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Abstract- The analysis of the system behavior from the pure 
performance viewpoint tends to be optimistic since it ignores 
failure and repair behavior of the system components. On the 
other hand, pure dependability analysis tends to be too 
conservative since performance considerations are not taken 
into account. The ideal way is to conduct the modeling of 
performance and dependability behavior of the distributed 
system jointly for assessing the anticipated system performance 
in the presence of system components failure and recovery. 
However, design and evaluation of the combined model of a 
distributed system for performance and dependability analysis 
is burdensome and challenging. Focusing on the above 
contemplation, we introduce a framework to provide tool 
based support for performability modeling of a distributed 
software system that proposes an automated transformation 
process from the high level Unified Modeling Language (UML) 
notation to the Stochastic Reward Net (SRN) model and solves 
the model for early assessment of a software performability 
parameters. UML provides enhanced architectural modeling 
capabilities but it is not a formal language and does not convey 
formal semantics or syntax. We present the precise semantics 
of UML models by formalizing the concept in the temporal 
logic compositional temporal logic of actions (cTLA). cTLA 
describes various forms of actions through an assortment of 
operators and techniques which fit excellently with UML 
models applied in this work and also provides the support for 
incremental model checking. The applicability of our 
framework is demonstrated in the context of performability 
modeling of a distributed system to show the deviation in the 
system performance against the failure of system components. 

Keywords: UML; SRN; Performability; Deployment; Reusability  

 

I.    INTRODUCTION 

Conducting performance modeling of a distributed 
system separately from the dependability modeling fails to 
asses the anticipated system performance in the presence of 
system components failure and recovery. System dynamics 
is affected by any state changes of the system components 
due to failure and recovery. This introduces the concept of 
performability that considers the behavioral change of the 
system components due to failures and also reveals how this 
behavioral change affects the system performance. But to 
design a composite model for a distributed system, perfect 
modeling of the overall system behavior is essential and 
sometimes very unwieldy. A distributed system behavior is 
normally realized by the several objects that are physically 

disseminated. The overall system behavior is maintained by 
the partial behavior of the distributed objects of the system 
[14]. So it is essential to model the distributed objects 
behavior perfectly for appropriate demonstration of the 
system dynamics and to conduct the performability 
evaluation [14]. Hence, we adopt UML collaboration, state 
machine, deployment, and activity oriented approach as 
UML is the most commonly used specification language 
which models both the system requirements and qualitative 
behavior through an assortment of notations [5] [14]. The 
way we utilize the UML collaboration and activity diagram 
to capture the system dynamics, provides the opportunity to 
reuse the software components. The specifications of 
collaboration are given as coherent, self-contained building 
blocks [14]. Reusability of the software component is 
achieved by designing the collaborative building block 
which is used as main specification unit in this work. 
Collaboration with help of activity diagram illustrates the 
complete behavior of a software system which includes both 
the local behavior among the participants and necessary 
interactions among them. Moreover, for specifying 
deployment mapping of service components, the 
performability modeling framework considers system 
execution architecture through UML deployment diagram. 
Considering system execution architecture while designing 
the framework resolves the bottleneck of the deployment 
mapping of service components by revealing a better 
allocation of service components to the physical nodes [13]. 
This requires an efficient approach to deploy the service 
components on the available hosts of a distributed 
environment to achieve preferably high performance and 
low cost levels [14]. Later on, UML State machine (STM) 
diagram is employed in this framework to capture system 
components behavior with respect to failure and repair 
events.   
      In order to guarantee the precise understanding and 
correctness of the model, the approach requires formal 
reasoning on the semantics of the language used and to 
maintain the consistency of the models specification. 
Temporal logic is a suitable option for that. In particular, the 
properties of super position supported by cTLA [19] make it 
possible to describe systems from different view points by 
individual processes that are superimposed. In this work, we 
focus on the cTLA that allows us formalizing the 
collaborative service specifications given by UML activities 
and also to define the formal semantics of the UML 
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deployment diagram and STM model precisely. By 
expressing collaborations as cTLA processes, we can ensure 
that a composed service maintains the properties of the 
individual collaborations it is composed of. The semantic 
definition of collaboration, activity, deployment, and STM 
model in the form of temporal logic is implemented as a 
transformation tool [20] which produces TLA+ modules. 
These modules may then be used as input for the model 
checker TLC for syntactic analysis [20].  

Furthermore, UML models are annotated according to 
the UML profile for MARTE [7] and UML profile for 
Modeling Quality of Service and Fault Tolerance 
Characteristics [13] to include quantitative system 
parameters necessary for performability evaluation. UML 
specification styles are applied to generate the SRN model 
automatically following the model transformation rules 
where model synchronization between the performance and 
dependability SRN model is achieved by defining guard 
functions (a special property of the SRN model [6]). This 
synchronization thus helps to properly model the system 
performance with respect to any state changes in the system 
due to components failure [1] [2].  

