
346

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Performability Modeling Framework Considering Service Components
Deployment

 Razib Hayat Khan Fumio Machida Poul E. Heegaard Kishor S. Trivedi
Department of Telematics Service Platform Research Department of Telematics Department of ECE
 NTNU, Norway NEC, Japan NTNU, Norway Duke University, NC, USA
 rkhan@item.ntnu.no h-machida@ab.jp.nec.com poul.heegaard@item.ntnu.no kst@ee.duke.edu

Abstract- The analysis of the system behavior from the pure
performance viewpoint tends to be optimistic since it ignores
failure and repair behavior of the system components. On the
other hand, pure dependability analysis tends to be too
conservative since performance considerations are not taken
into account. The ideal way is to conduct the modeling of
performance and dependability behavior of the distributed
system jointly for assessing the anticipated system performance
in the presence of system components failure and recovery.
However, design and evaluation of the combined model of a
distributed system for performance and dependability analysis
is burdensome and challenging. Focusing on the above
contemplation, we introduce a framework to provide tool
based support for performability modeling of a distributed
software system that proposes an automated transformation
process from the high level Unified Modeling Language (UML)
notation to the Stochastic Reward Net (SRN) model and solves
the model for early assessment of a software performability
parameters. UML provides enhanced architectural modeling
capabilities but it is not a formal language and does not convey
formal semantics or syntax. We present the precise semantics
of UML models by formalizing the concept in the temporal
logic compositional temporal logic of actions (cTLA). cTLA
describes various forms of actions through an assortment of
operators and techniques which fit excellently with UML
models applied in this work and also provides the support for
incremental model checking. The applicability of our
framework is demonstrated in the context of performability
modeling of a distributed system to show the deviation in the
system performance against the failure of system components.

Keywords: UML; SRN; Performability; Deployment; Reusability

I. INTRODUCTION

Conducting performance modeling of a distributed
system separately from the dependability modeling fails to
asses the anticipated system performance in the presence of
system components failure and recovery. System dynamics
is affected by any state changes of the system components
due to failure and recovery. This introduces the concept of
performability that considers the behavioral change of the
system components due to failures and also reveals how this
behavioral change affects the system performance. But to
design a composite model for a distributed system, perfect
modeling of the overall system behavior is essential and
sometimes very unwieldy. A distributed system behavior is
normally realized by the several objects that are physically

disseminated. The overall system behavior is maintained by
the partial behavior of the distributed objects of the system
[14]. So it is essential to model the distributed objects
behavior perfectly for appropriate demonstration of the
system dynamics and to conduct the performability
evaluation [14]. Hence, we adopt UML collaboration, state
machine, deployment, and activity oriented approach as
UML is the most commonly used specification language
which models both the system requirements and qualitative
behavior through an assortment of notations [5] [14]. The
way we utilize the UML collaboration and activity diagram
to capture the system dynamics, provides the opportunity to
reuse the software components. The specifications of
collaboration are given as coherent, self-contained building
blocks [14]. Reusability of the software component is
achieved by designing the collaborative building block
which is used as main specification unit in this work.
Collaboration with help of activity diagram illustrates the
complete behavior of a software system which includes both
the local behavior among the participants and necessary
interactions among them. Moreover, for specifying
deployment mapping of service components, the
performability modeling framework considers system
execution architecture through UML deployment diagram.
Considering system execution architecture while designing
the framework resolves the bottleneck of the deployment
mapping of service components by revealing a better
allocation of service components to the physical nodes [13].
This requires an efficient approach to deploy the service
components on the available hosts of a distributed
environment to achieve preferably high performance and
low cost levels [14]. Later on, UML State machine (STM)
diagram is employed in this framework to capture system
components behavior with respect to failure and repair
events.
 In order to guarantee the precise understanding and
correctness of the model, the approach requires formal
reasoning on the semantics of the language used and to
maintain the consistency of the models specification.
Temporal logic is a suitable option for that. In particular, the
properties of super position supported by cTLA [19] make it
possible to describe systems from different view points by
individual processes that are superimposed. In this work, we
focus on the cTLA that allows us formalizing the
collaborative service specifications given by UML activities
and also to define the formal semantics of the UML

347

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

deployment diagram and STM model precisely. By
expressing collaborations as cTLA processes, we can ensure
that a composed service maintains the properties of the
individual collaborations it is composed of. The semantic
definition of collaboration, activity, deployment, and STM
model in the form of temporal logic is implemented as a
transformation tool [20] which produces TLA+ modules.
These modules may then be used as input for the model
checker TLC for syntactic analysis [20].

Furthermore, UML models are annotated according to
the UML profile for MARTE [7] and UML profile for
Modeling Quality of Service and Fault Tolerance
Characteristics [13] to include quantitative system
parameters necessary for performability evaluation. UML
specification styles are applied to generate the SRN model
automatically following the model transformation rules
where model synchronization between the performance and
dependability SRN model is achieved by defining guard
functions (a special property of the SRN model [6]). This
synchronization thus helps to properly model the system
performance with respect to any state changes in the system
due to components failure [1] [2].

Over decades several performability modeling
techniques have been considered such as Markov models,
SPN (Stochastic Petri Nets) and SRN [4]. Among all of
these, we will focus on the SRN as performability model
generated by our framework due to its prominent and
interesting properties such as priorities assignment in
transitions, presence of guard functions for enabling
transitions that can use entire state of the net rather than a
particular state, marking dependent arc multiplicity that can
change the structure of the net, marking dependent firing
rates, and reward rates defined at the net level [6].

Several approaches have been pursued to accomplish a
performability analysis model from a system design
specification. Sato et al. develop a set of Markov models,
for computing the performance and the reliability of Web
services and detecting bottlenecks [9]. Another initiative
focuses on model-based analysis of performability of mobile
software systems by proposing a general methodology that
starts from design artifacts expressed in a UML-based
notation. Inferred performability models are formed based
on the Stochastic Activity Networks notation [10].
Subsequent effort proposes a methodology for the modeling,
verification, and performance evaluation of communication
components of a distributed application building software
which translates UML 2.0 specifications into executable
simulation models [11]. Gonczy et al. mentioned a method
for high-level UML models of service configurations
captured by a UML profile dedicated to service design;
performability models are derived by automated model
transformations for the PEPA toolkit in order to assess the
cost of fault tolerance techniques in terms of performance
[12]. However, most of the existing approaches do not
consider the fact of how to conduct the system modeling to
delineate system functional behavior while generating the
performability model using reusable software components.
The framework introduced in this work is superior to the

existing approaches that have been realized by UML
specification style as reusable building block to characterize
a system dynamics. The purpose of the reusable building
block is twofold: to express the local behavior of several
components and to capture the interaction between them.
This provides the excellent opportunity to reuse the building
blocks, as the interaction among the several components can
be encapsulated within one self-contained building block
[14]. This reusability provides the means to design a new
system’s behavior rapidly utilizing the existing building
blocks according to the specification. This helps to start the
development process from scratch which in turn facilitates
the swelling of productivity and quality in accordance with
the reduction in time and cost [2]. Moreover, the ensuing
deployment mapping given by our framework has greater
impact to satisfy QoS requirements provided by the system.
The target in this work is to deal with vector of QoS instead
of confining them in one dimension. Our provided
deployment logic is definitely capable of handling any
properties of the service as long as a cost function for the
specific property can be produced. The defined cost function
is able to react in accordance with the changing size of
search space of available hosts presented in the execution
environment to assure an efficient deployment mapping [14].
In addition, the separation of performance and dependability
modeling view and the introduction of model
synchronization to synchronize the two views activities
using guard functions relinquishes the complex and
unwieldy affect in performability modeling and evaluation
of large and multifaceted systems [1].

The objective of this paper is to provide a tool based
support for the performability modeling of a distributed
system to allow modeling of the performance and
dependability related behavior in a combined and automated
way. This in turn allows not only to model functional
attributes of the service provided by the system but also to
investigate dependability attributes to reflect how the
changes in the dependability attributes affect the system
overall performance. For ease of understanding the
complexity behind the modeling of performability attributes,
our modeling framework works in two different views such
as performance modeling view and dependability modeling
view. The framework achieves its objective by maintaining
harmonization between performance and dependability
modeling view with the support of model synchronization.
The paper is organized as follows: Section II introduces our
performability modeling framework, Section III depicts
UML model description, Section IV describes formalization
of UML models, Section V explains service components
deployment issue, Section VI clarifies UML models
annotations, Section VII delineates model transformation
rules, Section VIII introduces the model synchronization
mechanism, Section IX describes the hierarchical method
for mean time to failure (MTTF) calculation, Section X
indicates the tool based support of the modeling framework,
Section XI illustrates the case study, and Section XII
delineates the concluding remarks with future directions.

348

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. OVERVIEW OF PROPOSED FRAMEWORK

Our performability framework is composed of 2 views:
performance modeling view and dependability modeling
view. The performance modeling view mainly focuses on
capturing the system’s dynamics to deliver certain services
deployed on a distributed system. The performance
modeling view is divided into 4 steps shown in Fig. 1 where
the service specification step is the part of Arctis tool suite
which is integrated as plug-ins into the eclipse IDE [15].
Arctis focuses on the abstract, reusable service
specifications that are composed of UML 2.2 collaborations
and activities [15]. It uses collaborative building blocks to
create comprehensive services through composition. In
order to support the construction of building block
consisting of collaborations and activities, Arctis offers
special actions and wizards.

