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Abstract—Most indoor navigation applications need a real-
istic description of ways that is easy to understand, remember,
and follow. In this paper, we propose a bitmap-centric model
that enables the on-demand computation of such ways on
smartphones. We explain the creation of the model with
the help of common bitmap floorplans by identifying rooms,
doors, and their topological relationship, and we describe
the generation of navigation graphs from our model. Those
navigations graphs are efficiently calculated, as they are for-
mulated as sequences of bitmap operations. Smartphones are
well-optmized for such operations, as they are needed for the
graphical user interface, too. The final results are realistic
and easy to follow, which is achieved with the help of an
algorithm for the identification of relevant landmarks. We also
show the results of a performance analysis of the algorithms
implemented on a standard smartphone, demonstrating the
feasibility of our approach.

Keywords-Indoor Navigation; Environmental Models; Image
Processing; Indoor Positioning;

I. INTRODUCTION

In the last years, many new multimedia services have been
designed. Furthermore, the ongoing trend towards mobile
computing and the immense development in the field of
cellular phones lead to more and more context-information
that can actually be used in numerous applications from
the field of location based services. While it is comparably
easy to provide location based services for the outdoor area,
it is much more difficult to do the same for the indoor
area. In the field of indoor positioning and navigation,
there are many problems, which have been solved for the
outside. The first problem is the availability of digital map
data. While for most outdoor location based services the
map functionality offered by major Internet companies (e.g.,
Google Maps) is enough, there is not yet a comparable
service for the indoor area. There are several reasons behind:
The complexity of indoor maps would be much higher than
outdoors (different floors, differences in the treatment of
free space). Moreover the content of indoor maps is often
protected by intellectual property rights of architects. To
enable more users to generate map data for indoor navigation
purposes and to enable crowdsourcing approaches to the
lack of environmental information, some algorithms were
proposed in [1], which enable simple bitmap floorplans to
be used for navigation. In this publication, these concepts
are extended to a sufficiently detailed environmental model

for indoor navigation applications.
Indoor navigation is a very promising technology. People

want to have technological support for indoor orientation,
which is comparable to the outdoor situation, especially in
very complex buildings (industrial buildings), buildings not
known to the majority of guests (foreign airports, exhibi-
tions), or buildings not known exactly enough for safety
services (firefighter, police, etc.). The most difficult task for
indoor navigation is of course the positioning of the users.
But in the last decade many promising technologies are un-
der development, which will solve this problem completely
in the near future. These include classical signal-strength
methods based on Wireless LAN [2]–[8] or more specialised
approaches based on UWB [9]–[11], as well as advanced
statistical treatments of this measurement data [12]–[15].
Beside these propagation-based systems there have been
proposals, which use GPS pseudolites and similar dedicated
infrastructure [16]–[18], the variation of the magnetic field
[19]–[21], or the variation of the acoustic background spec-
trum [22].

Furthermore, cellular phones are becoming more and
more powerful in terms of calculational power as well as
in terms of sensing capabilities. A complete integration of
all data that a modern cellular phone can sense will lead to
indoor positioning with acceptable accuracy in the future.

Often, indoor navigation has been implemented in a rela-
tively small area due to the focus on positioning technology.
In such small settings it is not really important to have
efficient algorithms for several tasks. However, large-scale
indoor navigation is an upcoming topic [23], [24].

With this paper, we want to introduce a bitmap-centric
environmental model for use within indoor navigation ap-
plications. Using bitmaps, we follow a minimal modelling
effort approach, as bitmaps can be generated from CAD-data
or be scanned from a blueprint or even generated by hand by
non-specialists using an image manipulation program. The
drawback of such an approach is that bitmaps basically do
not provide a method to store semantic models, such as the
interconnection of rooms. However, this is easy to overcome,
if we define a symbolism. In this paper, we provide a bitmap
symbolism very near to the typical symbolism of floorplans
(e.g., any floorplan can easily be completed and checked by
non-specialists using a drawing program).

This symbolism allows us to find rooms and doors,
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generate an interconnection graph, calculate shortest routes
based on this navigation graph and, by removing the door
symbols and calculating a shortest path on a per-pixel
basis, we get a candidate for a shortest path inside the
floorplan. Unfortunately, such a path will keep near walls. To
remedy this effect, we provide two algorithms, which have
already been presented in [1]. The first one allows for the
transformation of a shortest way into an augmented form,
which is easy to understand, remember, and follow.

