages are sched-
uled for maintenance once or twice every year, the new
system should be able to run for at least a year without
human intervention. The system has to operate in all kinds
of weather and should be able to withstand dust, water and
other kinds of abuse.

B. Opportunistic Sensing

”Opportunistic sensing is seen as a way to gather infor-
mation about the physical world in the absence of a sta-
ble and permanent networking infrastructure.” (Opportunity
Workshop at Ubicomp 2010, Copenhagen, Denmark). The
absence of a stable and permanent networking infrastructure
dictates that collected information is either processed and
acted upon inside the network by opportunistic collections
or clusters of nodes [7], or the information is preprocessed
and stored inside the network until there is an opportunity
to forward it outside the network, as is the case in delay
tolerant networks [8] - [18].

Opportunistic sensing and opportunistic networking is of-
ten associated with human-centric ubiquitous systems, such
as in crowd sourcing and participatory sensing applications
[19] - [21] or are focusing on human activity recognition
[22] - [24].

C. Opportunistic Sensing for Train Safety Systems

The proposed method of using opportunistic sensing with
movement as discriminating factor seems overkill, where
a simple detection system based on radio beacons would
be sufficient. Figure 2 illustrates the principle. Once the
decoupled carriages at the back of the train are out of radio
range, an alarm will be raised. The system works for a
single train with no other trains in range. This is not the

Figure 2. Beacons, single train

Figure 3. Beacons, multiple trains

case at stations or switchyards, or, generally, when a train
passes an other on an adjacent track and comes in range
of the other train’s beacons, as shown in Figure 3. The
system would still work if the train had knowledge about
its composition. Periodically checking all beacons in range
would detect any change in the composition of the train.
Because the ID of the beacons in sight are not known a
priori, nor the mapping of IDs to carriages, nor carriages to
trains, there is no way to discriminate carriages in different
trains in close proximity. Additional measures are needed to
discriminate between trains.

This paper investigates movement, or more precise accel-
eration, as a way to distinguish carriages in different trains
and determine a train’s composition. In the remainder of this
paper, we will discuss the collection and analysis of the data
sets to be used in the simulations, the simulation itself and
the implementation on wireless sensor nodes respectively,
followed by a discussion of the results.

II. DATA COLLECTION AND ANALYSIS

As explained in the introduction, movement is used as dis-
criminating feature. However, motion is multi-dimensional
and probably too complex to use in wireless sensor nodes
in an energy efficient manner. Not only processing power
and memory usage might be issues, also running complex
algorithms for longer periods of time consumes large amount
of energy, negatively influencing the operational time of
the system. Because of all these limitations, it might seem
advantageous to deploy a centralized solution with simple
sensors and a server doing all the processing. Raw data
is sent directly to the server, where the correlation of all
carriages is calculated. While this saves on processing and



355

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Wireless sensor node (b) Railway track

Figure 4. Data collection

memory on the sensor node, data sent by radio will be much
higher than in the decentralized case, where processing takes
place on the node. The increase in power consumption by
the radios exceeds the energy savings due to less processing.
Still, the sensors would depend on batteries for their energy
provisioning. The result would be less operational time.

For the distributed, wireless sensor network version, sev-
eral measures can be taken to enable implementation on
nodes:

• Minimize the time the algorithm executes,
• Simplify the algorithm as much as possible, and
• Simplify the input data for the algorithm.

Under normal conditions, a train’s composition will not
change while underway and moving. If a change occurs
under these circumstances, it will be accidentally. We have
seen that a system with radio beacons works to detect these
changes, but only under the condition that the composition
of the train is known a priori. Such a system would be
much simpler and more reliable than any implementation

with accelerometers. It is also much more energy efficient
than running complex algorithms on a wireless sensor node.

A train run has four distinct phases:
• The train is standing still,
• The train starts moving and accelerates,
• The train has a steady speed, and
• The train decelerates and stops.

During the first phase, standing still, nothing changes and
sensor nodes sleep. When the second phase begins, the sen-
sor nodes wake up and the train’s composition is determined.
Once the composition is known, radio beaconing detects any
changes from the initial composition. At the end of phase
four, the train has come to a complete standstill, the nodes
go to sleep again to preserve energy. The algorithm that runs
on the sensor nodes reflects the four phases of a train run:
sleep, determine composition, detect changes from initial
composition, and sleep.