In the first step of performance modeling view, a
developer consults a library to check if an already existing
basic building block or collaboration between several blocks
solves a certain task. Missing blocks can also be created
from existing building blocks and stored in the library for
later reuse. The building blocks are expressed as UML
models. The structural aspect, for example the service
components and their multiplicity, is expressed by means of
UML 2.2 collaborations. For the detailed internal behavior,
UML 2.2 activities have been used. The building blocks are
combined into more comprehensive service by composition

to specify the detailed behavior of how the different events
of collaborations are composed. For this composition, UML
collaborations and activities are used complementary to
each other [15]. In the deployment phase, the deployment
diagram of our proposed system is delineated and the
relationship between system components and collaborations
is outlined to describe how the service is delivered by the
joint behavior of the system components. In the model
annotation phase, performance information is incorporated
into the UML activity diagram and deployment diagram
according to the UML profile for MARTE [8]. The model
transformation phase is devoted to automate generation of a
SRN model following the model transformation rules. The
SRN model generated in this view is called performance
SRN.

The dependability modeling view is responsible for
capturing any state changes in the system because of failure
and recovery behavior of system components. The
dependability modeling view is composed of three steps
shown in Fig. 1. In the first step, UML STM diagram is used
to describe the state transitions of software and hardware
components of the system to capture the failure and
recovery events. In the model annotation phase,
dependability parameters are incorporated into the STM
diagram according to UML profile for Modeling Quality of
Service and Fault Tolerance Characteristics & Mechanisms
Specification [13]. The model transformation phase reflects
the automated generation of the SRN model from the STM

Figure 1. Proposed performability modeling framework

Performability
evaluation

SHARPE

UML
collaboration

& activity
diagram

Service specification

Model
annotation

phase

Performance
SRN model

Dependability
SRN model

Model
transformation

phase

Performability
SRN model

Model Validator

Model Validator

Performance modeling view

Dependability modeling view

Model
synchronization

using Guard
functionsPhase for State

machine
generation

Deployment
phase

Legend: manual Flow of operation Illustrating
model

Model validation activity Illustrating
phase

349

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

diagram following the model transformation rules. The SRN
model generated in this view is called dependability SRN.

The model synchronization is used as glue between
performance SRN and dependability SRN. The
synchronization task guides the performance SRN model to
synchronize with the dependability SRN model by
identifying the transitions in the dependability SRN. The
synchronization between performance and dependability
SRN is achieved by defining the guard functions. Once the
performance SRN model is synchronized with dependability
SRN model, a merged SRN model will be obtained and
various performability measures can be evaluated from the
merged model using the software package SHARPE [16].

III. UML BASED SYSTEM DESCRIPTION

A. Construction of collaborative building blocks

The performability modeling framework utilizes
collaboration as main entity. Collaboration is an illustration
of the relationship and interaction among software objects in
the UML. Objects are shown as rectangles with naming
label inside. The relationships between the objects are
shown in a oval connecting the rectangles [5]. The
specifications for collaborations are given as coherent, self-
contained reusable building blocks. The structure of the
building block is described by UML 2.2 collaboration. The
building block declares the participants (as collaboration
roles) and connection between them. The internal behavior
of building block is described by the UML activity. It is
declared as the classifier behavior of the collaboration and
has one activity partition for each collaboration role in the
structural description. For each collaboration, the activity
declares a corresponding call behavior action referring to the
activities of the employed building blocks. For example, the
general structure of the building block t is given in Fig. 2
where it only declares the participants A and B as
collaboration roles and the connection between them is
defined as collaboration t x (x=1…nA B (number of
collaborations between collaboration roles A & B)). The
internal behavior of the same building block is shown in Fig.
3(b). The activity transferij (where ij = AB) describes the
behavior of the corresponding collaboration. It has one
activity partition for each collaboration role: A and B.
Activities base their semantics on token flow [2]. The
activity starts by forwarding a token when there is a
response (indicated by the streaming pin res) to transfer

from participant A to B. The token is then transferred by the
participant A to participant B (represented by the call
operation action forward) after completion of the processing
by the collaboration role A. After getting the response of the
participant A, the participant B starts the processing of the
request (indicated by the streaming pin req).

In order to generate the performability model, the
structural information about how the collaborations are
composed is not sufficient. It is necessary to specify the
detailed behavior of how the different events of
collaborations are composed so that the desired overall
system behavior can be obtained. For the composition, UML
collaborations and activities are used complementary to
each other. UML collaborations focus on the role binding
and structural aspect, while UML activities complement this
by covering also the behavioral aspect for composition.
Therefore, the activity contains a separate call behavior
action for all collaborations of the system. Collaboration is
represented by connecting their input and output pins.
Arbitrary logic between pins may be used to synchronize the
building block events and transfer data between them. By
connecting the individual input and output pins of the call
behavior actions, the events occurring in different
collaborations can be coupled with each other. Semantics of
the different kinds of pins are given in more details in [14].
For example, the detail behavior and composition of the
collaboration is given in following Fig. 3(a). The initial
node () indicates the starting of the activity. The activity is
started from the participant A. After being activated, each
participant starts its processing of request which is
mentioned by call operation action Pri (Processingi, where i
= A, B & C). Completion of the processing by the
participants are mentioned by the call operation action Prdi
(Processing_donei, where i = A, B & C). After completion
of the processing, the response is delivered to the
corresponding participant. When the processing of the task
by the participant A completes, the response (indicated by
streaming pin res) is transferred to the participant B
mentioned by collaboration t: transferij (where ij = AB) and
participant B starts the processing of the request (indicated
by streaming pin req). After completion of the processing,
participant B transfers the response to the participant C
mentioned by collaboration t: transferij (where ij = BC).
Participant C starts the processing after receiving the
response from B and activity is terminated after completion
of the processing which is illustrated by the terminating
node ().

B. Modeling failure & repair behavior of software &
hardware component using UML STM

State transitions of a system element are described using
UML STM diagram. In an STM, a state is depicted as a
rectangle and a transition from one state to another is
represented by an arrow [5]. In this work, STM is used to
describe the failure and recovery behavior of software and
hardware components.

Figure 2. Structure of the Building block

B A tx: transferAB

A B

tx: transferAB

350

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The STM of software process is shown in Fig. 4(a). The
initial node () indicates the starting of the operation of
software process. Then the process enters Running state.
Running is the only available state in the STM. If the
software process fails during the operation, the process
enters Failed state. When the failure is detected by the
external monitoring service the software process enters
Recovery state and the repair operation will be started.
When the failure of the process is recovered the software
process returns to Running state.

The STM of hardware component is shown in Fig. 4(b).
The initial node () indicates the starting of the operation of
hardware component. Then the component enters Running
state. Running is the only available state here. If the active
component fails during the operation and the hot standby
component is available, the standby component will take
charge and the component operation will be continued.
When any failure (whether active component or standby
component) incurs, the recovery operation will be
performed.

IV. FORMALIZING UML DIAGRAM

So far we introduced the UML diagrams in a descriptive
and informal way. In order to understand the precise
formalism of the UML models and for the correct way of
model transformation, we need to present the UML models
with the help of formal semantics. The formal semantics of
UML models thus help us implementing the models very
efficiently for providing the tool based support of our

framework. Before introducing the formalization of the
UML models, at first, we illustrate the temporal logic, more
specifically compositional Temporal Logic of Actions
(cTLA) that will be applied to formalize the UML models.
We illustrate in this paper the formal representation of the
state machine model. Formalization of other UML models
such as collaboration, activity, and deployment diagram and
the alignment between UML models and cTLA (which is
beyond the scope of this paper) have already been
mentioned in [22].

A. Compositional Temporal Logic of Action (cTLA)

Lamport’s Temporal Logic of Actions (TLA, [21]) is a
linear-time temporal logic modeling the system behavior
where the system behavior is realized by a set of
considerably large number of state sequences [s0, s1, s2 . .]
[23]. Thus, the TLA formalisms are applied nicely to define
the state machines formally produced by our framework
which, in the end, also models considerably long sequences
of states si starting with an initial state s0. Compositional
TLA (cTLA, [22]) was originated from TLA to offer more
easily comprehensible formalisms and proposes a more
supple composition of specifications. The concept of
process is basically introduced by a cTLA. A cTLA process
describes system behavior as the notion of state transition
systems [23].