The second algorithm allows to enhance the visualisability
of a given way. Navigation in general is often based on a
waypoint graph [25], [26]. A waypoint graph consists of a
set of waypoints and an edge inbetween those waypoints,
which are directly reachable from each other (usually on a
straight line of walking). As the impact of the graph size on
the performance of shortest path algorithms is high, people
have studied algorithms generating small graphs. However
the reduction of the number of waypoints in a graph leads
to fewer ways inside the graph. Hence, the shortest way
inside the graph is not a way that a human being would
choose. One of the smallest and most efficient graphs is
for example the corner graph. The corner graph is a graph
containing all corners of the building (map) as vertices and
an edge between two corners if and only if the direct line
inbetween these two points is inside the building and free
(walkable) space. The resulting ways tend to scrape along
walls as can be seen in Figure 1(a). Another well-behaved
form of a navigation graph consists of a subset of a grid of
waypoints in navigation space defined by some properties
(such as a minimal distance to a wall and being inside the
building) and edges between adjacent waypoints if there is
free space inbetween. A shortest way inside such a graph
can contain some flaws as can be seen in Figure 1(b). In this
example the relatively small grid size leads to the effect that
the chosen way is too near to the upper wall. This type of
problem is exactly what we want to remedy with the second
algorithm in this paper.

When it comes to indoor navigation it is essential to fix a
model of the surroundings. It is important to define exactly,
in terms of available data, what is meant when talking for
instance about a room or a door. In the following chapter,
we give possible definitions for this in terms of images.
Of course there are other views (especially concerning GIS
databases), which can be more flexible, but our choice is
made on the background that good GIS data does seldom
exist for the indoor area, while a basic floorplan (possibly
scanned from a building blueprint) is almost always avail-
able. Furthermore, cellular phones have more difficulties
with handling vector GIS-data and the associated queries
than with handling and manipulating bitmaps. Moreover, the
standardisation of bitmap file formats allows for flexible and
sustainable treatment of indoor navigation data.

In the following Section, we describe an environmental
model in terms of bitmap floorplans. In Section III we

explain, how to extract the needed room and navigation
information out of said floorplans, in Section IV we explain
the problem of finding relevant landmarks and describe an
algorithm solving this problem. In Section V we describe an
algorithm to enhance the visualizability of ways, which also
clarifies turning points useful for textual description of the
way. We then explain an implementation of this algorithm
for mobile phones and give experimental results on the
performance. Section VII finalizes this paper with a outlook.

II. THE INDOOR ENVIRONMENTAL MODEL AND ITS
ASSOCIATION WITH BITMAPS

In the following paragraphs, we want to describe exactly
our environmental model and how it is setup with different
bitmaps. Starting with a building (or site) in some reference
system, we define the bitmap projection by first project-
ing the building information into an orthogonal coordinate
system and map the bounding box of the building to a
bitmap by a choice of pixel size in terms of the orthogonal
coordinate system. This pixel size can be used to mediate
between a small bitmap using large pixel sizes and fine-
grained geometry representation using small pixels.

For this bitmap floorplan we start with some definitions,
which do not exactly resemble the definitions of common
agreement.

Definition 1: An area is a subset of available pixels.
Note that an area need not be connected or otherwise have

properties, which the term area describes in other contexts.
Definition 2: The 4-neighbour-floodfill operation at

(x, y) is defined to fill the pixel at (x, y), if it is of the
same colour as the initial pixel and continues with the
neighbouring pixels (above, left, right and below) of the
same color.

Definition 3: The floodfill-closure of a point (x, y) is the
area inside the bitmap that would be filled by a 4-neighbour-
floodfill operation at (x, y) with a colour that is not used
elsewhere in the bitmap.

Definition 4: An area is called floodfill-connected, if and
only if it is the floodfill-closure of one (and hence any) of
its points.

Definition 5: A room is a floodfill-connected walkable
(non-black) area.

Definition 6: The outside-space is the floodfill-closure of
the pixel coordinate (0,0).

Definition 7: A room R1 is inside another room R2 if
and only if R1 is in the convex closure of R2.

Of course, this definition does not recover the usual term
of a room being inside another room. But as it is unlikely
that a room that is contained in another room in our sense
is not reachable easily this discrepancy to the real world is
not severe.