Over decades several performability modeling 
techniques have been considered such as Markov models, 
SPN (Stochastic Petri Nets) and SRN [4]. Among all of 
these, we will focus on the SRN as performability model 
generated by our framework due to its prominent and 
interesting properties such as priorities assignment in 
transitions, presence of guard functions for enabling 
transitions that can use entire state of the net rather than a 
particular state, marking dependent arc multiplicity that can 
change the structure of the net, marking dependent firing 
rates, and reward rates defined at the net level [6].  

Several approaches have been pursued to accomplish a 
performability analysis model from a system design 
specification. Sato et al. develop a set of Markov models, 
for computing the performance and the reliability of Web 
services and detecting bottlenecks [9]. Another initiative 
focuses on model-based analysis of performability of mobile 
software systems by proposing a general methodology that 
starts from design artifacts expressed in a UML-based 
notation. Inferred performability models are formed based 
on the Stochastic Activity Networks notation [10]. 
Subsequent effort proposes a methodology for the modeling, 
verification, and performance evaluation of communication 
components of a distributed application building software 
which translates UML 2.0 specifications into executable 
simulation models [11]. Gonczy et al. mentioned a method 
for high-level UML models of service configurations 
captured by a UML profile dedicated to service design; 
performability models are derived by automated model 
transformations for the PEPA toolkit in order to assess the 
cost of fault tolerance techniques in terms of performance 
[12]. However, most of the existing approaches do not 
consider the fact of how to conduct the system modeling to 
delineate system functional behavior while generating the 
performability model using reusable software components. 
The framework introduced in this work is superior to the 

existing approaches that have been realized by UML 
specification style as reusable building block to characterize 
a system dynamics. The purpose of the reusable building 
block is twofold: to express the local behavior of several 
components and to capture the interaction between them. 
This provides the excellent opportunity to reuse the building 
blocks, as the interaction among the several components can 
be encapsulated within one self-contained building block 
[14]. This reusability provides the means to design a new 
system’s behavior rapidly utilizing the existing building 
blocks according to the specification. This helps to start the 
development process from scratch which in turn facilitates 
the swelling of productivity and quality in accordance with 
the reduction in time and cost [2]. Moreover, the ensuing 
deployment mapping given by our framework has greater 
impact to satisfy QoS requirements provided by the system. 
The target in this work is to deal with vector of QoS instead 
of confining them in one dimension. Our provided 
deployment logic is definitely capable of handling any 
properties of the service as long as a cost function for the 
specific property can be produced. The defined cost function 
is able to react in accordance with the changing size of 
search space of available hosts presented in the execution 
environment to assure an efficient deployment mapping [14]. 
In addition, the separation of performance and dependability 
modeling view and the introduction of model 
synchronization to synchronize the two views activities 
using guard functions relinquishes the complex and 
unwieldy affect in performability modeling and evaluation 
of large and multifaceted systems [1].  

The objective of this paper is to provide a tool based 
support for the performability modeling of a distributed 
system to allow modeling of the performance and 
dependability related behavior in a combined and automated 
way. This in turn allows not only to model functional 
attributes of the service provided by the system but also to 
investigate dependability attributes to reflect how the 
changes in the dependability attributes affect the system 
overall performance. For ease of understanding the 
complexity behind the modeling of performability attributes, 
our modeling framework works in two different views such 
as performance modeling view and dependability modeling 
view. The framework achieves its objective by maintaining 
harmonization between performance and dependability 
modeling view with the support of model synchronization. 
The paper is organized as follows: Section II introduces our 
performability modeling framework, Section III depicts 
UML model description, Section IV describes formalization 
of UML models, Section V explains service components 
deployment issue, Section VI clarifies UML models 
annotations, Section VII delineates model transformation 
rules, Section VIII introduces the model synchronization 
mechanism, Section IX describes the hierarchical method 
for mean time to failure (MTTF) calculation, Section X 
indicates the tool based support of the modeling framework, 
Section XI illustrates the case study, and Section XII 
delineates the concluding remarks with future directions. 
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II.    OVERVIEW OF PROPOSED FRAMEWORK 

Our performability framework is composed of 2 views: 
performance modeling view and dependability modeling 
view. The performance modeling view mainly focuses on 
capturing the system’s dynamics to deliver certain services 
deployed on a distributed system. The performance 
modeling view is divided into 4 steps shown in Fig. 1 where 
the service specification step is the part of Arctis tool suite 
which is integrated as plug-ins into the eclipse IDE [15]. 
Arctis focuses on the abstract, reusable service 
specifications that are composed of UML 2.2 collaborations 
and activities [15]. It uses collaborative building blocks to 
create comprehensive services through composition. In 
order to support the construction of building block 
consisting of collaborations and activities, Arctis offers 
special actions and wizards.  