B. Formalizing state machine diagram using cTLA

We sketch the cTLA model of STM in Fig. 5 by the
specification of software process dependability behavior
illustrated in Fig. 4(a) [23]. The header Software declares
the name of the process type. Events is an expression
defined as constant record type. The state space is modeled
by a set of variables like state or Queue. Predicate INIT
specifies the subset of initial states. The state transition
systems are mentioned by actions (e.g., enqueue, dequeu)
which are realized as pairs of current and next states
describing a set of transitions each. The current sate is
defined as a variable in simple form (e.g., state), while the
next state is mentioned by the prime form (e.g., state´).
Variables which won’t be changed by an action are listed by
the statement UNCHANGED [23]. State transition system is
defined by the body of a cTLA process type. One cTLA
process represents one state machine that mentions a set of
TLA state sequences. The first state s0 of each modeled state

req res

t: transferAB

forward

Figure 3. (a) Detail behavior of the event of the collaboration using activity (b) internal behavior of the collaboration

A B

Figure 4. (a) STM of Software process (b) STM of Hardware component

(a)
(b)

(a)

Fail

Detect
Repair

Standby

Recovery

Running

Failed

Fail

Switch when active instance failed

Fail

Detect

Repair

Recovery

Running

Failed

(b)

351

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sequence has to fulfil the initial condition INIT. The state
changes [si, si+1] either correspond with a process action or
with a so-called stuttering step in which the current and the
next states are equal (i.e., si = si+1) [23]. Incoming events are

mentioned by the action fetchEvent. An initial

inserted into the data structure addEvent, which is a
sequence of events. The operator ◦ denotes the
concatenation of queue elements. Events are added to the
queue by the action enqueue, which takes incoming events
as action parameters [23]. Retrieving events are modeled by
the data structure fetchEvent where the first element is
obtained by the operations FIRST(). Events are retrieved
from the queue by the action dequeue which takes retrieving
events as action parameters. An initial transition initiates
from an initial pseudo state (initState) and its execution is
associated with the starting of the state machine. Exactly
one initial transition is linked with each state machine [23].
A cTLA variable state describes the control state by
expressing them through the control state identifiers.
Stateseq captures the current and next state and starts from
initial state of the STM diagram. In order to conduct an
action in a lively manner, we can associate actions with
weak and strong fairness properties. In particular, weak
fairness forces the execution of an activity as if it were
enabled continuously. Strong fairness forces the execution

even if the action is sometimes disabled [23]. The last
statement WF: dequeue, initial,... lists the actions that have
to be carried out in a way which ensures week fairness
property [23].

V. DEPLOYMENT DIAGRAM & STATING RELATION
BETWEEN SYSTEM & SERVICE COMPONENT

We model the system as collection of N interconnected
physical nodes. Our objective is to find a deployment
mapping for this execution environment for a set of service
components available for deployment that comprises the
service. Deployment mapping M can be defined as
[M=(C N)] between a number of service components
instances C, onto physical nodes N. We consider three types
of requirements in the deployment problem where the term
cost is introduced to capture several non-functional
requirements; those are later on, utilized to conduct
performance evaluation of the systems: (1) Service
components have execution costs, (2) Collaborations have
communication costs and costs for running of background
process known as overhead cost, (3) Some of the service
components can be restricted in the deployment mapping to
specific physical nodes which are called bound components.

Furthermore, we consider identical physical nodes that
are interconnected in a full-mesh and are capable of hosting
service components with unlimited processing demand. We
observe the processing cost that physical nodes impose
while hosting the service components and also the target
balancing of cost among the physical nodes available in the
network. Communication costs are considered if
collaboration between two service components happens
remotely, i.e. it happens between two physical nodes [18].
In other words, if two service components are placed onto
the same physical node the communication cost between
them will be ignored. This holds for the case study that is
conducted in this paper. This is not generally true, and it is
not a limiting factor of our framework. The cost for
executing the background process for conducting the
communication between the collaboration roles is always
considerable no matter whether the collaboration roles
deploy on the same or different physical nodes. Using the
above specified input, the deployment logic provides an
optimal deployment architecture taking into account the
QoS requirements for the service components providing the
specified services. We then define the objective of the
deployment logic as obtaining an efficient (low-cost, if
possible optimum) mapping of service components onto the
physical nodes that satisfies the requirements in a reasonable
time. The deployment mapping providing optimal
deployment architecture is mentioned by the cost function
F(M), that is a function that expresses the utility of
deployment mapping of service components on the physical
resources with their constraints and capabilities by
satisfying non-functional requirements of the system. The
cost function is designed to reflect the goal of balancing the
execution cost and minimizing the communication cost.
This is in turn utilized to achieve reduced task turnaround
time by maximizing the utilization of system resources
while minimizing any communication between processing

PROCESS Software ()

CONSTANTS

Events = {Fail, Detect, Recovery};

VARIABLES

state: {initState, running, failed, recovered};
Queue: QUEUE of Events;

INIT = state = initState Queue = EMPTY;

ACTIONS
 enqueue (addEvent: Events) =

 Queue´ = Queue ◦ addEvent state ≠ initState

 UNCHANGED state

 dequeue (fetchEvent: Events) =

 Queue ≠ EMPTY fetchEvent = FIRST(Queue)

 UNCHANGED state

 Initial = state = initState state´= idle

 UNCHANGED Queue

 stateseq = state = idle state´ = running

 UNCHANGED Queue

 …….. state change for other actions ………

WF: dequeue, initial;

Figure 5. cTLA process of Software component

352

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

nodes. That will offer a high system throughput, taking into
account the expected execution and inter-node
communication requirements of the service components on
the given hardware architecture [14]. The evaluation of cost
function F(M) is mainly influenced by our way of service
definition. A service is defined in our approach as a
collaboration of total E service components labeled as ci
(where i = 1…. E) to be deployed and total K collaborations
between them labeled as kj, (where j = 1 … K). The
execution cost of each service component can be labeled as

icf , the communication cost between the service

components is labeled as
jk

f and the cost for executing the

background process for conducting the communication

between the service components is labeled as
jB

f .

Accordingly, we will strive for an optimal solution of
equally distributed cost among the processing nodes and the
lowest cost possible, while taking into account the execution

cost
icf , i = 1….E, communication cost

jk
f , j = 1….K, and

cost for executing the background process
jB

f , j = 1….K.

icf ,
jk

f , and
jB

f are derived from the service

specification, thus the offered execution cost can be

calculated as
| |

1

E

i ic
f

 . This way, the logic can be aware of

the target average cost T per physical node (X= total number
of physical nodes) [18]:

| |

1

1

| |

E

i ic
T

X
f

In order to cater for the communication cost
jk

f , of the

collaboration kj in the service, the function
0

(,)q M c is

defined first [20]:

 0
, { | }q M c n N c n M

This means that
0

(,)q M c returns the physical node n from

a vector of physical nodes N available in the network that
host component in the list mapping M. Let

collaboration 1 2
,

j
k c c . The assumption in this paper is

that, the communication cost of kj is 0 (in general, it can be
non-zero) if components c1 and c2 are collocated, i.e.

0 1 0 2
(,) (,)q M c q M c and the cost is

jk
f if service

components are otherwise (i.e., the collaboration is remote).
Using an indicator function I(x), which is 1 if x is true and 0
otherwise, this is expressed

as
0 1 0 2

((,) (,)) 1I q M c q M c , if the collaboration is

remote and 0 otherwise. In order to determine which
collaboration kj is remote, the set of mapping M is used.
Given the indicator function, the overall communication
cost of service, FK(M), is the sum [20]:

 | |

0 ,1 0 ,21
((,) (,))

K

K j jj k j
F M I q M k q M k f

Given a mapping M = {mn} (where mn is the set of service
components at physical node n) the total load can be

obtained as ˆ
i

n c m cni
fl . Furthermore, the overall cost

function F(M) becomes [20] (where Ij = 1, if kj external or 0
if kj internal to a node):

 | | | |

1 1

ˆ() | |
X K

n Kn j B j
F M l T F M f

The absolute value ˆ| |
n

l T is used to penalize the deviation

from the desired average load per node.

VI. ANNOTATION

In order to annotate the UML diagrams, the stereotype
saStep, computingResource, scheduler, QoSDimension, and
the tagged value execTime, deadline, mean-time-to-repair,
mean-time-between-failures, and schedPolicy are used
according to the UML profile for MARTE and UML Profile
for Modeling Quality of Service & Fault Tolerance
Characteristics [8] [13]. The stereotypes are the following:
 saStep defines a step that begins and ends when decisions

about the allocation of system resources are made.
 computingResource represents either virtual or physical

processing devices capable of storing and executing
program code. Hence, its fundamental service is to
compute.

 scheduler is a stereotype that brings access to a resource
following a certain scheduling policy mentioned by
tagged value schedPolicy.

 QoSDimension provides support for the quantification of
QoS characteristics and attributes mean-time-to-repair
and mean-time-between-failures [13].

The tagged values are the following:
 execTime: The duration of the execution time is

mentioned by the tagged value execTime which is the
average time in our case.

 deadline defines the maximum time bound on the
completion of the particular execution segment that must
be met.

 mean-time-between-failures defines the mean time of
occurring a software and hardware instance failure

 mean-time-to-repair defines the mean time that is
required to repair a software or hardware instance failure

We also introduce a new stereotype <<transition>> and
three tag values mean-time-to-stop, mean-time-to-start, and
mean-time-to-failure-detect.
 <<transition>> induces a state transition of a scenario.
 mean-time-to-stop defines the mean time that is required

by a hardware instance to stop working
 mean-time-to-start states the mean time that is required

by a hardware instance to start working
 mean- time-to-failure-detect defines the mean time that is

required to detect failures in the system.
Fig. 6 illustrates an example annotated UML model using
the activity diagram where the flow between PA and dA is
annotated using stereotype saStep and tagged value

(4)

(3)

(2)

(1)

353

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

execTime which defines that after being deployed in an
execution environment the collaboration role A needs t1
seconds and collaboration role B needs t2 seconds to
complete their processing by the physical node. After
completing the processing, communication between A and B
is achieved in t3 sec while the overhead time to conduct this
communication is t4 sec which is annotated using stereotype
saStep and two instances of deadline – deadline1 defines the
communication time and deadline2 is for overhead time.