With these definitions in place, we formulate some prop-
erties that a floorplan should have for the application of our
algorithms below:
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(a) A shortest way inside a corner graph (b) A shortest way inside an accessibility graph

Figure 1. Examples of waypoint graphs and problems

• Closed-Building-Property: The building is closed by
black lines and completely surrounded by white space.
This essentially means that the outside space resembles
the usual definition of what is outside a building.

• Doors-Are-Rooms-Property: A door inside the building
is drawn such that it itself is a room in the sense of
Definition 5. An example of a legal door and an illegal
door is given in Figure 2.

• Walkable-Space-Is-Known: There is a means of telling
whether a straight line between two points lies in
walkable space (which is defined to be the space where
a human being can walk).

For the rest of the paper, we assume that we are given a
bitmap - simply called floorplan in the sequel - where these
properties hold. Especially, we assume, that the walkable
space is provided as a marker color (say white) in the map.
Then the property ”Walkable-Space-Is-Known” is given by
a simple line painting algorithm, which checks that all pixels
in the line are of said marker color.

A. Map Symbol Recognition in Mobile Navigation Systems

The environmental model described so far is really mini-
malistic. A typical environmental model is a representation
of data such that a given set of operations is possible. For
the GIS-community working with large server infrastructures
and desktop computing, this is interpreted in the sense that
the set of operations should be as big as possible, but with
minimal cost for the individual operation. The size of the
model and the complexity of generating such a model are
widely ignored. This can be best subsumed by saying that
traditional development of location models for ubiquitous
computing is based on the question “How should it be?”.

A classical discussion of features a location model should
provide is given in [27]. Essentially, the authors discuss
some examples and queries and conclude that a location
model should provide

• Object Positions: Positions of objects have to be mod-
elled (either in form of geometric coordinates or in form
of symbolic coordinates).

• Distance Function: Positions should be interrelated by
a well-defined distance function.

Figure 2. Examples of different doors. The left door is not legal with
respect to our properties while the right door is legal

• Topological Relations: Spatial containment and spatial
connection should be modelled.

Furthermore, they propose to regard these requirements
in conjunction with the requirement of minimal modeling
effort. The paper then explains some types of basic location
models (e.g., Set-based models, Hierarchical models, Graph-
based models, etc.) and how they can be structured to fulfill
the requirements above.

Our basic “Indoor Environmental Model” does not fulfill
the requirements above directly, but we will show how easy
it is to come up with complete support for these queries by
using some combination of algorithms, and that it is possible
to embed all additional information into the floorplan images
EXIF-tags.

1) Object Positions and Orientation: Object positions
are easily modeled with our approach. A global coordinate
consists of a unique identifier of the file (possibly an URL)
together with a pixel coordinate (x, y) inside the image. It
is of course possible to fix another scale (e.g., one unit on
the axis is one meter in the real world) at the expense of
saving the scale somewhere or defining it globally for the
complete system.

2) Distance functions: As a distance function, we can
use the Euclidian distance between pixel coordinates. This
basic distance function can be used to calculate the distance
between two individual places (e.g., two pixel coordinates
(x1, y1) and (x2, y2)) or even as the distance between two
rooms (compare Definition 5).
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Figure 3. The training image (excerpt)

3) Topological Relations: The relation of a room being
contained in another room is immediately available by using
the convex closure (see Definition 7). This can be easily
extended to any area, including the union of some rooms, a
room and its neighbours et cetera. The topological relation
of being connected to something is not modelled explicitly,
but in the next Section, it will be explained how a navigation
graph with one vertex per room from the given floorplan is
constructed.

III. AUTOMATED CONSTRUCTION OF A NAVIGATION
GRAPH FROM A FLOORPLAN

A navigation graph is a graph consisting of vertices and
edges. A vertex has a coordinate and an edge connects
two vertices, if a direct walking connection is available
inbetween. Such a graph structure can be used to easily
and efficiently calculate ways between two points. To keep
the graph small enough, we decided to use the rooms as
symbolic coordinates. So the navigation graph consists of
one vertex per room. If we now discuss the creation of
edges, we need two functions based on two given vertices:
First of all, we want to detect whether a given vertex
constitutes a room and secondly, we need to decide whether
two rooms are adjacent to each other. Then the edges in the
navigation graphs are exactly between those vertices, whose
corresponding rooms are neighboring and where exactly
one of them is a door. For an automated construction of
a navigation graph, we only need a stable and fast method
for detecting doors (e.g., rooms, which have the shape of a
door) and a fast method for detecting all neighboring rooms.