In the first step of performance modeling view, a 
developer consults a library to check if an already existing 
basic building block or collaboration between several blocks 
solves a certain task. Missing blocks can also be created 
from existing building blocks and stored in the library for 
later reuse. The building blocks are expressed as UML 
models. The structural aspect, for example the service 
components and their multiplicity, is expressed by means of 
UML 2.2 collaborations. For the detailed internal behavior, 
UML 2.2 activities have been used. The building blocks are 
combined into more comprehensive service by composition 

to specify the detailed behavior of how the different events 
of collaborations are composed. For this composition, UML 
collaborations and activities are used complementary to 
each other [15]. In the deployment phase, the deployment 
diagram of our proposed system is delineated and the 
relationship between system components and collaborations 
is outlined to describe how the service is delivered by the 
joint behavior of the system components. In the model 
annotation phase, performance information is incorporated 
into the UML activity diagram and deployment diagram 
according to the UML profile for MARTE [8]. The model 
transformation phase is devoted to automate generation of a 
SRN model following the model transformation rules. The 
SRN model generated in this view is called performance 
SRN. 

The dependability modeling view is responsible for 
capturing any state changes in the system because of failure 
and recovery behavior of system components. The 
dependability modeling view is composed of three steps 
shown in Fig. 1. In the first step, UML STM diagram is used 
to describe the state transitions of software and hardware 
components of the system to capture the failure and 
recovery events. In the model annotation phase, 
dependability parameters are incorporated into the STM 
diagram according to UML profile for Modeling Quality of 
Service and Fault Tolerance Characteristics & Mechanisms 
Specification [13]. The model transformation phase reflects 
the automated generation of the SRN model from the STM 

Figure 1.  Proposed performability modeling framework 
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diagram following the model transformation rules. The SRN 
model generated in this view is called dependability SRN. 

The model synchronization is used as glue between 
performance SRN and dependability SRN. The 
synchronization task guides the performance SRN model to 
synchronize with the dependability SRN model by 
identifying the transitions in the dependability SRN. The 
synchronization between performance and dependability 
SRN is achieved by defining the guard functions. Once the 
performance SRN model is synchronized with dependability 
SRN model, a merged SRN model will be obtained and 
various performability measures can be evaluated from the 
merged model using the software package SHARPE [16].  

III.    UML BASED SYSTEM DESCRIPTION 

A. Construction of collaborative building blocks  

The performability modeling framework utilizes 
collaboration as main entity. Collaboration is an illustration 
of the relationship and interaction among software objects in 
the UML. Objects are shown as rectangles with naming 
label inside. The relationships between the objects are 
shown in a oval connecting the rectangles [5]. The 
specifications for collaborations are given as coherent, self-
contained reusable building blocks. The structure of the 
building block is described by UML 2.2 collaboration. The 
building block declares the participants (as collaboration 
roles) and connection between them. The internal behavior 
of building block is described by the UML activity. It is 
declared as the classifier behavior of the collaboration and 
has one activity partition for each collaboration role in the 
structural description. For each collaboration, the activity 
declares a corresponding call behavior action referring to the 
activities of the employed building blocks. For example, the 
general structure of the building block t is given in Fig. 2 
where it only declares the participants A and B as 
collaboration roles and the connection between them is 
defined as collaboration t x  (x=1…nA B (number of 
collaborations between collaboration roles A & B)). The 
internal behavior of the same building block is shown in Fig. 
3(b). The activity transferij (where ij = AB) describes the 
behavior of the corresponding collaboration. It has one 
activity partition for each collaboration role: A and B. 
Activities base their semantics on token flow [2]. The 
activity starts by forwarding a token when there is a 
response (indicated by the streaming pin res) to transfer  

 
 
 
 
 
 
 
 
 
 
 

from participant A to B. The token is then transferred by the 
participant A to participant B (represented by the call 
operation action forward) after completion of the processing 
by the collaboration role A. After getting the response of the 
participant A, the participant B starts the processing of the 
request (indicated by the streaming pin req).  

In order to generate the performability model, the 
structural information about how the collaborations are 
composed is not sufficient. It is necessary to specify the 
detailed behavior of how the different events of 
collaborations are composed so that the desired overall 
system behavior can be obtained. For the composition, UML 
collaborations and activities are used complementary to 
each other. UML collaborations focus on the role binding 
and structural aspect, while UML activities complement this 
by covering also the behavioral aspect for composition. 
Therefore, the activity contains a separate call behavior 
action for all collaborations of the system. Collaboration is 
represented by connecting their input and output pins. 
Arbitrary logic between pins may be used to synchronize the 
building block events and transfer data between them. By 
connecting the individual input and output pins of the call 
behavior actions, the events occurring in different 
collaborations can be coupled with each other. Semantics of 
the different kinds of pins are given in more details in [14]. 
For example, the detail behavior and composition of the 
collaboration is given in following Fig. 3(a). The initial 
node (  ) indicates the starting of the activity. The activity is 
started from the participant A. After being activated, each 
participant starts its processing of request which is 
mentioned by call operation action Pri (Processingi, where i 
= A, B & C). Completion of the processing by the 
participants are mentioned by the call operation action Prdi 
(Processing_donei, where i = A, B & C). After completion 
of the processing, the response is delivered to the 
corresponding participant. When the processing of the task 
by the participant A completes, the response (indicated by 
streaming pin res) is transferred to the participant B 
mentioned by collaboration t: transferij (where ij = AB) and 
participant B starts the processing of the request (indicated 
by streaming pin req). After completion of the processing, 
participant B transfers the response to the participant C 
mentioned by collaboration t: transferij (where ij = BC). 
Participant C starts the processing after receiving the 
response from B and activity is terminated after completion 
of the processing which is illustrated by the terminating 
node (   ). 