VII. MODEL TRANSLATION

This section highlights the rules for the model translation
from various UML models into SRN models. Since all the
models will be translated into the SRN model, we will give
a brief introduction about SRN model. SRN is based on the
Generalized Stochastic Petri Net (GSPN) [4] and extends
them further by introducing prominent extensions such as

TABLE I. SPECIFICATION OF REUSABLE UNITES AND
EQUIVALENT SRN MODEL

Figure 6. Annotated UML model

 <<saStep>>

{deadline1 = t3, s}
{deadline2 = t4, s}

PB PA

dA

t

dB

 <<saStep>>

{execTime = t2, s}

 <<saStep>>

{execTime = t1, s}

A B

 t:
transferAB

354

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

guard function, reward function, and marking dependent
firing rate [6]. A guard function is assigned to a transition. It
specifies the condition to enable or disable a transition and
can use the entire state of the net rather than just the number
of tokens in places [6]. Reward function defines the reward
rate for each tangible marking of Petri Net based on which
various quantitative measures can be done in the Net level.
Marking dependent firing rate allows using the number of
tokens in a chosen place multiplied by the basic rate of the
transition. SRN model has the following elements: Finite set
of the place (drawn as circles), Finite set of the transition
defined as either a timed transition (drawn as thick
transparent bar) or a immediate transition (drawn as thick
black bar), set of the arc connecting the place and transition,
multiplicity associated with the arc, and marking that
denotes the number of token in each place.

Before introducing the model translation rules, different
types of collaboration roles as reusable basic building blocks
are demonstrated with the corresponding SRN model in
Table I that can be utilized to form the collaborative
building blocks.

The rules are the following:

Rule 1

The SRN model of a collaboration (Fig. 7), where
collaboration connects only two collaboration roles, is
formed by combining the basic building blocks type 2 and
type 3 from Table I. Transition t in the SRN model is only
realized by the overhead cost if service components A and B
deploy on the same physical node as in this case,
communication cost = 0, otherwise t is realized by both the
communication & overhead cost.

In the same way, SRN model of the collaboration can be
demonstrated where the starting of the execution of the SRN
model of collaboration role A depends on the token received
from the external source.

Rule 2

For a composite structure, when a collaboration role A
connects with n collaboration roles by n collaborations like
a star graph (where n > 1) where each collaboration
connects only two collaboration roles, the SRN model is
formed by combining the basic building block of Table I
which is shown in Fig. 8. In the first diagram of Fig. 8, if
component A contains its own token, equivalent SRN model
of the collaboration role A will be formed using basic
building block type 1 from Table I. The same applies to the
component B and C in the second diagram in Fig. 8.

STM can be translated into a SRN model by converting

each state into place and each transition into a timed
transition with input/output arcs which is reflected in the
transformation Rule 3.

Rule 3

Rule 3 demonstrates the equivalent SRN model of the
STM of hardware and software components which are
shown in the Fig. 9.

The SRN model for hardware component is shown in Fig.
9(b). A token in the place Prun represents the active hardware
component and a token in Pstb represents a hot standby
hardware component. When the transition Tfail fires, the
token in Prun is removed and the transition Tswt is enabled.
By the Tswt, which represents the failover, hot standby
hardware component becomes an active component.

Figure 7. Graphical representation of rule 1

Figure 8. Graphical representation of rule 2

Figure 9 (a) SRN of Software process (b) SRN of hardware component

(a)

(b)

Psrec

Psrun

Psfaild

Tsrec

Tsdet
Tsfail

Prun

Pstb
Tstbfl

Tswt

Prec

Pfail

Tdet Trec

Tfail

Fail

Detect

Repair

Recovery

Running

Failed

Fail

Detect
Repair

Standby

Recovery

Running

Failed

Fail

Switch when active instance failed

STM of software component

Equivalent SRN model

STM of hardware component

Equivalent SRN model

355

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. MODEL SYNCHRONIZATION

The model synchronization is achieved hierarchically
which is illustrated in Fig. 10. Performance SRN is
dependent on the dependability SRN. Transitions in
dependability SRN may change the behavior of the
performance SRN. Moreover, transitions in the SRN model
for the software process also depend on the transitions in the
SRN model of the hardware component. These
dependencies in the SRN models are handled through model
synchronization by incorporating guard functions [6].

The model synchronization is focused in detail below:

A. Synchronization between the dependability SRN models
in the dependability modeling layer

SRN model for the software process (Fig. 9(a)) is
expanded by incorporating one additional place Phf, three
immediate transitions thf, thsfl, thfr, and one timed transition
Trecv to synchronize the transitions in the SRN model for the
software process with the SRN model for the hardware
component. The expanded SRN model (Fig. 11(a)) is

associated with four additional arcs such as (Psfail × thsfl)
(thsfl × Phf), (Psrec × thfr) (thfr × Phf), (Psrun × thf) (thf ×
Phf) and (Phf × Trecv) (Trecv × Psrun). The immediate
transitions thf, thsfl, thfr will be enabled only when the
hardware node (in Fig. 11 (b)) fails as failure of hardware
node will stop operation of the software process. The timed
transition Trecv will be enabled only when the hardware node
will again start working after being recovered from failure.
Four guard functions g1, g2, g3, g4 allow the four additional

transitions thf, thsfl, thfr and Trecv of software process to work
consistently with the change of states of the hardware node.
The guard functions definitions are given in the Table II.

B. Synchronization between the dependability SRN &
performance SRN

In order to synchronize the collaboration role activity,
performance SRN model is expanded by incorporating one
additional place Pfl and one immediate transition fA shown
in Fig. 12. After being deployed when collaboration role
“A” starts execution, a checking will be performed to
examine whether both software and hardware components
are running or not. If both the components work the timed
transition doA will fire which represents the continuation of
the execution of the collaboration role A. But if software
resp. hardware components fail the immediate transition fA
will be fired which represents the quitting of the operation
of collaboration role A. Guard function grA allows the
immediate transition fA to work consistently with the change
of states of the software and hardware components.

Performance SRN model of parallel execution of
collaboration roles are expanded by incorporating one
additional place Pfl and immediate transitions fBC, wBC shown
in Fig. 12. In our discussion, during the synchronization of
the parallel processes it needs to ensure that failure of one
process eventually stops providing service to the users. This
could be achieved by immediate transition fBC. If software
resp. hardware components (Fig. 11) fail immediate
transition fBC will be fired which symbolizes the quitting of
the operation of both parallel processes B and C rather than
stopping either process B or C, thus postponing the
execution of the service. Stopping only either the process B
or C will result in inconsistent execution of the whole SRN
and produce erroneous result. If both software and hardware
components work fine the timed transition wBC will fire to
continue the execution of parallel processes B and C. Guard
f u n c t i o n s g r B C , g r w B C a l l o w t h e i m m e d i a t e

Function Definition

g1, g2, g3 if (# Prun = = 0) 1 else 0

g4 if (# Prun = = 1) 1 else 0

Figure 11. (a) Synchronized transition in the SRN model of the software process
with the (b) SRN model of the hardware component

Figure 12. Synchronize the performance SRN model with dependability SRN

(a) (b)

Prec

Tdet

Pfail

Prun

Trec

Tfail

Tstbfl

Tswt

Pstb

Trecv [g4]

thf
[g1]

Phf

Psrun

thsfl [g2]

thfr [g3]

Tsdet

Psrec

Psfail

Tsrec

Tsfail

Figure 10. Model synchronization hierarchy

TABLE II. GUARD FUNCTIONS DEFINITION

356

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transition fBC, wBC to work consistently with the change of
the states of the software and hardware components. The
guard function definitions are shown in the Table III.

Algorithms for model transformation rules and model
synchronization process have been mentioned in Appendix
A.

IX. HIERARCHICAL MODEL FOR MTTF
CALCULATION

System is composed of different types of hardware
devices such as CPU, memory, storage device, cooler.
Hence, to model the failure behavior of a hardware node
absolutely, we need to consider failure behavior of all the
hardware devices. But it is very demanding and not efficient
with respect to execution time to consider behavior of all the
hardware components during the SRN model generation.
SRN model becomes very cumbersome and inefficient to
execute. In order to solve the problem, we evaluate the mean
time to failure (MTTF) of system using the hierarchical
model in which a fault tree is used to represent the MTTF of

the system by considering MTTF of every hardware
component in the system. Later on, we consider this MTTF
of the system in our dependability SRN model for hardware
components (Fig. 9(b)) rather than considering failure
behavior of all the hardware components individually. The
below Fig. 13 introduces one example scenario of capturing
failure behavior of the hardware components using fault tree
where system is composed of different hardware devices
such as one CPU, two memory interfaces, one storage
device and one cooler. The system will work when CPU,
one of the memory interfaces, storage device and cooler will
run. Failure of both memory interfaces or failure of either
CPU or storage device or cooler will result in the system
unavailability.