In the following, we will focus on the most complex
second phase, discriminating carriages in different trains and



356

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Collecting data sets

determination of a train’s composition.

A. Collecting the Data

To check the feasibility of the proposed algorithm a num-
ber of simulations with realistic data sets are executed. The
data sets consist of sensor data recorded on a track featuring
multiple stops and curves (see Figure 4b), resulting in a wide
variety of data. Figure 4a shows the wireless sensor node
that is used to sample the data, consisting of an Ambient
muNode 2.0 [25] provisioned with an STMicroelectronics
LIS3LV02DQ accelerometer. The maximum sample rate of
this sensor is 640 Hz, but the combination of hardware
and software limits the sample rate to 160 Hz. The sensor
nodes are aligned with the horizontal x-axis in the driving
direction, the y-axis in the horizontal sideways direction and
the z-axis in the vertical direction.

The data sets are recorded with two sensor nodes in two
distinct carriages in the same train during several runs (see
Figure 5). The data sets from sensors in different runs of
the same train are used to simulate different trains. The
sensor data from each sensor node is recorded real-time
with laptops. All data are time stamped by the sensor nodes
and the sensor nodes are connected via their radios to
synchronize them.

B. Analyzing the Data

Figure 6 depicts raw data with a sampling frequency of
155 Hz of a journey between two stations with one station in
between. The train is already moving when the graph begins.
The two graphs are shifted up (y-axis) and down (x-axis) for
a better overview.

The bottom graph shows the x-axis, the driving direction,
and illustrates changes in speed of the train. After the initial
acceleration (not shown) the speed settles to a constant value
(acceleration is 0). Just before the middle station, the train
decelerates in stages and comes to a standstill with a shock.
Leaving the middle station the train accelerates to a constant
speed.

A
cc
el
er
at
io
n 
(r
aw
 d
at
a 
+/
- 2
04
7,
 +
/- 
2g
)

nearing Borne
standstill Borne

leaving Borne

nearing Hengelo

y
x

Samples (x 10,000)

Figure 6. Accelerometer x- and y-axis

The top graph depicts the sensor’s y-axis, movement side-
ways, and just before reaching the middle and the terminal
station the train is crossing a switch changing tracks. In
between the graph exposes short sideway movements of the
train inside the track. Even when standing still, sideway
movement is detected, though with a smaller amplitude than
when the train is moving. This is contributed to noise the
accelerometer generates. This noise is also present in the x
and z direction and must be filtered out before the sensor
data can be processed further.

Not shown in the graph is the sensor data of the z-axis.
This data did show clearly when a train is moving or not.
Further analysis learned that the data did not have enough
features to make a distinction between trains when they start
moving at the same time. In the remainder of this section
we will focus on movement in the other two directions.

Figures 7 and 8 show frequency spectrum diagrams for
sampled data from the x- and y-axes of the accelerometers
in carriages over a time period from 0 till 47 seconds. Color
is used to depict the intensity of frequencies in the sampled
data. Going from low to high intensities, the colors blue,
green, yellow and red are used.

Figure 7 shows the frequency spectrum for the x-axis
data of two carriages in the same train starting to move.
Only frequencies lower than the sampling frequency/2 are
considered: 0 to 80 Hz. The spectra seem similar in the
low frequencies, but quite different in the high frequencies.
The latter can be contributed to the already mentioned noise
of the accelerometers. The spectra of two carriages in two
different trains on the same section of the railway track
(not shown) differ in all frequencies, but the difference in
the lower frequencies is smaller than in the higher ones.
Closer inspection of the spectra and a preliminary correlation
of sensor data in different frequency bands indicates that
the most usefull discriminating features are present in a
frequency band of 0 to 2Hz. Before the sensor data are
further processes a high-off filter is applied with a cut-off
frequency of 2 Hz.

Figure 8 shows the spectrum for movement in the y



357

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fr
eq
ue
nc
y 
(H
z)

Time (s)

(a) Spectrum carriage 1, train 1, x-axis

Time (s)

Fr
eq
ue
nc
y 
(H
z)

(b) Spectrum carriage 2, train 1, x-axis

Figure 7. Frequency spectrum x-axis of two carriages in the same train

Time (s)

Fr
eq
ue
nc
y 
(H
z)

(a) Spectrum carriage 1, train 1, y-axis

Time (s)

Fr
eq
ue
nc
y 
(H
z)

(b) Spectrum carriage 2, train 1, y-axis

Figure 8. Frequency spectrum y-axis of two carriages in the same train

direction of two carriages in the same train. Though there
are similarities in both spectra, they are much less than for
the x direction. A complication is that the spectrum of a
carriage in a different train (not shown) is similar to those
shown.