B.   Modeling failure & repair behavior of software & 
hardware component using UML STM  

State transitions of a system element are described using 
UML STM diagram. In an STM, a state is depicted as a 
rectangle and a transition from one state to another is 
represented by an arrow [5]. In this work, STM is used to 
describe the failure and recovery behavior of software and 
hardware components. 

Figure 2.  Structure of the Building block 

B A tx: transferAB 

A B 

tx: transferAB 
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The STM of software process is shown in Fig. 4(a). The 
initial node (  ) indicates the starting of the operation of 
software process. Then the process enters Running state. 
Running is the only available state in the STM. If the 
software process fails during the operation, the process 
enters Failed state. When the failure is detected by the 
external monitoring service the software process enters 
Recovery state and the repair operation will be started. 
When the failure of the process is recovered the software 
process returns to Running state.  

The STM of hardware component is shown in Fig. 4(b). 
The initial node (  ) indicates the starting of the operation of 
hardware component. Then the component enters Running 
state. Running is the only available state here. If the active 
component fails during the operation and the hot standby 
component is available, the standby component will take 
charge and the component operation will be continued. 
When any failure (whether active component or standby 
component) incurs, the recovery operation will be 
performed. 

 
 

 

 

 

 

 

 

 

 

IV.   FORMALIZING UML DIAGRAM 

So far we introduced the UML diagrams in a descriptive 
and informal way. In order to understand the precise 
formalism of the UML models and for the correct way of 
model transformation, we need to present the UML models 
with the help of formal semantics. The formal semantics of 
UML models thus help us implementing the models very 
efficiently for providing the tool based support of our  

 
framework. Before introducing the formalization of the 
UML models, at first, we illustrate the temporal logic, more 
specifically compositional Temporal Logic of Actions 
(cTLA) that will be applied to formalize the UML models. 
We illustrate in this paper the formal representation of the 
state machine model. Formalization of other UML models 
such as collaboration, activity, and deployment diagram and 
the alignment between UML models and cTLA (which is 
beyond the scope of this paper) have already been 
mentioned in [22].  

A.   Compositional Temporal Logic of Action (cTLA) 

Lamport’s Temporal Logic of Actions (TLA, [21]) is a 
linear-time temporal logic modeling the system behavior 
where the system behavior is realized by a set of 
considerably large number of state sequences [s0, s1, s2 . .] 
[23]. Thus, the TLA formalisms are applied nicely to define 
the state machines formally produced by our framework 
which, in the end, also models considerably long sequences 
of states si starting with an initial state s0. Compositional 
TLA (cTLA, [22]) was originated from TLA to offer more 
easily comprehensible formalisms and proposes a more 
supple composition of specifications. The concept of 
process is basically introduced by a cTLA. A cTLA process 
describes system behavior as the notion of state transition 
systems [23]. 

B.   Formalizing state machine diagram using cTLA 

We sketch the cTLA model of STM in Fig. 5 by the 
specification of software process dependability behavior 
illustrated in Fig. 4(a) [23]. The header Software declares 
the name of the process type. Events is an expression 
defined as constant record type. The state space is modeled 
by a set of variables like state or Queue. Predicate INIT 
specifies the subset of initial states. The state transition 
systems are mentioned by actions (e.g., enqueue, dequeu) 
which are realized as pairs of current and next states 
describing a set of transitions each. The current sate is 
defined as a variable in simple form (e.g., state), while the 
next state is mentioned by the prime form (e.g., state´). 
Variables which won’t be changed by an action are listed by 
the statement UNCHANGED [23]. State transition system is 
defined by the body of a cTLA process type. One cTLA 
process represents one state machine that mentions a set of 
TLA state sequences. The first state s0 of each modeled state 

req res 

t: transferAB 

forward 

Figure 3.  (a) Detail behavior of the event of the collaboration using activity (b) internal behavior of the collaboration 
 

A B 

Figure 4. (a) STM of Software process (b) STM of Hardware component 

 

(a) 
(b) 

(a) 

Fail 

Detect 
Repair 

Standby 

Recovery 

Running 

Failed 

Fail 

Switch when active instance failed 

Fail 

Detect 

Repair 

Recovery 

Running 

Failed 

(b) 



351

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

  

sequence has to fulfil the initial condition INIT. The state 
changes [si, si+1] either correspond with a process action or 
with a so-called stuttering step in which the current and the 
next states are equal (i.e., si = si+1) [23]. Incoming events are 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mentioned by the action fetchEvent. An initial  
 