For enhanced performance, we will only give the graph
in its natural implicit form and generate it on the fly while
a graph search algorithm (e.g., Dijkstra or A∗, see [28]) is
examining vertices and their neighbours. In this way, we
do not have to explode the floorplan into a list of rooms,
which could be quite large using our definitions. Think of a
lattice drawn somewhere on the floorplan. This will consist
of many rooms, which are all irrelevant for the connection
graph.

A. Detecting Door Symbols

For the detection of door symbols, we wanted to construct
a condensed model with a simple classification system,

which is then used to classify a room. Therefore, we set
up a list of features, which can be easily extracted from
a room (e.g., a floodfill-connected region). These feature
vectors are then used together with a manually classified
image, where all doors have been marked in blue color
for the construction of a training set (see Figure 3). The
strength and generalization abilities of the models created
from this training data have been tested against rotation
transformations. They are not scale-invariant by intention,
as we will save the model into the image file itself. Hence,
there is no need to recapture scaled versions of an object.

The features are basic features used to distinct between
different convex areas, which are easy to compute even on a
mobile device. The features are all numeric values describing
some aspect of the form. Two very basic features used are
given below.

• Area: The area is one of the simplest features, but still
it is the strongest one. The area of a room is defined as
the number of pixels that would be filled by a regular
4-neighbour-floodfill operation. As we want to embed
the classification model into the graphics file, it is no
problem that this measure is not scale-invariant.

• Bounding Box: The width and height of the bounding
box of a room used. Here the bounding box is not a
minimal enclosing box (which would be more compli-
cated to compute) but is an axis-parallel box containing
all pixels that belong to the room. We use the width and
height of this box as features.

These simple features did not suffice to classify success-
fully between doors and other rooms inside a floorplan. The
main reason is that the bounding box is not very distinctive
for cases, where a door is rotated. It is difficult to differen-
tiate between a square and a door by using a bounding box.
Moreover, the bounding box is not rotation invariant. Hence,
we constructed a pretty simple, yet efficient algorithm, which
calculates a sequence of values based on the floodfill-area,
which can be used to derive pretty distinctive features at least
for convex forms. The general technique is a variant of a line
sweeping mechanism, which we will call Central Radar.
A ray casting is done in several equally stepped directions
(say 1◦) recording the radius of the room measured from
the middlepoint of the minimal enclosing box. This measure
can be zero for nonconvex rooms. Figure 4 shows the central
radar of some convex forms and gives a hint, why the central
radar is well able to classify between doors and other rooms.
For the classification task of detecting doors, we found out
that it suffices to use the following simple features derived
from a central radar: The maximum radius, the minimum
radius and as a measure for the deviation of the shape from
a square their quotient called squarity. If the minimal radius
is zero and hence the value of squarity is not defined, we
declared squarity to be a missing value for the machine
learning task.
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(a) Some Forms
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Figure 4. Central radar as a method of obtaining distinctive features for automic recognition of door symbols

Algorithm Datset 1.) Dataset 2.) Dataset 3.)
RIPPER [29] 99.85% 97.47% 99.91 %

Naive Bayes [30] 99.37% 99.15% 99.67 %
C4.5 [31] 99.85% 97.89% 99.90 %

Table I
SUCCESS-RATE OF DIFFERENT MACHINE-LEARNING ALGORITHMS

DATASETS 1.) - 3.) DIFFERENTIATING BETWEEN DOORS AND ROOMS AS
DETERMINED BY TENFOLD, STRATIFIED CROSS-VALIDATION

Using this feature set, we trained several simple classifica-
tion algorithms. So we are not using very complex classifica-
tion algorithms such as neuronal networks as long as simple
algorithms provide comparable performance. In essence, all
major, simple classification algorithms performed more or
less equally well, see Table I. We used three datasets where
all rooms where extracted from a floorplan pixel-by-pixel
and classified according to a training image, where the doors
have been coloured blue:

• Dataset 1.): A wing of the building as depicted in
Figure 4 (238 rooms including 36 doors).

• Dataset 2.): The same wing of the building rotated by
20◦ (2447 rooms including 36 doors).
Note that by rotating and the associated blur a lot
of small-area “rooms” with non-black pixels appeared,
which could have been ruled out by rejecting area
below a threshold. But we wanted to see the influence
of such typical image noise, which is fortunately void.
Removing all rooms below an area of 30 pixels would
leave only 198 rooms.