Analysis of the collected movement samples shows that
from all data in the three axis x, y and z, only the sensor
data of the x-axis, which is the direction the train rides,
are usefull. The data are highly polluted by noise, visible
in the spectrum in the higher frequencies. The noise is
generated by high frequency movements of the train and
by the accelerometer and must be filtered before the data
can be used. We also found that all discriminating features
are in a frequency band of 0 to 2Hz, the relatively slow
movements of the train.

C. Preprocessing the Data

To filter the data, a second order Butterworth low pass
filter is used. This choice is made because this type of filter
is tested and runs on the used wireless sensor nodes. Figure
9 shows the results for the x-axis data samples of three
carriages. The top and the bottom graph are from carriages in

the same train. The graph in the middle is from a carriage in
a different train. The graphs are synchronized, i.e., they are
shifted in time so they show the trains starting at exactly the
same time. In practise it will rarely happen that two trains
in communication range will accelerate at exactly the same
time. This is even discouraged, as it will cause peaks of
electricity consumption in the power grid. Their is a clear
difference between the two trains. The graph of the second
train is steeper as a result of a higher acceleration.

The data sampling rate in the original data set as shown
in the graphs is 155 samples per second. Because the data is
filtered at 2 Hz, this high sampling rate is clearly overkill and
can be reduced significantly in the final implementation. A
frequency of 35 samples per second gives the same results
as before. We did not test lower sampling rates, although
this might have been better to reduce the CPU and memory
consumption.

D. Data Correlation

The last step in the algorithm is to check whether two
carriages share the same context by way of correlating
the data. The correlation between two nodes is done by



358

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Number of samples (@155 Hz)

A
cc
el
er
at
io
n 
(+
/- 
20
47
, +
/- 
2g
) train 1, carriage 1

train 2, carriage 1

train 1, carriage 2

(a) Unfiltered data

train 1, carriage 1

train 2, carriage 1

train 1, carriage 2A
cc
el
er
at
io
n 
(+
/- 
20
47
, +
/- 
2g
)

Number of samples (@155 Hz)

(b) Filtered data

Figure 9. X-axis acceleration data from three carriages

(a) two carriages in the same train (b) two carriages in different trains

Figure 10. Correlation of two carriages with varying window sizes

using the Pearson product-moment correlation coefficient.
The Pearson correlation is +1 if there is a perfect positive
linear relationship, and -1 if there is a perfect negative
linear relationship. If the value is 0 there is no relationship.
The closer the coefficient is to +1 or -1, the higher the
relationship between the nodes. The correlation process uses
a sliding window over which the data are compared. A wider
window normally leads to a more precise result, but also
takes longer to produce this result. A smaller window gives
a better reaction time, but the result is less reliable. So a
trade-off has to be made.

Figure 10a gives the correlation results for two carriages
in the same train with window sizes varying from 155 to 775
samples, corresponding with 1 to 5 seconds. The measured
time frame is just over 7000 samples, or 45 seconds.
Remember that the detection of the composition of the train
only takes place during the first seconds after the train
starts moving. Once the composition is known, it suffices to

periodically test the presence of the initially found carriages
by means of the radio beacons. The composition must be
known within the first seconds of a ride. Therefore, the
correlation results after 2000 samples, or approximatelly 13
seconds will be ignored. Figure 10a shows that over the time
frame of the first 2000 sample a window size of 155 samples,
or 1 second, is enough. The Pearson correlation coefficient
is already very close to +1. However, the algorithm must
also avoid false positives: carriages in other trains that are
seen as carriages of the same train. Thus, a carriage in a
different train has to be positively identified as such. This
translates in a correlation coefficient of 0 for two carriages in
different trains. Figure 10b shows that a window size of 155
samples is not enough. The correlation coefficient alternates
between positive and negative values and is nowhere near a
constant value of 0. To distingish two carriages in different
trains a minimum window size of 620, or better 775 samples
is needed.