 
 
 
 
 
 

 

 
 
 
 
inserted into the data structure addEvent, which is a 
sequence of events. The operator ◦ denotes the 
concatenation of queue elements. Events are added to the 
queue by the action enqueue, which takes incoming events 
as action parameters [23]. Retrieving events are modeled by 
the data structure fetchEvent where the first element is 
obtained by the operations FIRST(). Events are retrieved 
from the queue by the action dequeue which takes retrieving 
events as action parameters. An initial transition initiates 
from an initial pseudo state (initState) and its execution is 
associated with the starting of the state machine. Exactly 
one initial transition is linked with each state machine [23]. 
A cTLA variable state describes the control state by 
expressing them through the control state identifiers. 
Stateseq captures the current and next state and starts from 
initial state of the STM diagram. In order to conduct an 
action in a lively manner, we can associate actions with 
weak and strong fairness properties. In particular, weak 
fairness forces the execution of an activity as if it were 
enabled continuously. Strong fairness forces the execution 

even if the action is sometimes disabled [23]. The last 
statement WF: dequeue, initial,... lists the actions that have 
to be carried out in a way which ensures week fairness 
property [23].  

V. DEPLOYMENT DIAGRAM & STATING RELATION 
BETWEEN SYSTEM & SERVICE COMPONENT 

We model the system as collection of N interconnected 
physical nodes. Our objective is to find a deployment 
mapping for this execution environment for a set of service 
components available for deployment that comprises the 
service. Deployment mapping M can be defined as 
[M=(C N)] between a number of service components 
instances C, onto physical nodes N. We consider three types 
of requirements in the deployment problem where the term 
cost is introduced to capture several non-functional 
requirements; those are later on, utilized to conduct 
performance evaluation of the systems: (1) Service 
components have execution costs, (2) Collaborations have 
communication costs and costs for running of background 
process known as overhead cost, (3) Some of the service 
components can be restricted in the deployment mapping to 
specific physical nodes which are called bound components.  

Furthermore, we consider identical physical nodes that 
are interconnected in a full-mesh and are capable of hosting 
service components with unlimited processing demand. We 
observe the processing cost that physical nodes impose 
while hosting the service components and also the target 
balancing of cost among the physical nodes available in the 
network. Communication costs are considered if 
collaboration between two service components happens 
remotely, i.e. it happens between two physical nodes [18]. 
In other words, if two service components are placed onto 
the same physical node the communication cost between 
them will be ignored. This holds for the case study that is 
conducted in this paper. This is not generally true, and it is 
not a limiting factor of our framework. The cost for 
executing the background process for conducting the 
communication between the collaboration roles is always 
considerable no matter whether the collaboration roles 
deploy on the same or different physical nodes. Using the 
above specified input, the deployment logic provides an 
optimal deployment architecture taking into account the 
QoS requirements for the service components providing the 
specified services. We then define the objective of the 
deployment logic as obtaining an efficient (low-cost, if 
possible optimum) mapping of service components onto the 
physical nodes that satisfies the requirements in a reasonable 
time. The deployment mapping providing optimal 
deployment architecture is mentioned by the cost function 
F(M), that is a function that expresses the utility of 
deployment mapping of service components on the physical 
resources with their constraints and capabilities by 
satisfying non-functional requirements of the system. The 
cost function is designed to reflect the goal of balancing the 
execution cost and minimizing the communication cost. 
This is in turn utilized to achieve reduced task turnaround 
time by maximizing the utilization of system resources 
while minimizing any communication between processing 

PROCESS Software () 
 
CONSTANTS 

Events = {Fail, Detect, Recovery}; 
 
VARIABLES 

state: {initState, running, failed, recovered}; 
Queue: QUEUE of Events; 

 
INIT =  state =  initState      Queue = EMPTY; 
 
ACTIONS 
        enqueue (addEvent: Events) =  

        Queue´ = Queue ◦ addEvent      state ≠ initState       

                                UNCHANGED   state 

        dequeue (fetchEvent: Events) =  

        Queue ≠ EMPTY     fetchEvent = FIRST(Queue)    

               UNCHANGED    state  

 Initial = state = initState       state´= idle 

  UNCHANGED     Queue 

 stateseq = state = idle      state´ = running  

  UNCHANGED     Queue  

 …….. state change for other actions ……… 
 
WF: dequeue, initial; 

Figure 5. cTLA process of Software component  
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nodes. That will offer a high system throughput, taking into 
account the expected execution and inter-node 
communication requirements of the service components on 
the given hardware architecture [14]. The evaluation of cost 
function F(M) is mainly influenced by our way of service 
definition. A service is defined in our approach as a 
collaboration of total E service components labeled as ci 
(where i = 1…. E) to be deployed and total K collaborations 
between them labeled as kj, (where j = 1 … K). The 
execution cost of each service component can be labeled as 

icf , the communication cost between the service 

components is labeled as
jk

f and the cost for executing the 

background process for conducting the communication 

between the service components is labeled as
jB

f . 