Function Definition

grA, grBC if (# Psrun = = 0) 1 else 0

grwBC if (# Psrun = = 1) 1 else 0

Figure 13. Fault tree model of System Failure

Performability
evaluation

SHARPE

Performability
SRN model

Dependability modeling view

Model
synchronization

using Guard
functions

Dependability
SRN model

Performance modeling view

Model transformation phase

Transform

Library for
transformation

rule

Model annotation phase

Annotated

UML model

Performance
SRN model

Deployment phase

Deployment
mapping
<XML>

Model Validator

Model Validator

Deploy
Service specification

Capturing states
of the

components

UML
collaboration

& activity
diagram 1

Deployment
diagram

2

State machine
diagram 3

Performance &
Dependability

parameters
incorporated model

<XML> 4

State diagram generation phase

Figure 14. Tool support of our performability modeling framework

Legend: manual 1, 2, 3, 4 Input file

TABLE III. GUARD FUNCTIONS DEFINITION

Annotation
using
MARTE

357

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

X. TOOL BASED SUPPORT OF THE
PERFORMABILITY MODELING FRAMEWORK

The theoretical foundation of the approach is described
in details in the above sections. We highlight the tool
support of our performability modeling framework in Fig.
14. The partial input model of our framework is generated
using Arctis tool which is integrated as plug-in into the
eclipse IDE. In the evaluation side, SHARPE tool is used.
We generate the annotated UML model from the UML
collaboration diagram, deployment diagram, STM diagram,
and the performance and dependability related parameters.
From Fig. 14, it is evident that we need to define 4 inputs
accordingly: in the performance modeling view, the first
input UML collaboration diagram and the detail behavior of
collaborative building block will be generated using the GUI
(Graphical User Interface) editor of Arctis tool which will
be saved as XML file and the other two inputs of
performance modeling view will be generated as XML file
such as deployment diagram and performance attributes
incorporated UML model after deployment mapping. The
inputs of the dependability modeling view such as STM
diagram and dependability attributes incorporated UML
model will be generated as XML file as well. We also define
one output file in text format which is generated as a result
of the model annotation phase denoting the annotated UML
model. The annotated UML model file is then further used
as an input for the model transformation phase to achieve
automation in model transformation. In the model
transformation phase, we automate the transformation

process from annotated UML model to the SRN
performability model following the model transformation
rules and afterwards, merging of SRN performance and
dependability model using guard functions. The input files
are specified in XML formats. This is because of the fact
that XML gives benefits to guarantee the robustness,
flexibility to extend the existing file, and data validation.
The output files are all in text format as the SHARPE tool,
that evaluates the performance of the system, accepts the
input as text format.

XI. CASE STUDY

As a representative example, we consider a scenario
dealing with heuristically clustering of modules and
assignment of clusters to nodes [17]. This scenario is
sufficiently complex to show the applicability of our
performability framework. The problem is defined in our
approach as collaboration of E = 10 service components or
collaboration roles (labeled C1 . . . C10) to be deployed and K
= 14 collaborations between them illustrated in Fig. 15. We
consider three types of requirements in this specification.
Besides the execution cost, communication cost, and cost
for running background process, we have a restriction on
components C2, C7, C9 regarding their location. They must
be bound to nodes n2, n1, n3 respectively. In this scenario,
new service is generated by integrating and combining the
existing service components that will be delivered
conveniently by the system. For example, one new service is

Figure 15. Collaboration & Components in the example Scenario

358

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

composed by combining the service components C1, C2, C4,
C5, C7 shown in Fig. 15 as thick dashed line. The internal
behavior of the collaboration Ki is realized by the call
behavior actions through the same UML activity diagram
already demonstrated in Fig. 3(b). The composition of the
collaboration role Ci of the delivered service by the system
is demonstrated in Fig. 16. The initial node () indicates the
starting of the activity. After being activated, each
participant starts its processing of request which is
mentioned by call behavior action Pri (Processing of the ith
service component). Completions of the processing by the
participants are mentioned by the call behavior action Prdi

(Processing done of the ith service component). The activity
is started from the component C7 where the semantics of the
activity is realized by the token flow. After completion of
the processing of the component C7, the response is divided
into two flows which are shown by the fork node f7. The
flows are activated towards component C1 and C4. After
getting the response from the component C1, processing of
the components C2 will be started. The response and request

are mentioned by the streaming pin res and req. The
processing of the component C5 will be started after getting
the responses from both component C4 and C2 which is
realized by the join node j5. After completion of the
processing of component C5, the activity is terminated which
is mentioned by the end node ().

In this example, the target environment consists of N = 3
identical, interconnected nodes with no failure of network
link, with a single provided property, namely processing
power, and with infinite communication capacities shown in
Fig. 17. The optimal deployment mapping can be observed
in Table IV. The lowest possible deployment cost, according
to equation (4) is: 17 + 100 + 70 = 187.

In order to annotate the UML diagrams in Fig. 16 and 17,
w e u s e t h e s t e r e o t y p e s < < s a S t e p > >
<<computingResource>>, <<scheduler>> and the tagged
values execTime, deadline and schedPolicy which are
already explained in section 5. Collaboration Ki (Fig. 18) is
associated with two instances of deadline as collaborations
in example scenario are associated with two kinds of cost:

Figure 17. The target network of hosts

Recovery

Running

Failed

 mean-time-between-failure-detect = {4, ‘s’}
<<transition>>

<<QoSDimension>>

mean-time-between-failure=
{14, ‘hr’}

<<QoSDimension>>

mean-time-to-repair
= {200, ‘s’}

Figure 19. Annotated STM diagram of software component

<<computingResource>>

<<Scheduler>>
{schedPolicy = FIFO}

n3: Processor
Node

n2: Processor
Node

n1: Processor
Node

C1 <<saStep>
 {execTime=10, s} K1

<<saStep>>
{deadline1=20, s}

 {deadline2=5, s}

Figure 18. Annotated UML model

Figure 16. Composition of collaboration

359

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

communication cost and cost for running background
process (BP). In order to annotate the STM UML diagram
of software process (shown in Fig. 19), we use the
stereotype <<QoSDimension>>, <<transition>> and
attributes mean-time-between-failures, mean-time-between-
failure-detect and mean-time-to-repair which are already
mentioned in section VI. Annotation of the STM of
hardware component can be demonstrated in the same way
as STM of software process.

By considering the specification of reusable
collaborative building blocks, deployment mapping, and the
model transformation rule, the corresponding SRN model of
our example scenario is illustrated in Fig. 20. In our
discussion we consider M/M/1/n queuing system so that at
most n jobs can be in the system at a time [3]. For
generating the SRN model, firstly, we will consider the
starting node (). According to rule 1, it is represented by
timed transition (denoted as start) and the arc connects to
place Pr7 (states of component C7). When a token is
deposited in place Pr7, immediately a checking is done
about the availability of both software and hardware
components by inspecting the corresponding SRN models
shown in Fig. 11. The availability of software and hardware
components allows the firing of timed transition t7
mentioning the continuation of the further execution.
Otherwise, immediate transition f7 will be fired mentioning
the ending of the further execution because of software resp.
hardware component failure. The enabling of immediate
transition f7 is realized by the guard function gr7. After the
completion of the state transition from Pr7 to Prd7 (states of
component C7), immediately, the flow is divided into two
branches (denoted by the immediate transition It1) according
to model transformation rule 2 (Fig. 8). The token is passed
to place Pr1 (states of component C1) and Pr4 (states of
component C4) after the firing of transitions K7 and K8.
According to rule 1, collaboration K8 is realized only by

overhead cost as C4 and C7 deploy on the same processor
node n1 (Table IV). The collaboration K7 is realized both by
the communication cost and overhead cost as C1 and C7
deploy on the two different nodes n3 and n1 (Table IV).
When a token is deposited into place Pr1 and Pr4,
immediately, a checking is done about the availability of
both software and hardware components by inspecting the
corresponding dependability SRN models illustrated in Fig.
11. The availability of software and hardware components
allows the firing of immediate transition w14 which
eventually enables the firing of timed transition t1

mentioning the continuation of the further execution. The
enabling of immediate transition w14 is realized by the guard
function grw14. Otherwise, immediate transition f14 will be
fired mentioning the ending of the further execution because
of software resp. hardware component failure. The enabling
of immediate transition f14 is realized by the guard function
gr14. After the completion of the state transition from Pr1 to
Prd1 (states of component C1) the token is passed to Pr2
(states of component C2) according to rule 1, where timed
transition K5 is realized both by the communication and
overhead cost. When a token is deposited into place Pr2,
immediately a checking is done about the availability of
both software and hardware components by inspecting the
corresponding dependability SRN models shown in Fig. 11.
The availability of software and hardware components
allows the firing of the immediate transition w24 which
eventually enables the firing of timed transition t2 and t4

mentioning the continuation of the further execution. The
enabling of immediate transition w24 is realized by the guard
function grw24. Otherwise, immediate transition f24 guided
by guard function gr24 will be fired mentioning the ending of
the further execution because of software resp. hardware
component failure. Afterwards, the merging of the result is
realized by the immediate transition It2 following the firing
of transitions K2 and K4. Collaboration K2 is realized both by
the overhead cost and communication cost as C4 and C5

deploy on the different processor nodes n1 and n2 (Table IV).
K4 is replaced by the timed transition which is realized by
the overhead cost as C2 and C5 deploy on the same node n2

(Table IV). When a token is deposited in place Pr5 (state of
component C5), immediately, a checking is done about the
availability of both software and hardware components by
inspecting the corresponding SRN models illustrated in Fig.
11. The availability of software and hardware components
allows the firing of timed transition t5 mentioning the