359

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To find the composition of a train, the correlation algo-
rithm not only has to identify carriages in the same train,
but also, to avoid false positives, identify carriages in other
trains. Identifying carriages in the same train is very fast and
only takes 1 second. However, identifying carriages in other
trains takes 5 seconds.

III. IMPLEMENTATION

In the following, some implementation details will be
discussed. All previous simulations are done with Matlab
[26]. They show that identifying carriages in the same
or different trains is feasible. They do not show that the
algorithms to identify carriages will execute on a wireless
sensor node. Matlab runs on powerfull computers with
sufficient resources, while wireless sensor nodes are resource
lean. Before the algorithms are suitable to run on the nodes
they must be optimized, taking into account limitations such
as CPU power, CPU speed, available memory and energy
consumption.

A. Optimizations

The Matlab simulation takes an approach where ev-
erything is centralized. It assumes that the identification
algorithm executes in one central place and that all data are
available when needed. In reality this is not the case, the
algorithm and data are distributed over the wireless nodes.
Every carriage only has its own data, but to correlate its
movement with that of its neighbors, it needs their movement
data as well. It will be clear that the correlation of two
neighbors only needs to be calculated once. This calculation
can take place at either one of the neighbors. This process is
optimized by dynamically forming master/slave pairs. The
slave sends its data to the master and the master calculates
the correlation. When the calculation has finished, the master
sends the correlation results back to the slave. For every
master/slave pair the movement data are communicated once
and the correlation calculations is performed once, thus
reducing both bandwidth and execution load. Which of the
neighbors is master and which one slave is not essential.
After each calculation the neighbors turn role to balance the
energy consumption in the nodes more evenly.

The next step is optimization of the correlation algorithm.
In its original form, all data in the sliding time window are
used in the calculation [27]. When the window moves, the
oldest data is replaced by new data, while all other data in
the middle of the window stay the same. Marin-Perianu et
al. [4] propose an optimization to this correlation calcula-
tion algorithm. The proposed algorithm stores intermediate
values that can be used in the next calculation. This reduces
the amount of calculations necessary for the computation of
the correlation coefficient in the next window at the cost
of a slightly increased memory usage. One disadvantage
is, when running on small devices, the accumulation of
rounding errors. The wireless sensor nodes execute their

calculations with a limited number of bits and thus with
limited precision. Every time a previous intermediate result
is used, its rounding error is added to the rounding error
of the current calculation. In due course this rounding error
accumulates in unacceptable error margins, giving the wrong
results. This can be counteracted by periodically resetting the
intermediate results and start with a ”fresh” sliding window.
Because in our case the algorithm runs for a limited time
- only the first 5 seconds-, the error is small and within
acceptable margins. Comparing the algorithm as run on the
node with the Matlab version, no differences were found in
the time frame of 5 seconds the correlation takes.

One more change in the original Matlab routines must be
made before they can be implemented. The Matlab versions
of the high-off filter and correlation algorithm are based on
calculations that use floating point numbers. Using floating-
point calculations on the wireless sensor nodes would stress
the CPU unacceptably. Fixed-point calculations are better,
though at the cost of possible loss of precision. Errors in
rounding results would accumulate and might lead to signifi-
cant deviations from the desired results over time. Figure 11
shows the difference between (Matlab version) floating point
and fixed point calculation for the correlation algorithm.
The deviation starts to become evident 15 seconds. Since
the correlation algorithm to determine the train composition
takes place in the first 5 seconds, replacing floating point
by fixed point calculations does not influence the end result.
The same results are observed for the high-off filter.

B. Timing and Memory Usage

Running the composition algorithm is distributed over all
carriages of the train. The carriages are split in master/slave
pairs, where each pair calculates the correlation between
the master and the slave. The actual correlation calculation
is done by the master. Before this calculation begins, the
input sensor data is filtered. Master and slave filter their
own data. When ready filtering the data, the slave sends its
filter output to the master, after which the master correlates.
The execution time depends on the size of the sliding
window size of the correlation algorithm. Figure 12 shows
the execution times for master and slave for increasing
window sizes from 35 to 175 samples. Because the final
sample rate implemented on de wireless sensor nodes is 35
samples per second, this correspondents with window sizes
from 1 to 5 seconds. For a window size of 5 seconds, the
execution times for master and slave are 171.9 msec and 85.9
msec respectively. The routines are executed uninterrupted
and do not show significant deviations. Some of the ”extra”
time the slave has, is used to assemble the filter data into
packages to be sent to the master. The number of calculations
that can be executed is 1000 / 171.9 is 5.8 per second.