• Dataset 3.): A complete floor of the same building.
(1755 rooms including 263 doors)
Note that the building is not axis-parallel, but has some
rotated wings as you can see in Figure 5.

As there is no significant performance difference in the
classification algorithms, we can choose the right classifica-
tion type by taking into account, which secondary properties
the model does have. For example, it is easy to use RIPPER

[29] to induce a set of rules and store this set of rules in an
ASCII-string. It is user-readable, pretty easy to understand,
and has good performance. Moreover, the rulesets generated
with RIPPER were very small. For the complete map,
RIPPPER used only three rules containing seven inequal-
ities.Using these rules, only ten doors were overlooked.
It could be easy to complete this model by storing ten
coordinate pairs as a correction to the model giving another
40 bytes overhead for the classification model. As we want
to bind the model to the image file itself, it is also possible
to use unpruned and highly overfitted models. Though the
models loose their generalization capabilities, the success
rate gets almost perfect. A RIPPER model containing ten
rules was able to reach a performance of 99.85% with only
three misclassifications and uses only 230 bytes in a human-
readable text format.

B. Detecting Neighboring Rooms
The only thing left, before a complete navigationg graph

can recursively be constructed, is given by the need for
a method to find the neighbours of a room. We decided
to implement this also as a variant of the central radar
algorithm such that the features for detecting doors can
be calculated in one step together with the neighbours of
a given room. Since it is sufficient to calculate only the
neighbors of doors in order to derive a complete navigation
graph, problems with non-convex rooms can be avoided. For
calculation of neighbours, we use a marker color and find
all neighbours floodfilling them to the colour. Then we can
enumerate all neighbour rooms by finding the for example
first topleft pixel having the marker color, storing this as a
room-defining pixel, and floodfilling with white to remove
the marker colour from the connected region.

For the colouring of the neighbours, we first fill the room
with a marker color (say yellow). Then we use a rotating line
around the center point of this room (e.g., the middlepoint
of the bounding box), and find the first pixel along each
line, which is not black or the marker color of the base
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Figure 5. The complete building floorplan

room (yellow). We then floodfill at this pixel coordinate with
the marker color for the neighbours (say magenta). Having
done this, the base room is yellow and the neighbours are
coloured magenta. Note that this algorithm does only work
for convex rooms and that the neighbourship relation can
still go through walls. But as we stated earlier, our navigation
graph will only contain an edge between two neighbours if
one of these neighbours is a door, which we can quickly
decide using the algorithm of Section III-A.

C. Generating a Navigation Graph

Combining both algorithms from the previous two Sec-
tions, it is easy to calculate a navigation graph for the given
floorplan as described in the following pseudo code:

void calculateGraph(int x, int y){
if isReady(x,y) return
for each (nx,ny) in Neighbours(x,y){

if (isDoor(nx,ny) || isDoor(x,y)){
AddVertex(nx,ny)
AddEdge((x,y),(nx,ny))
calculateGraph(nx,ny)

}
}
isReady(x,y) = true

}

Starting with a specific pixel coordinate (x, y) given by
the users position possibly estimated with a positioning
system, we first check whether the room specified by (x, y)
has already been done. The information of finished rooms
can either be coded into the image using another marker
color or be stored in a global table. If the room has not
been done, we enumerate all neighboring rooms using the
algorithm of Section III-B. We then add a vertex for each

neighbour and an edge connecting this neighbour to the
room specified by the current pixel coordinate (x, y) if one
of both rooms is a door. For this task, we use the algorithm
given in III-A. We can integrate this process with a graph
search algorithm such as Dijkstra or A∗. Then the loop over
all neighbours is invoked each time a specific room vertex
is popped from the central priority queue. For A∗ it is then
very likely that not the complete map will be explored, but
only a small portion of the given graph for navigation. The
shortest path can then be readily given on a per-room-basis
but there is no reason to believe that the edges lie inside the
rooms.

D. Removing doors

Once we have constructed the navigation graph, we can
calculate a shortest route on a per room basis. Once we have
calculated such a shortest path inside the graph, we have a
sequence of rooms, which leads from the given start position
to the end position on a short route. The problem is now,
that the shortest path might not lie inside the walkable space,
as the graph consists of some points inside the rooms and
doors. Even choosing the middlepoints as depicted in Figure
6 as room reference points does not solve this problem. In
this situation, we do the following as a preparation for the
visualisation algorithm presented in Section V below:

For each door in the shortest path, we calculate a mini-
mum enclosing box, enlarge it a bit (such that the bounding
lines of a door get inside the enclosing box) and fill it
with white color. Thus, we retrieve one single walkable
floodfill-connected region, which connects the startpoint and
the endpoint.