Node Components l

 | l

 – T |
Internal

collaborations

n1 c4, c7, c8 70 2 k8, k9
n2 c2, c3, c5 60 8 k3, k4

n3 c1, c6, c9, c10 75 7 k11, k12, k14
∑ cost 17 100

TABLE IV. OPTIMAL DEPLOYMENT MAPPING

Figure 20. Equivalent SRN model of the example service

Start
Exit1 Pr7 t7 It1

Prd7

f7
[gr7]

x2

x1

K7

K8

Pr1

Pr4

[grw14]
w14

[gr14]
f14

x4

x3

t1
Prd1

K5

Pr2
[grw24]

w24
x6

x5
f24 [gr24]

t2

t4

Prd2

Prd4

K4

K2

x8

x7

It2 Pr5
t5 Prd5

[gr5]
f5

Pfl

Exit2

n n

360

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

continuation of the further execution. Otherwise, immediate
transition f5 will be fired mentioning the ending of the
further execution because of software resp. hardware
component failure and the ending of the execution of the
SRN model is realized by the timed transition Exit2. The
enabling of immediate transition f5 is realized by the guard
function gr5. After the completion of the state transition
from Pr5 to Prd5 (states of component C5) the ending of the
execution of the SRN model is realized by the timed
transition Exit1. The definitions of guard functions gr7,
grw14, gr14, grw24, gr24, and gr5 are mentioned in Table V,
which is dependent on the execution of the SRN model of
the corresponding STM of software and hardware instances
illustrated in Fig. 11.

We use SHARPE [16] to execute the obtained

synchronized SRN model and calculate the system’s
throughput and job success probability against failure rate of
system components. Graphs in Fig. 21 show the throughput
and job success probability of the system against the
changing of the failure rate (sec-1) of hardware and software
components in the system.

XII. CONCLUSION AND FUTURE WORK

We presented a novel approach for model based
performability evaluation of a distributed software system.
The approach spans from system’s dynamics demonstration
through UML diagram as reusable building blocks to
efficient deployment of service components in a distributed
manner focusing on the QoS requirements. The main
advantage of using the reusable software components allows
the cooperation among several software components to be
reused within one self-contained, encapsulated building
block. Moreover, reusability thus assists in creating the
distributed software systems from existing software

components rather than developing the system from scratch
which in turn facilitates the improvement of productivity
and quality in accordance with the reduction in time and
cost. We put emphasis to establish some important concerns
relating to the specification and solution of performability
models emphasizing the analysis of the system’s dynamics.
We design the framework in a hierarchical and modular way
which has the advantage of introducing any modification or
adjustment at a specific layer in a particular submodel rather
than in the combined model according to any change in the
specification. Among the important issues that come up in
our development are flexibility of capturing the system’s
dynamics using our new reusable specification of building
blocks, ease of understanding the intricacy of combined
model generation, and evaluation from that specification by
proposing model transformation. However, our eventual
goal is to develop support for runtime redeployment of
components, this way keeping the service within an allowed
region of parameters defined by the requirements. As a
result, with our proposed framework we can show that our
logic will be a prominent candidate for a robust and adaptive
service execution platform. The special property of SRN
model like guard function keeps the performability model
simpler by applying logical conditions that can be expressed
graphically using input and inhibitor arcs which are limited
by the following semantics: a logical “AND” for input arcs
(all the input conditions must be satisfied), a logical “OR”
for inhibitor arcs (any inhibitor condition is sufficient to
disable the transition) [18]. However, the size of the
underlying reachability set to generate a SRN model is
major limitation for large and complex systems. Further
work includes tackling the state explosion problems of
reachability marking for large distributed systems. In
addition, developing GUI editor is another future direction
to generate UML deployment and state diagram and to
incorporate performability related parameters. The plug-ins
can be integrated into the Arctis tool which will provide the
automated and incremental model checking while
conducting model transformation.

Function Definition

gr7, gr14, gr24, gr5 if (# Psrun = = 0) 1 else 0

grw14, grw24 if (# Psrun = = 1) 1 else 0

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

0,000005 0,00001 0,00007 0,0003

Failure rate

T
h

ro
u

g
h

p
u

t

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,000005 0,00001 0,00007 0,0003

Failure rate

Jo
b

 s
u

cc
es

s
p

ro
b

ab
ili

ty

Figure 21. Numerical result of our example scenario

TABLE V. GUARD FUNCTIONS DEFINITION

361

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES
[1] R H Khan, F Machida, P. Heegaard, and K S Trivedi, “From

UML to SRN: A performability modeling framework
considering service components deployment”, Proceeding of
the ICNS, pp. 118-127, IARIA, 2012

[2] F. A. Jawad and E. Johnsen, “Performability: the vital
evaluation method for degradable systems and its most
commonly used modeling method, Markov reward modeling”,
http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/eaj2/rep
ort.html, <retrieved May 2011>

[3] E. de Souza e. Silva, and H. R. Gali, “Performability analysis
of computer systems: from model specification to solution”,
Performance evaluation 14, pp. 157-196, 1992

[4] K. S. Trivedi, “Probability and Statistics with Reliability,
Queuing and Computer Science application”, Wiley-
Interscience publication, ISBN 0-471-33341-7, 2001

[5] OMG 2009, “OMG UML Superstructure”, Version-2.2
[6] G. Ciardo, J. Muppala, and K. S. Trivedi, “Analyzing

concurrent and fault-tolerant software using stochastic reward
nets”, Journal of Parallel and Distributed Computing, Vol. 15,
1992

[7] M. Csorba, P. Heegaard, and P. Herrmann, “Cost-Efficient
Deployment of Collaborating Components”, Proceedings of
the DAIS, pp. 253–268, Springer, 2008

[8] OMG 2009, “UML Profile for MARTE: Modeling & Analysis
of Real-Time Embedded Systems”, V – 1.0

[9] N. Sato and Trivedi, “Stochastic Modeling of Composite Web
Services for Closed-Form Analysis of Their Performance and
Reliability Bottlenecks”, Proceedings of the ICSOC, pp. 107-
118, Springer, 2007

[10] P. Bracchi, B. Cukic, and Cortellesa, “Performability
modeling of mobile software systems”, Proceedings of the
ISSRE, pp. 77-84, 2004

[11] N. D. Wet and P. Kritzinger, “Towards Model-Based
Communication Protocol Performability Analysis with UML
2.0”, http://pubs.cs.uct.ac.za/archive/00000150/01/No_10,
<retrieved May 2011>

[12] Gonczy, Deri and Varro, “Model Driven Performability
Analysis of Service Configurations with Reliable Messaging”,
Proceedings of the MDWE, 2008

[13] OMG 2009, “UML Profile for Modeling Quality of Service &
Fault Tolerance Characteristics Specification”, V-1.1

[14] R. H. Khan and P. Heegaard, “A Performance modeling
framework incorporating cost efficient deployment of
multiple collaborating components”, Proceedings of the
ICSECS, pp. 31-45, Springer, 2011

[15] F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU,
http://arctis.item.ntnu.no, <retrieved May 2011>

[16] K. S. Trivedi and R. Sahner, “Symbolic Hierarchical
Automated Reliability / Performance Evaluator (SHARPE)”,
Duke University, NC, 2002

[17] Mate J. Csorba, “Cost efficient deployment of distributed
software services”, PhD Thesis, NTNU, Norway, 2011

[18] Muppala, Ciardo and K. Trivedi, Stochastic reward nets for
reliability prediction”, Communications in Reliability,
Maintainability and Serviceability, SAE International, 1994

[19] P. Herrmann and H. Krumm, “A Framework for Modeling
Transfer Protocols”, Computer Networks, Vol - 34, No - 2,
pp.317–337, 2000

[20] Vidar Slåtten, “Model Checking Collaborative Service
Specifications in TLA with TLC”, Project Thesis, Norwegian
University of Science and Technology, Trondheim, Norway,
August 2007

[21] Lamport, “Specifying Systems”, Addison-Wesley, 2002
[22] R. H. Khan and Poul E. Heegaard, “Software Performance

evaluation utilizing UML Specification and SRN model and
their formal representation”, Submitted to a journal for
reviewing.