The amount of memory that is needed for running the
algorithm on a wireless sensor node depends on the number
of neighbors it sees. With every neighbor the node will



360

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Comparison of floating point and fixed point calculations

Execution time (msec.)

Figure 12. Execution times on a muNode with MSP430 microcontroller

for a master/slave pair. Table I summarizes the memory
consumption per master/slave pair. Besides memory to store
the sample data for one sliding window, the node stores
intermediate results of the correlation calculation. The total
amount of bytes is 460 per master/slave pair.

A standard Ambient Systems muNode 2.0 has 10kB of
RAM available. For the normal operation of the node 2kB
has been reserved, which leaves 8kB for the correlation
algorithm. Given the memory consumption of 460 bytes for
one master/slave pair and the availability of 8192 bytes, a
node can store up to 16 master/slave pairs in memory.

IV. CONCLUSION

Train safety systems are going through a transition
at the moment. Traditional safety systems depend on
infrastructure-based sensors to detect the whereabouts of
a train. These systems have serious drawbacks. It is a
static infrastructure, where the track is divided in sectors,
or blocks, of equal length. The length of a block is defined
worst case, by the fasted, heaviest and longest train possible.
As a result, the rail infrastructure is used far under its

Table I
MEMORY CONSUMPTION PER MASTER/SLAVE PAIR

real capacity. This situation is complicated by the fact that
European countries have their own safety system. Border
crossing trains must have provisions on board for all safety
systems on their route, which can accumulate to up to seven
systems. The European countries have decided to develop
a new system (ERTMS), where the safety system is not in
the infrastructure, but on board the trains. One of the safety
subsystems is responsible for the integrity of the train. It
checks the composition of the trains and reports and changes
of the initial composition.

In this paper, we have shown that such a subsystem
can be implemented with a wireless sensor network. This
network is deployed as an opportunistic sensor system
that makes a selection out of a much larger set based
on a common context. In this case, motion information is
used to distinguish carriages belonging to different trains.
The motion information consists of data obtained by ac-
celerometers attached to individual train carriages. This data
stream then was analyzed with Matlab on a PC to extract
the best possible features to discriminate carriages. While
sideways motion gives information on track changes and
vertical movement indicates the quality of a track, the best
information for our purpose is movement in the direction



361

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of travelling (x-axis). A spectrum analysis learns that not
all frequency components in the sampling data are equally
useful: only those below a frequency of around 2 Hz are
significant to separate carriages. After filtering, the data
from two different carriages are correlated with a correlation
window of 5 seconds. We found that a smaller window of
approximately 1 second suffices to find two carriages in the
same train, but also leads to false positives for carriages in
different trains. Extending the window to 5 seconds, no false
positives were detected.

After the theoretical confirmation that motion information
can be used for context awareness, the algorithm is imple-
mented on wireless sensor nodes. However, the nodes used
have several limitations. One limitation is the absence of
floating point calculations. The filter and correlation routines
have been rewritten, so only fixed point calculations are
used. This might lead to errors due to accumulation of
rounding successive results, but we showed that in the time
frame the algorithms run this is not a problem.

The second limitation is power consumption. Filtering and
correlation are so computing intensive that they cannot run
over longer periods of time without exhausting the battery
quickly. A first step is the reduction of the sampling rate
from the original 160 Hz to 35 Hz. This is made possible
because only the lower frequencies in the sampling data
are significant. A lower sampling frequency would have
been possible, but this does not substantially contribute to
decreasing the processing load. Sampling data, filtering and
performing one correlation per second takes 171.9 ms (worst
case), which results in a duty cycle of around 17 percent.
This exhausts the battery in a couple of hours, at most
days, where 6 months is needed. The solution is found
by executing the algorithm only for a period of 5 seconds
from the moment the train starts moving after each stop.
This is enough to establish the composition of the train
and distinguish own carriages from those of different trains.
During the ride, the initially detected carriages (but not the
sequence of the carriages) needs to be confirmed, which can
be accomplished by pinging all known carriages at regular
intervals.