Accordingly, we will strive for an optimal solution of 
equally distributed cost among the processing nodes and the 
lowest cost possible, while taking into account the execution 

cost
icf , i = 1….E, communication cost

jk
f , j = 1….K, and 

cost for executing the background process
jB

f , j = 1….K. 

icf , 
jk

f , and 
jB

f are derived from the service 

specification, thus the offered execution cost can be 

calculated as
| |

1

E

i ic
f

 . This way, the logic can be aware of 

the target average cost T per physical node (X= total number 
of physical nodes) [18]:  

| |

1

1

| |

E

i ic
T

X
f


   

In order to cater for the communication cost
jk

f , of the 

collaboration kj in the service, the function 
0

( , )q M c is 

defined first [20]:
 
 

   0
, { | }q M c n N c n M      

This means that 
0

( , )q M c  returns the physical node n from 

a vector of physical nodes N available in the network that 
host component in the list mapping M. Let 

collaboration  1 2
,

j
k c c . The assumption in this paper is 

that, the communication cost of kj is 0 (in general, it can be 
non-zero) if components c1 and c2 are collocated, i.e. 

0 1 0 2
( , ) ( , )q M c q M c  and the cost is 

jk
f if service 

components are otherwise (i.e., the collaboration is remote). 
Using an indicator function I(x), which is 1 if x is true and 0 
otherwise, this is expressed 

as
0 1 0 2

( ( , ) ( , )) 1I q M c q M c  , if the collaboration is 

remote and 0 otherwise. In order to determine which 
collaboration kj is remote, the set of mapping M is used. 
Given the indicator function, the overall communication 
cost of service, FK(M), is the sum [20]:

 
 

  | |

0 ,1 0 ,21
( ( , ) ( , ))

K

K j jj k j
F M I q M k q M k f


    

Given a mapping M = {mn} (where mn is the set of service 
components at physical node n) the total load can be 

obtained as ˆ
i

n c m cni
fl   . Furthermore, the overall cost 

function F(M) becomes [20] (where Ij = 1, if kj external or 0 
if kj internal to a node):  

 | | | |

1 1

ˆ( ) | |
X K

n Kn j B j
F M l T F M f

 
    

 

The absolute value ˆ| |
n

l T  is used to penalize the deviation 

from the desired average load per node. 

VI.   ANNOTATION 

In order to annotate the UML diagrams, the stereotype 
saStep, computingResource, scheduler, QoSDimension, and 
the tagged value execTime, deadline, mean-time-to-repair, 
mean-time-between-failures, and schedPolicy are used 
according to the UML profile for MARTE and UML Profile 
for Modeling Quality of Service & Fault Tolerance 
Characteristics [8] [13]. The stereotypes are the following: 
 saStep defines a step that begins and ends when decisions 

about the allocation of system resources are made.  
 computingResource represents either virtual or physical 

processing devices capable of storing and executing 
program code. Hence, its fundamental service is to 
compute. 

 scheduler is a stereotype that brings access to a resource 
following a certain scheduling policy mentioned by 
tagged value schedPolicy.  

 QoSDimension provides support for the quantification of 
QoS characteristics and attributes mean-time-to-repair 
and mean-time-between-failures [13]. 

The tagged values are the following:  
 execTime: The duration of the execution time is 

mentioned by the tagged value execTime which is the 
average time in our case.  

 deadline defines the maximum time bound on the 
completion of the particular execution segment that must 
be met.  

 mean-time-between-failures defines the mean time of 
occurring a software and hardware instance failure  

 mean-time-to-repair defines the mean time that is 
required to repair a software or hardware instance failure 

We also introduce a new stereotype <<transition>> and 
three tag values mean-time-to-stop, mean-time-to-start, and 
mean-time-to-failure-detect.  
 <<transition>> induces a state transition of a scenario.  
 mean-time-to-stop defines the mean time that is required 

by a hardware instance to stop working  
 mean-time-to-start states the mean time that is  required 

by a hardware instance to start working  
 mean- time-to-failure-detect defines the mean time that is 

required to detect failures in the system.  
Fig. 6 illustrates an example annotated UML model using 
the activity diagram where the flow between PA and dA is 
annotated using stereotype saStep and tagged value  
 

(4)

(3)

(2)

(1)
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execTime which defines that after being deployed in an 
execution environment the collaboration role A needs t1 
seconds and collaboration role B needs t2 seconds to 
complete their processing by the physical node. After 
completing the processing, communication between A and B 
is achieved in t3 sec while the overhead time to conduct this 
communication is t4 sec which is annotated using stereotype 
saStep and two instances of deadline – deadline1 defines the 
communication time and deadline2 is for overhead time.  