Using this representation, we can calculate again a short-
est route between the starting point and the endpoint on
the basis of a implicit navigation graph consisting of white
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(a) A room-based shortest path (b) Doors removed

(c) The implicit graph structure (d) The result of the PPW algorithm

Figure 6. Preparing a room-based shortest path for visualisation

pixels as vertices and up to eight edges connecting each
pixel with all white neighbour pixels. A weighting for this
graph is given by a constant distance of 1 for horizontal
and vertical edges and a distance of

√
2 for diagonal edges.

Figure 6(c) illustrates this step.

IV. LANDMARK SEARCH

Pedestrian navigation results need a different presentation
form as compared to vehicle navigation results. While for a
vehicle navigation system based on GPS the typical errors
of the positioning system do not have much influence on the
identification of a turn and the orientation of the vehicle is
known by the orientation of the street, this is not true for the
indoor area. We usually have positioning systems with low
accuracy and different possible turns within this accuracy.
Typically the positioning errors do not allow the distinction
of two doors, which are directly next to each other. In this
situation, we want to augment a navigation solution with
semantical information such that it is easy to remember and
follow. For this case the concept of a landmark is often used.
Landmarks are objects in the surroundings having a local
uniqueness and being eye-catching. All classical signs are
landmarks in this sense. But even shops and plants can serve
as landmarks. With landmark information the problems of
coarse positioning can be reduced. If landmarks are drawn
into a map in form of a pictogram (e.g., the logos of the
shops) the relation between the proposed way and those
shops can be easily remembered and used for difficult way
decisions. This role of a landmark is best explained by
the following textual instruction, which can be generated

if good landmark information is available: ”Before the post
office turn left. Then you will see a red sculpture in 300m
distance.” As you can see from this sentence, landmark
information can be used to make explicit the position of
a turn in relation to semantical information (as opposed to
geometric information). Landmark information can also be
used to enhance the confidence in having a good orientation
as you can see from the second sentence.

The difficult task is now to reduce the set of landmarks
(which is usually very big) to the set of landmarks that are
visible from the way to facilitate more complex election
algorithms for the actual integration of landmark information
into visual and textual representations of the way.

The following algorithm is a good symbiosis of a search
technology with a geometric enhancement technology. The
results of this algorithms is an image containing a set of
visible landmarks identified by a colour convention. It is
possible to very quickly extract this information as a list
of visible landmarks or to directly integrate the graphical
result into the visualisation pipeline. One could for example
highlight the visible space, draw a pictogram over visible
landmark positions and so on.

A. Landmark Search By Image Processing
With the following algorithm we solve the problem of

finding relevant landmarks out of a list of landmarks visible
from within a way. Common algorithms to solve this prob-
lem are more or less searching for landmarks by checking
whether a given landmark is visible. As there is no good
geometric ordering of landmarks (i.e., reducing the search
space by a distance limit will miss good landmarks in long
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rooms) it is not easy to do such a search efficiently. This
type of search problem also shows up in other problems of
ubiquitous and context-aware computing.

A landmark in the sense of the following algorithm
consists of a pixel coordinate and a connected information
(identification in a database, etc.). The input of the algorithm
consists of

• A set of landmarks
• A floorplan
• A way (given as a list of points forming a line-strip)

The configurable parameters influencing this algorithms are
• The maximal viewing distance
• The length threshold used during tessellation of the way
1) Step 1: Prepare Landmark Map: The very first step

is to overlay our floorplan with drawn landmark locations.
Therefore we use a colour palette mapping a colour (that
is not used in the floorplan) to the identification data. This
mapping is symbolised in the following pseudo-codes by the
function landmark_to_colour(landmark l).

void draw_landmarks(){
copy (floorplan, landmark_map)
for each landmark l in landmark_set{

putpixel(landmark_map, position,
landmark_to_colour(l))

}
}

This step is of course general and the result can be cached
for subsequent applications of this algorithm.