The last limitation is memory capacity. In our algorithm,
carriages are correlated in pairs. A carriage is part of as many
pairs as it has neighbors. Each pair consumes up to 460
bytes of memory in both partners. With the given memory
capacity, a node can accommodate up to 16 neighbors. With
a maximum of 6 correlations per second, it takes a node 3
seconds to check all its neighbors.

The circumstances in which the data are collected for the
simulations, and the implementation is tested are a worst-
case scenario. The trains that are used in the tests are of the
same type with similar characteristics. They all exhibit the
same pattern in acceleration and braking, making the data to
correlate very similar. This is the main reason it takes up to
5 seconds to check carriages from different trains and only

1 second when they are in the same train.
A future research topic is the use of better accelerometers.

Those used now measure up to 2g acceleration and can
be used on trains that accelerate moderately. However,
heavy trains that accelerate and brake more slowly have
less distinctive movement patterns and need more sensitive
sensors.

The principle of opportunistic sensor networks is shown
here in an application that determines the composition of a
train. The same principle can be used in many more appli-
cations, where movement, or any other type of sensor input,
is a distinctive feature. An example is a training application,
pairing people with objects they hold in their hands [28].
An other class of applications concerns logistics of goods,
where groups of objects must be tracked. An example of
this application class is a flower auction, where flowers in
containers are loaded in trucks for transport. Correlation
of the movement of the truck with the loaded containers
checks whether the right containers are in the right truck.
More recently, research has started in the SenSafety project
in the Dutch national research program COMMIT, using
sensors in mobile phones in opportunistic sensor networks
[29]. Anticipated distinctive features will be acceleration,
direction of movement (compass), sound and camera input.
The area of application is safety in public spaces.

ACKNOWLEDGMENT

The work on opportunistic sensing in this paper is sup-
ported by the SenSafety Project in the Dutch national
research program COMMIT. Other parts are supported by
the iLAND Project, ARTEMIS Joint Undertaking Call for
proposals ARTEMIS-2008-1, Project contract no. 100026

REFERENCES

[1] J. Scholten, J. and P. Bakker., Opportunistic Sensing in Wire-
less Sensor Networks, The Tenth International Conference on
Networks, ICN 2011, January 23-28, 2011, St. Maarten, The
Netherlands Antilles, pp. 224-229. IARIA.

[2] J. Scholten, R. Westenberg and M. Schoemaker , Trainspotting,
a WSN-based train integrity system, The Eighth International
Conference on Networks, ICN 2009, 1-6 March 2009, Gosier,
France. pp. 226-231. IEEE.

[3] S. Bosch, M. Marin-Perianu, R.S. Marin-Perianu, J. Scholten
and P.J.M. Havinga, FollowMe! Mobile Team Coordination in
Wireless Sensor and Actuator Networks, Proceedings of the
IEEE International Conference on Pervasive Computing and
Communications 2009, 9-13 March 2009, Galveston, Texas,
USA. pp. 151-161. IEEE.

[4] R.S. Marin-Perianu, C. Lombriser, P.J.M. Havinga, J. Scholten
and G. Troester, Tandem: A Context-Aware Method for Sponta-
neous Clustering of Dynamic Wireless Sensor Nodes, Proceed-
ings of the First International Conference on Internet of Things
(IOT2008), March 2008, Zurich, Switzerland. pp. 341-359.
Lecture Notes in Computer Science (4952). Springer Verlag.



362

International Journal on Advances in Networks and Services, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] European Rail Traffic Monitoring System, [Online].
http://www.ertms.com. January 2012.

[6] European Railway Agency, [Online]. http://www.era.europa.eu.
January 2012.

[7] H. Scholten, R. Westenberg, and M. Schoemaker, Sensing train
integrity, IEEE Sensors 2009 Conference, 25-28 October 2009,
Christchurch, New Zealand. pp. 669674. IEEE.

[8] R.S. Schwartz, E.M. van Eenennaam, G. Karagiannis, G.
Heijenk, W. Klein Wolterink and J. Scholten, Using V2V com-
munication to create Over-the-horizon Awareness in multiple-
lane highway scenarios, IEEE Intelligent Vehicles Symposium
(IV) 2010, 21-24 June 2010, La Jolla, CA, USA. pp. 998-1005.
IEEE.