VII.    MODEL TRANSLATION 

This section highlights the rules for the model translation 
from various UML models into SRN models. Since all the 
models will be translated into the SRN model, we will give 
a brief introduction about SRN model. SRN is based on the 
Generalized Stochastic Petri Net (GSPN) [4] and extends 
them further by introducing prominent extensions such as 

 
 
 

 

TABLE I.  SPECIFICATION OF REUSABLE UNITES AND 
EQUIVALENT SRN MODEL 

Figure 6. Annotated UML model 

   <<saStep>> 
 
{deadline1 = t3, s} 
{deadline2 = t4, s} 
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   <<saStep>> 
 
{execTime = t2, s} 
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{execTime = t1, s} 
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        t: 
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guard function, reward function, and marking dependent 
firing rate [6]. A guard function is assigned to a transition. It 
specifies the condition to enable or disable a transition and 
can use the entire state of the net rather than just the number 
of tokens in places [6]. Reward function defines the reward 
rate for each tangible marking of Petri Net based on which 
various quantitative measures can be done in the Net level. 
Marking dependent firing rate allows using the number of 
tokens in a chosen place multiplied by the basic rate of the 
transition. SRN model has the following elements: Finite set 
of the place (drawn as circles), Finite set of the transition 
defined as either a timed transition (drawn as thick 
transparent bar) or a immediate transition (drawn as thick 
black bar), set of the arc connecting the place and transition, 
multiplicity associated with the arc, and marking that 
denotes the number of token in each place.  

Before introducing the model translation rules, different 
types of collaboration roles as reusable basic building blocks 
are demonstrated with the corresponding SRN model in 
Table I that can be utilized to form the collaborative 
building blocks. 
 
The rules are the following: 

Rule 1  

The SRN model of a collaboration (Fig. 7), where 
collaboration connects only two collaboration roles, is 
formed by combining the basic building blocks type 2 and 
type 3 from Table I. Transition t in the SRN model is only 
realized by the overhead cost if service components A and B 
deploy on the same physical node as in this case, 
communication cost = 0, otherwise t is realized by both the 
communication & overhead cost. 

 

       
 
 
 

In the same way, SRN model of the collaboration can be 
demonstrated where the starting of the execution of the SRN 
model of collaboration role A depends on the token received 
from the external source.  

Rule 2 

For a composite structure, when a collaboration role A 
connects with n collaboration roles by n collaborations like 
a star graph (where n > 1) where each collaboration 
connects only two collaboration roles, the SRN model is 
formed by combining the basic building block of Table I 
which is shown in Fig. 8. In the first diagram of Fig. 8, if 
component A contains its own token, equivalent SRN model 
of the collaboration role A will be formed using basic 
building block type 1 from Table I. The same applies to the 
component B and C in the second diagram in Fig. 8. 

 

              
 
 
 
STM can be translated into a SRN model by converting 

each state into place and each transition into a timed 
transition with input/output arcs which is reflected in the 
transformation Rule 3.  

Rule 3  

Rule 3 demonstrates the equivalent SRN model of the 
STM of hardware and software components which are 
shown in the Fig. 9. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
The SRN model for hardware component is shown in Fig. 
9(b). A token in the place Prun represents the active hardware 
component and a token in Pstb represents a hot standby 
hardware component. When the transition Tfail fires, the 
token in Prun is removed and the transition Tswt is enabled. 
By the Tswt, which represents the failover, hot standby 
hardware component becomes an active component. 

Figure 7.  Graphical representation of rule 1 

Figure 8.  Graphical representation of rule 2 

Figure 9 (a) SRN of Software process (b) SRN of hardware component 
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VIII.    MODEL SYNCHRONIZATION 

The model synchronization is achieved hierarchically 
which is illustrated in Fig. 10. Performance SRN is 
dependent on the dependability SRN. Transitions in 
dependability SRN may change the behavior of the 
performance SRN. Moreover, transitions in the SRN model 
for the software process also depend on the transitions in the 
SRN model of the hardware component. These 
dependencies in the SRN models are handled through model 
synchronization by incorporating guard functions [6].  

         

 
 
 
 
The model synchronization is focused in detail below: 

A.   Synchronization between the dependability SRN models 
in the dependability modeling layer 

SRN model for the software process (Fig. 9(a)) is 
expanded by incorporating one additional place Phf, three 
immediate transitions thf, thsfl, thfr, and one timed transition 
Trecv to synchronize the transitions in the SRN model for the 
software process with the SRN model for the hardware 
component. The expanded SRN model (Fig. 11(a)) is  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
associated with four additional arcs such as (Psfail × thsfl)   
(thsfl × Phf), (Psrec × thfr)   (thfr × Phf), (Psrun × thf)   (thf × 
Phf) and (Phf × Trecv)   (Trecv × Psrun). The immediate 
transitions thf, thsfl, thfr will be enabled only when the 
hardware node (in Fig. 11 (b)) fails as failure of hardware 
node will stop operation of the software process. The timed 
transition Trecv will be enabled only when the hardware node 
will again start working after being recovered from failure. 
Four guard functions g1, g2, g3, g4 allow the four additional 

transitions thf, thsfl, thfr and Trecv of software process to work 
consistently with the change of states of the hardware node. 
The guard functions definitions are given in the Table II. 
 