[23] F. Kræmer, P. Herrmann, and R. Bræk, “Aligning UML 2
state machines & temporal logic for the effecient execution of
services”, Proceedings of the DOA, Springer, 2006

APPENDIX A

Algorithm 1: rule_1 (ExecCost, CommCost, Ovrhdcost,
 Mappings, CollaborationRoles)

1 If CollaborationRoles A self token generator then

2 Places += “PrA 1”
3 else (A has a external token generator)

4 Places += “PrA 0”
5 Places += “PrdA 0”
6 Places += “PrB 0”
7 Places += “PrdB 0”
8 Timed_Transitions += “doA ind” + 1/ execution cost for
 collaborationRole A
9 Timed_Transitions += “doB ind” + 1/ execution cost for
 collaboration role B
10 Timed_Transitions += “exit ind” + 1/ rate for the end
 transition
11 If CollaborationRoles A and B are deployed on the same
 node then

12 Timed_Transitions += “t ind” + 1/ overhead
 cost
13 else

14 Timed_Transitions += “t ind” + 1/ (overhead

cost + communication cost)
15 If CollaborationRole A has a external token generator
 then

16 Timed_Transitions += “Start ind” + 1/ rate of
 the token generator
17 Inhibitor_Arcs += “PrA Start 1”
18 Inhibitor_Arcs += “PrdA doA 1”
19 Inhibitor_Arcs += “PrB t 1”
20 Inhibitor_Arcs += “PrdB doB 1”
21. Input_Arcs += “PrA doA 1”
22 Input_Arcs += “PrdA t 1”
23 Input_Arcs += “PrB doB 1”
24 Input_Arcs += “PrdB exit 1”
25 Output_Arcs += “doA PrdA 1”
26 Output_Arcs += “doB PrdB 1”
27 Output_Arcs += “t PrB 1”
28 if CollaborationRole A self token generator then

29 Output_Arcs += “t PrA 1”
30 else

31 Output_Arcs += “Start PrA 1”
32 Print Places, Timed_Transitions, Input_Arcs, Output_Arcs,

Inhibitor_Arcs
33 return

362

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 2: rule_2_a (ExecCost, CommCost,
Ovrhdcost, Mappings, CollaborationRoles)

1 Places += “PrA 0”
2 Places += “PrdA 0”
3 Places += “PrB 0”
4 Places += “PrdB 0”
5 Places += “PrC 0”
6 Places += “PrdC 0”
7 Places += “Xc 0”
8 Places += “Xb 0”
9 Immediate_Transitions += “it ind 1”
10 Timed_Transitions += “Start ind” + 1 / rate of the
 external token generator
11 Timed_Transitions += “doA ind “+ 1 / execution cost
 of collaboration role A
12 Timed_Transitions += “doB ind “+ 1 / execution cost
 of collaboration role B
13 Timed_Transitions += “doC ind “+ 1 / execution cost
 of collaboration role C
14 if CollaborationRoles A and B are deployed on the
 same node then
15 Timed_Transitions += “tB ind” + 1/ overhead
 cost
15 else

 Timed_Transitions += “tB ind” + 1/ (overhead
 cost + communication cost)

16 if CollaborationRoles A and C are deployed on the same
 node then
17 Timed_Transitions += “tC ind ” + 1/ overhead
 cost
18 else
19 Timed_Transitions += “tC ind”+1/ (overhead
 cost + communication cost)
20 Input_Arcs += “PrA doA 1”
21 Input_Arcs += “PrdA it 1”
22 Input_Arcs += “PrB doB 1”
23 Input_Arcs += “PrC doC 1”
24 Input_Arcs += “XB tB 1”
25 Input_Arcs += “XC TC 1”
26 Output_Arcs += “Start PrA 1”
27 Output_Arcs += “doA PrdA 1”
28 Output_Arcs += “it Xb 1”
29 Output_Arcs += “it Xc 1”
30 Output_Arcs += “tB PrB 1”
31 Output_Arcs += “tC PrC 1”
32 Output_Arcs += “doB PrdB 1”
33 Output_Arcs += “doC PrdC 1”
34 Inhibitor_Arcs += “PrA Start 1”
35 Inhibitor_Arcs += “PrdA doA 1”
36 Inhibitor_Arcs += “Xb it 1”
37 Inhibitor_Arcs += “Xc IT 1”
38 Inhibitor_Arcs += “PrB tB 1”
39 Inhibitor_Arcs += “PrC tC 1”
40 Inhibitor_Arcs += “PrdB doB 1”
41 Inhibitor_Arcs += “PrdC doC 1”
42 Print Places, Immediate_Transitions, Timed_Transitions,
 Input_Arcs, Output_Arcs, Inhibitor_Arcs
43 return

Algorithm 3: rule_2_b (ExecCost, CommCost,
Ovrhdcost, Mappings, CollaborationRoles)

1 Places += “PrA 0”
2 Places += “PrdA 0”
3 Places += “PrB 0”
4 Places += “PrdB 0”
5 Places += “PrC 0”
6 Places += “PrdC 0”
7 Places += “Xb 0”
8 Places += “Xc 0”
9 Immediate_Transitions += “it ind 1”
10 Timed_Transitions += “StartB ind ” + 1 / rate of the
 external token generator for B
11 Timed_Transitions += “StartC ind ” + 1 / rate of the
 external token generator for C
12 Timed_Transitions += “doA ind “ + 1 / execution cost
 of CollaborationRoles A
13 Timed_Transitions += “doB ind “ + 1 / execution cost
 of CollaborationRoles B
14 Timed_Transitions += “doC ind “ + 1 / execution cost
 of CollaborationRoles C
15 if CollaborationRoles A and B are deployed on the same
 node then
16 Timed_Transitions += “tB ind” + 1/ overhead
 cost
17 else
18 Timed_Transitions += “tB ind” + 1/ (overhead
 cost + communication cost)
19 if CollaborationRoles A and C are deployed on the same
 node then
20 Timed_Transitions += “tC ind” + 1/ overhead
 cost
21. else
22 Timed_Transitions += “tC ind” + 1/ (overhead
 cost + communication cost)
23 Input_Arcs += “PrA doA 1”
24 Input_Arcs += “PrB doB 1”
25 Input_Arcs += “PrdB tB 1”
26 Input_Arcs += “Xb it 1”
27 Input_Arcs += “PrC doC 1”
28 Input_Arcs += “PrdC tC 1”
29 Input_Arcs += “Xc it 1”
30 Output_Arcs += “it PrA 1”
31 Output_Arcs += “doA PrdA 1”
32 Output_Arcs += “StartB PrB 1”
33 Output_Arcs += “doB PrdB 1”
34 Output_Arcs += “tB Xb 1”
35 Output_Arcs += “StartC PrC 1”
36 Output_Arcs += “doC PrdC 1”
37 Output_Arcs += “tC Xc 1”
38 Inhibitor_Arcs += “PrB StartB 1”
39 Inhibitor_Arcs += “PrdB doB 1”
40 Inhibitor_Arcs += “Xb tB 1”
41 Inhibitor_Arcs += “PrC StartC 1”
42 Inhibitor_Arcs += “PrdC doC 1”
43 Inhibitor_Arcs += “Xc tC 1”
45 Inhibitor_Arcs += “PrA it 1”
46 Inhibitor_Arcs += “PrdA doA 1”
47 Print Places, Immediate_Transitions, Timed_Transitions,
 Input_Arcs, Output_Arcs, Inhibitor_Arcs
48 return

363

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 4: rule_3_ hardware_srn()

1 Places += “H_run 1”
2 Places += “H_fail 0”
3 Places += “H_recover 0”
4 Places += “H_backup 1”
5 Timed_Transitions += “T_fl ind” + 1/ cost for the
 transition between H_run and H_fail
6 Timed_Transitions += “T_dt ind” + 1/ cost for the
 transition between H_fail and H_recover
7 Timed_Transitions += “T_rcv ind” + + 1/ cost for
 the transition between H_recover and H_backup
8 Timed_Transitions += “T_bfl ind” + 1/ cost for the
 transition between H_backup and H_fail
9 Timed_Transitions += “T_sw ind” + 1/ cost for the
 transition between H_backup and H_run
10 Input_Arcs += “H_run T_fl 1”
11 Input_Arcs += “H_fail T_dt 1”
12 Input_Arcs += “H_recover T_rcv 1”
13 Input_Arcs += “H_backup T_sw 1”
14 Input_Arcs += “H_backup T_bfl 1”
15 Output_Arcs += “T_fl H_fail 1”
16 Output_Arcs += “T_dt H_recover 1”
17 Output_Arcs += “T_rcv H_backup 1”
18 Output_Arcs += “T_sw H_run 1”
19 Output_Arcs += “T_bfl H_fail 1”
20 Inhibitor_Arcs += “H_run T_sw 1”
21 Print Places, Timed_Transitions, Input_Arcs,
 Output_Arcs, Inhibitor_Arcs
22 return

Algorithm 5: rule_3_software_srn()

1 Places += “S_run 1”
2 Places += “S_fail 0”
3 Places += “S_recover 0”
4 Timed_Transitions += “T_sfl ind ” + 1/ cost for the
 transition between S_run and S_fail
5 Timed_Transitions += “T_sdt ind ” + 1/ cost for the
 transition between S_fail and S_recovery
6 Timed_Transitions += “T_srcv ind ” + + 1/ cost for
 the transition between S_recover and S_run
7 Input_Arcs += “S_run T_sfl 1”
8 Input_Arcs += “S_fail T_sdt 1”
9 Input_Arcs += “S_recover T_srcv 1”
10 Output_Arcs += “T_sfl S_fail 1”
11 Output_Arcs += “T_sdt S_recover 1”
12 Output_Arcs += “T_srcv S_backup 1”
13 Print Places, Timed_Transitions, Input_Arcs,
 Output_Arcs
14 return

Algorithm 6: software_sync_srn()