2) Step 2: Tessellation of the Way: As it is computa-
tionally very expensive to calculate the set of pixels, which
are visible from a line-strip, we approximate this set of
pixels by the set of pixels visible from the points of a
tessellation of the line-strip. To obtain this tessellation, we
keep inserting middlepoints between two subsequent points
until the distance between all points is shorter than the
tessellation length.

global tessellation_length
void tessellate(linestrip l){

for each segment s of l{
if (s.length() > tessellation_length){

s.split()
return tessellate(l)

}
}

}

3) Step 3: Calculate the mask bitmap: In this step we
calculate a mask, which resembles the set of pixels visible
from the way. This is done by preparing the mask bitmap to
be of the same size as the floorplan and filled with black. We
then use a radial floodfill operation starting at each point of
the tessellated way and copying every examined pixel into
the mask bitmap.

void calculate_mask(){
for p in tessellated_way{
radial_flood_fill(p);

}
}

The radial floodfill algorithm fills out the area surrounding
a point as long as there is a direct line between each point
and the starting point. Note that the resulting area need not
be convex (see Figure 7(b) for an example).

4) Step 4: Multiply the landmark map with the mask:
In this step, we stamp the visible area out of the landmark
map. For each black pixel in the mask bitmap, we black out
the same pixel in the landmark map.

void mask_out(){
for each (x,y) in landmark_map{
if (mask_map(x,y) != black)
result(x,y) = landmark_map(x,y)

}
}

This results in a bitmap containing exactly the visible
landmarks together with their geometric location. It is now
up to the rest of the visualisation pipeline how to work
further. One could quickly scan the image and get a list
of visible landmarks or one could just overlay all landmark
pixels with a pictogram assigned to the landmark.

Though this algorithm seems to be very complex, it has
some beneficial properties. First of all, it is a formulation
of the landmark search problem in terms of basic image
processing. Secondly, its result is near to a complete visual-
isation of the landmarks and thirdly, it is highly parallelisable
and designed to be run on dedicated graphics hardware.
Examples for an application of this algorithm are given in
Figure 7.

V. POST-PROCESSING WAYS (PPW-ALGORITHM)
Waypoint graphs in general impose visualisation prob-

lems. If the graph is too coarse, then the shortest ways
will appear unnatural, e.g. moving to middlepoints of rooms.
Even if this is not the case, the best natural-looking ways
are usually not the shortest, but have some relation to the
surrounding geometry making them easily visible. If the
graph is too fine, then shortest ways tend to scrape along
walls and cross large halls in diagonals. Hence, for an indoor
navigation system it is difficult to find ways, which are short
and at the same time have a specific quality with respect to
visualisation. As the efficiency of search algorithms is tightly
coupled with the number of vertices and edges inside the
graph, it is common that people try to have small waypoint
graphs.

With the following algorithm, we want to post-process
such ways to obtain a relatively nice visualisation with
acceptable computational overhead.

98

International Journal on Advances in Networks and Services, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



(a) The tessellation of a way (b) The mask and landmarks (large dots) found

Figure 7. The results of the Landmark Search Algorithm

A. The PPW-Algorithm for Better Visualisation

Therefore, we propose the following algorithm, which
essentially is a series of image processing operations. The
input of the algorithm consists of

• A way (given as a list of points forming a linestrip)
• A collision map
The configurable parameters influencing this algorithms

are
• The maximal length a point may move during the

algorithm
• The length threshold used during tessellation of the way
• The valuation choosing the best movement in a set of

possible movements
1) Step 1: Tessellation of the Way: For this algorithm

we need a tessellation of the way just as for the previous
algorithm. The reader is referred to Section IV-A2 for
details.

2) Step 2: Move the tessellation points: For each point in
the tessellation of the way determine a set of points, where
we could move this point. Therefore we grow a circle until
this circle collides and if this circle collides, we move the
middlepoints away from the collision points until we get
stuck. Hence we find out the position where - in a limited
neighbourhood of each tessellation point - the biggest circle
fits into free space and move this tessellation point to this
position (see Figure 6(d)).