[9] M. Kumar, Distributed computing in opportunistic environ-
ments, UIC 09: Proceedings of the 6th International Conference
on Ubiquitous Intelligence and Computing, Berlin, Heidelberg,
2009. Springer Verlag.

[10] L. Lilien, A. Gupta, and Z. Yang, Opportunistic networks
for emergency applications and their standard implementation
framework, Performance, Computing, and Communications
Conference, 2002. 21st IEEE International, 0:588593, 2007.
IEEE.

[11] L. Pelusi, A. Passarella, and M. Conti, Opportunistic network-
ing: data forwarding in disconnected mobile ad hoc networks,
Communications Magazine, IEEE, 44(11):134 141, November
2006. IEEE.

[12] I. Akyildiz, W. Su, and Y. Sankarasubramaniam, A survey on
sensor networks, IEEE Comm. Magazine, vol. 40, pp. 102114,
2002. IEEE.

[13] T. Spyropoulos, K. Psounis, and C. Raghavendra, Single-copy
routing in intermittently connected mobile networks, in Proc.
Sensor and Ad Hoc Communications and Networks (SECON),
2004, pp. 235244.

[14] A. Vahdat and D. Becker, Epidemic routing for partially
connected ad hoc networks, Department of Computer Science,
Duke Univeristy, Durham, NC, Tech. Rep., 2000.

[15] Y. Wang and H. Wu, Delay/fault-tolerant mobile sensor
network (dftmsn): A new paradigm for pervasive information
gathering, IEEE Trans. Mobile Computing, vol. 6, pp. 1021
1034, 2007. IEEE.

[16] A. Lindgren and A. Droia, Probabilistic routing protocol
for intermittently connected networks, Internet Draft draft-
lindgren-dtnrg-prophet-02, Work in Progress, 2006.

[17] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, Max-
prop: Routing for vehicle-based disruption-tolerant networks,
in Proc. of IEEE INFOCOM, 2006. IEEE.

[18] D. Camara, C. Bonnet, and F. Filali, Propagation of public
safety warning message: A delay tolerant approach, in Proc.
IEEE Communications Society WCNC, 2010. IEEE.

[19] R. Murty, G. Mainland, I. Rose, A. R. Chowdhury, A. Gosain,
J. Bers, and M. Welsh, Citysense: A vision for an urban-
scale wireless networking testbed, Proceedings of the 2008
IEEE International Conference on Technologies for Homeland
Security, pages 583588. 2008. IEEE.

[20] M. Wirz, D. Roggen, and G. Troester, Decentralized detection
of group formations from wearable acceleration sensors, Pro-
ceedings of the 2009 IEEE International Conference on Social
Computing, August 2009. IEEE.

[21] M. Wirz, D. Roggen, and G. Troester, A methodology towards
the detection of collective behavior patterns by means of body-
worn sensors, Proc. of UbiLarge workshop at Pervasive, 2010.
IEEE.

[22] N. Davies, D. P. Siewiorek, and R. Sukthankar, Special
issue: Activity-based computing, IEEE Pervasive Computing,
7(2):2021, 2008.

[23] S. Mann, Humanistic computing: wearcom as a new frame-
work and application for intelligent signal processing, Pro-
ceedings of the IEEE, 86(11):21232151, 1998. IEEE.

[24] B. Myers, J. Hollan, I. Cruz, S. Bryson, D. Bulterman,
T. Catarci, W. Citrin, E. Glinert, J. Grudin, and Y. Ioanni-
dis, Strategic directions in human-computer interaction, ACM
Computing Surveys, 28(4):794809, 1996. ACM.

[25] Ambient Systems, [Online]. http://www.ambient-systems.net.
January 2012.

[26] MATLAB - The Language Of Technical Computing, [Online].
http://www.mathworks.com/products/matlab/. January 2012

[27] Correlation and dependence, [Online].
http://en.wikipedia.org/wiki/Correlation. January 2012.

[28] S. Bosch, R.S. Marin-Perianu, P.J.M. Havinga, M. Marin-
Perianu, A. Horst and A. Vasilescu, Automatic Recognition of
Object Use Based on Wireless Motion Sensors, International
Symposium on Wearable Computers 2010, 10-13 October
2010, Seoul, South Korea. pp. 143-150. IEEE.

[29] COMMIT, [Online]. http://www.commit-nl.nl. January 2012.