1 Places += “S_run 1”
2 Places += “S_fail 0”
3 Places += “S_recover 0”
4 Places += “P_hf 0”
5 Timed_Transitions += “T_sfl ind” + 1/ cost for the
 transition between S_run and S_fail
6 Timed_Transitions += “T_sdt ind” + 1/ cost for the
 transition between S_fail and S_recover
7 Timed_Transitions += “T_srcv ind” + 1/ cost for the
 transition between S_recover and S_run
8 Timed_Transitions += “T_recv ind” + 1/ cost for the
 transition between P_hf and S_run + “guard hd_up()”
9 Immediate_Transitions += “t_hfl ind 1 guard

hd_down()”
10 Immediate_Transitions += “t_hf ind 1 guard

hd_down()”
11 Immediate_Transitions += “t_hfr ind 1 guard

hd_down()”
12 Input_Arcs += “S_run T_sfl 1”
13 Input_Arcs += “S_fail T_sdt 1”
14 Input_Arcs += “S_recover T_srcv 1”
15 Input_Arcs += “S_run t_hf 1”
16 Input_Arcs += “S_fail t_hfl 1”
17 Input_Arcs += “S_recover t_hfr 1”
18 Output_Arcs += “T_sfl S_fail 1”
19 Output_Arcs += “T_sdt S_recover 1”
20 Output_Arcs += “T_srcv S_run 1”
21 Output_Arcs += “t_hfl P_hf 1”
22 Output_Arcs += “t_hf P_hf 1”
23 Output_Arcs += “t_hfr P_hf 1”
24 Output_Arcs += “T_recv S_run 1”
25 Print Places, Timed_Transitions, Immediate_Transitions,
 Input_Arcs, Output_Arcs
26 return

hd_up()

1 if place H_run has one token then
2 return TRUE
3 else
4 return FALSE
5 return

hd_down()

1 if place H_run has zero token then
2 return TRUE
3 else
4 return FALSE
5 return

364

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 7: collaboration_role_sync_srn()

1 Places += “PrA 0”
2 Places += “PrdA 0”
3 Places += “P_fl 0”
4 Immediate_Transitions += “fA ind 1 guard sw_down()”
5 Timed_Transitions += “Start ind” + 1 / rate of the
 external token generator
6 Timed_Transitions += “doA ind” + 1 / execution cost
 of collaboration role A
7 Timed_Transitions += “End1 ind” + 1 / rate of the End1
 transition
8 Timed_Transitions += “End2 ind” + 1 / rate of the End2
 transition
9 Input_Arcs += “PrA doA 1”
10 Input_Arcs += “PrA fA 1”
11 Input_Arcs += “PrdA End1 1”
12 Input_Arcs += “fA End2 1”
13 Output_Arcs += “Start PrA 1”
14 Output_Arcs += “doA PrdA 1”
15 Output_Arcs += “fA P_fl 1”
16 Inhibitor_Arcs += “PrA Start 1”
17 Inhibitor_Arcs += “PrdA doA 1”
18 Inhibitor_Arcs += “P_fl fA 1”
19 Print Places, Timed_Transitions, mmediate_Transitions,
 Input_Arcs, Output_Arcs, Inhibitor_Arcs
20 return

sw_down()

1 if place H_run has zero token then
2 return TRUE
3 else
4 return FALSE
5 return

Algorithm 8: building_block_sync_srn()

1 Places += “PrA 0”
2 Places += “PrdA 0”
3 Places += “PrB 0”
4 Places += “PrdB 0”
5 Places += “P_fl 0”
6 Immediate_Transitions += “fA ind 1 guard

sw_down()”
7 Immediate_Transitions += “fB ind 1 guard

sw_down()”
8 Timed_Transitions += “doA ind” + 1 / execution

cost of collaboration role A
9 Timed_Transitions += “doA ind” + 1 / execution

cost of collaboration role B
10 Timed_Transitions += “Start ind” + 1 / rate of

Start
11 if CollaborationRoles A and B are deployed on

the same node then
12 Timed_Transitions += “T ind” + 1/

overhead cost
13 else
14 Timed_Transitions += “T ind” + 1/

(overhead cost + communication cost)
15 Input_Arcs += “PrA doA 1”
16 Input_Arcs += “PrA fA 1”
17 Input_Arcs += “PrdA T 1”
18 Input_Arcs += “PrB doB 1”
19 Input_Arcs += “PrdB fB 1”
20 Output_Arcs += “Start PrA 1”
21 Output_Arcs += “fA P_fl 1”
22 Output_Arcs += “fB P_fl 1”
23 Output_Arcs += “doA PrdA 1”
24 Output_Arcs += “doB PrdB 1”
25 Output_Arcs += “T PrB 1”
26 Inhibitor_Arcs += “PrA Start 1”
27 Inhibitor_Arcs += “PrdA doA 1”
28 Inhibitor_Arcs += “PrB T 1”
29 Inhibitor_Arcs += “PrdB doB 1”
30 Inhibitor_Arcs += “P_fl fA 1”
31 Inhibitor_Arcs += “P_fl fB 1”
32 Print Places, Timed_Transitions,

Immediate_Transitions, Input_Arcs, Output_Arcs,
Inhibitor_Arcs

33 return

sw_down()

1 if place S_run has zero token then
2 return TRUE
3 else
4 return FALSE
5 return

365

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 9: parallal_process_sync_srn()

1 Places += “PrA 0”
2 Places += “PrdA 0”
3 Places += “Xa1 0”
4 Places += “Xa2 0”
5 Places += “P_fl 0”
6 Places += “PrB 0”
7 Places += “PrdB 0”
8 Places += “PrC 0”
9 Places += “PrdC 0”
10 Places += “XB 0”
11 Places += “XC 0”
12 Immediate_Transitions += “it ind 1”
13 Immediate_Transitions += “fBC ind 1 guard sw_up()”
14 Immediate_Transitions += “f´BC ind 1 guard sw_down()”
15. Timed_Transitions += “Start ind” + 1 / Start transition

rate
16 if CollaborationRoles A and B are deployed on the same

node then
17 Timed_Transitions += “TB ind” + 1/ overhead

cost
18 else
19 Timed_Transitions += “TB ind” + 1/ (overhead

cost + communication cost)
20 if CollaborationRoles A and C are deployed on the

same node then
21 Timed_Transitions += “TC ind” + 1/ overhead

cost
22 else
23 Timed_Transitions += “TC ind” + 1/ (overhead

cost + communication
cost)

24 Timed_Transitions += “End ind” + 1 / End transition
rate

25 Input_Arcs += “PrA doA 1”
26 Input_Arcs += “PrdA it 1”
27 Input_Arcs += “Xa1 TB 1”
28 Input_Arcs += “Xa2 TC 1”
29 Input_Arcs += “PrB fBC 1”
30 Input_Arcs += “PrB f´BC 1”
31 Input_Arcs += “PrC fBC 1”
32 Input_Arcs += “PrC f´BC 1”
33 Input_Arcs += “P_fl End 1”
34 Input_Arcs += “XB doB 1”
35 Input_Arcs += “XC doC 1”
36 Output_Arcs += “Start PrA 1”
37 Output_Arcs += “doA PrdA 1”
38 Output_Arcs += “it Xa1 1”
39 Output_Arcs += “it Xa2 1”
40 Output_Arcs += “TB PrB 1”
41 Output_Arcs += “TC PrC 1”
42 Output_Arcs += “fBC XB 1”
43 Output_Arcs += “fBC XC 1”
44 Output_Arcs += “f´BC P_fl 1”
45 Output_Arcs += “doB PrdB 1”
46 Output_Arcs += “doC PrdC 1”
47 Inhibitor_Arcs += “PrA Start 1”
48 Inhibitor_Arcs += “PrdA doA 1”
49 Inhibitor_Arcs += “Xa1 it 1”

50 Inhibitor_Arcs += “Xa2 it 1”
51 Inhibitor_Arcs += “PrB TB 1”
52 Inhibitor_Arcs += “PrC TC 1”
53 Inhibitor_Arcs += “P_fl f´BC 1”
54 Inhibitor_Arcs += “XB fBC 1”
55 Inhibitor_Arcs += “XC fBC 1”
56 Inhibitor_Arcs += “PrdB doB 1”
57 Inhibitor_Arcs += “PrdC doC 1”
58 Print Places, Timed_Transitions, Immediate_Transitions,
 Input_Arcs, Output_Arcs, Inhibitor_Arcs
59 return

sw_up()

1 if place S_run has one token then
2 return TRUE
3 else
4 return FALSE
5 return

sw_down()

1 if place S_run has zero token then
2 return TRUE
3 else
4 return FALSE
5 return

366

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 9: basic_bulding_block_srn()

1 if CollaborationRoles A has a self token generator then
2 Places += “Pri 1”
3 else
4 Places += “Pri 0”
5 Places += “Prdi 0”
6 Timed_Transitions += “do ind ” + 1/execution cost for
 collaboration role i
7 if i is getting token from external token generator then
8 Timed_Transitions += “Start ind” + 1 / Start
 rate
9 Output_Arcs += “Start Pri 1”
10 Inhibitor_Arcs += “Pri Start 1”
11 Inhibitor_Arcs += “Prdi do 1”
12 else if i is getting token from another CollaborationRoles
13 Timed_Transitions += “Enter ind” + 1 / cost of
 the transition
14 Output_Arcs += “Enter Pri 1”
15 else
16 Output_Arcs += “Exit Pri 1”
17 Input_Arcs += “Pri do 1”
18 if i is passing its token then
19 Timed_Transitions += “Exit ind ” + 1 / rate for
 Exit
20 Input_Arcs += “Prdi Exit 1”
21 Output_Arcs += “do Prdi 1”
22 Print Places, Timed_Transitions, Input_Arcs, Output_Arcs,
 Inhibitor_Arcs
23 return