Number of Points Running Time
5 0.759s
9 0.985s

17 1.633s
33 2.955s
65 5.623s

Table II
PERFORMANCE OF THE PPW ALGORITHM RUNNING ON HTC DESIRE

The following pseudo code illustrates this step. We found
out in experiments, that a maximal movement distance of

four times the tessellation length makes sense for relatively
fine tessellations.

global tessellation_length
for each point p {
res = grow_a_circle(p,

tessellation_length * 4)
}

The method grow_a_circle is just scanning possi-
ble positions and calculating the maximal circle in free
space centered around these positions. Each position is then
assigned a valuation composed out of the radius of the
circle and the distance of the movement. In the examples
throughout this paper, we just used a valuation prefering the
biggest circle in the allowed space and inbetween all those
circles with maximal radius the one nearest to the original
point.

void grow_a_circle(point p, double d){
last_result = p;
for q in box (p-(d,d), p+(d,d)) {
r = maximal_radius(q);
if (is_better_than_last_result(q,r))

last_result = p;
}

}

The results of this algorithm are given in Figure 6(d).
As you can see, this algorithm leads to a fairly good way.
What is not obvious but has been tested with a multitude of
other ways, is the fact that the algorithm has the beneficial
side effect of having a relatively clear turn (e.g., a turn
of merely exactly 90 degree in the Figure above) exactly
where a turn should be indicated by a text generation engine.
Furthermore, due to using a rotation-invariant definition of
good way, the orientation of the rooms inside the bitmap is
not relevant.
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VI. AN IMPLEMENTATION OF PPW FOR MOBILE
PHONES

The algorithms presented in this paper are relatively
complex. If we apply these algorithms to long ways, the
uniform tessellation algorithm leads to many points in the
tessellation and for each of those points another complex
operation is needed. To enhance clarity, we decided to
explain the algorithms in the most simple form given above.
Of course the growing circle algorithm can gain a real
performance boost from not growing the radius one pixel at
a time. Starting with an exponential growth of the radius and
correcting the first collision by a nested interval algorithm
in comparison to the last non-colliding circle will gain much
speed. Moreover, for plans where the magnitude of rooms is
constructed from parallel lines and the number of randomly
placed obstructions is small, the circle can be replaced
by a square without any harm. Using integral images in
this case allows to answer the question, whether a square
collides with geometry, in constant time. If we can afford
the memory and the map does not change too often, we can
even compute the maximal radius for each pixel and store
it as a color component value inside another bitmap. In this
case (ignoring the time of constructing this map), we can
omit the process of growing a circle and concentrate on the
movement of the center point.

We implemented the PPW algorithms for modern smart-
phones running Android OS 2.2 and above. The Post-
Processing Ways algorithm (Section V) is running fast
enough. The system is rendering a map into a screen buffer
(a Java bitmap of the exact pixel size of the screen), which
is then passed to our implementation of this algorithm via
Java natives. In Java natives, we are performing the image
processing as described on a 16-bit-per-pixel bitmap (using
essentially 5 bits per color). For this task, we implemented a
fast and stable bitmap manipulation library. The tessellation
is carried out in Java. Experimental performance results
for the Post-Processing Ways algorithm are given in Figure
V-A2.

For moderate numbers of tessellation points, the running
time of the algorithm is quite acceptable. The algorithm
has to be run only once for each navigation result. As the
effective screen resolution of a full-screen application (not
drawing over the status bar) on the device is 480x725, the
number of tessellation points to consider will not exceed
20 points. As mobile devices are able to run this type of
algorithms natively, we are able to provide full navigation
functionality with navigation graphs, which have relatively
bad visualisation properties such as corner graphs.

VII. OUTLOOK

With this paper we have presented an extension of our
previous work [1]. We have shown that a bitmap can provide
enough environmental information for high-quality location-
based services by applying some simple image precessing

tasks. Furthermore, a technique for the generation pretty
general symbol recognition is provided and the possibility
of embedding this information into the bitmaps EXIF tags
in ASCII format has been demonstated. We applied this
technique to differentiate between doors and rooms using
highly overfitted models of how a door is drawn on the plan
and were able to automatically generate a suitable navigation
graph hierarchy. The first level consists of a navigation graph
containing one vertex per room (and hence also a vertex per
door, as we expect doors to be rooms). The second level
consists of a free-space pixel-based graph, which connects
adjacent pixels of the same colour. Having all this in place,
we have a perfect starting point for the visualisation and
augmentation algorithms presented before in [1].

This work allows us to extend the philosophy that the
visualization properties of navigation graphs are not impor-
tant. Furthermore, we showed that simple bitmaps conform
to some conventions are feasible alternatives to the design
and use of complex environmental models. For a navigation
application on a smartphone, some simple rules and some
good algorithms are enough to provide a complete and high-
quality indoor navigation application. Finally, our integration
of non-trivial functionality into the EXIF-tags of the floor-
plans makes it easy to implement our environmental model
inside a mobile browser. Those browsers not supporting our
new technology will still be able to show the map as a basic
navigation aid.
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