 
 

 
 
 
 

 

B. Synchronization between the dependability SRN & 
performance SRN  

In order to synchronize the collaboration role activity, 
performance SRN model is expanded by incorporating one 
additional place Pfl and one immediate transition fA shown 
in Fig. 12. After being deployed when collaboration role 
“A” starts execution, a checking will be performed to 
examine whether both software and hardware components 
are running or not. If both the components work the timed 
transition doA will fire which represents the continuation of 
the execution of the collaboration role A. But if software 
resp. hardware components fail the immediate transition fA 
will be fired which represents the quitting of the operation 
of collaboration role A. Guard function grA allows the 
immediate transition fA to work consistently with the change 
of states of the software and hardware components.  

Performance SRN model of parallel execution of 
collaboration roles are expanded by incorporating one 
additional place Pfl and immediate transitions fBC, wBC shown 
in Fig. 12. In our discussion, during the synchronization of 
the parallel processes it needs to ensure that failure of one 
process eventually stops providing service to the users. This 
could be achieved by immediate transition fBC. If software 
resp. hardware components (Fig. 11) fail immediate 
transition fBC will be fired which symbolizes the quitting of 
the operation of both parallel processes B and C rather than 
stopping either process B or C, thus postponing the 
execution of the service. Stopping only either the process B 
or C will result in inconsistent execution of the whole SRN 
and produce erroneous result. If both software and hardware 
components work fine the timed transition wBC will fire to 
continue the execution of parallel processes B and C. Guard 
f u n c t i o n s  g r B C ,  g r w B C  a l l o w  t h e  i m m e d i a t e 

 

 
 
 
 

Function Definition 

g1, g2, g3 if (# Prun = = 0) 1 else 0 

g4 if (# Prun = = 1) 1 else 0 

Figure 11. (a) Synchronized transition in the SRN model of the software process 
with the (b) SRN model of the hardware component 

Figure 12. Synchronize the performance SRN model with dependability SRN 
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Figure 10. Model synchronization hierarchy 

TABLE II.  GUARD FUNCTIONS DEFINITION 
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transition fBC, wBC to work consistently with the change of 
the states of the software and hardware components. The 
guard function definitions are shown in the Table III.  

Algorithms for model transformation rules and model 
synchronization process have been mentioned in Appendix 
A.  
 

 
 
 
 

 

IX.    HIERARCHICAL MODEL FOR MTTF 
CALCULATION 

System is composed of different types of hardware 
devices such as CPU, memory, storage device, cooler. 
Hence, to model the failure behavior of a hardware node 
absolutely, we need to consider failure behavior of all the 
hardware devices. But it is very demanding and not efficient 
with respect to execution time to consider behavior of all the 
hardware components during the SRN model generation. 
SRN model becomes very cumbersome and inefficient to 
execute. In order to solve the problem, we evaluate the mean 
time to failure (MTTF) of system using the hierarchical 
model in which a fault tree is used to represent the MTTF of   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the system by considering MTTF of every hardware 
component in the system. Later on, we consider this MTTF 
of the system in our dependability SRN model for hardware 
components (Fig. 9(b)) rather than considering failure 
behavior of all the hardware components individually. The 
below Fig. 13 introduces one example scenario of capturing 
failure behavior of the hardware components using fault tree 
where system is composed of different hardware devices 
such as one CPU, two memory interfaces, one storage 
device and one cooler. The system will work when CPU, 
one of the memory interfaces, storage device and cooler will 
run. Failure of both memory interfaces or failure of either 
CPU or storage device or cooler will result in the system 
unavailability.   

                       

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Function Definition 

grA, grBC if (# Psrun = = 0) 1 else 0 

grwBC if (# Psrun = = 1) 1 else 0 

Figure 13.  Fault tree model of System Failure 

 

 
 

Performability 
evaluation

SHARPE 

Performability 
SRN model 

Dependability modeling view 

Model 
synchronization 

using Guard 
functions 

Dependability 
SRN model 

Performance modeling view 

Model transformation phase 

Transform 

Library for 
transformation 

rule 

Model annotation phase 

 
Annotated 

UML model 

Performance 
SRN model 

Deployment phase 

Deployment 
mapping 
<XML> 

Model Validator 

Model Validator 

Deploy  
Service specification  

 

Capturing states 
of the 

components  

UML 
collaboration 

& activity 
diagram 1 

Deployment 
diagram 

2 

State machine 
diagram 3 

Performance & 
Dependability 

parameters 
incorporated model 

<XML> 4 

State diagram generation phase 

Figure 14. Tool support of our performability modeling framework 

Legend:     ...... manual              1, 2, 3, 4 ..... Input file   

TABLE III.  GUARD FUNCTIONS DEFINITION 

Annotation 
using 
MARTE 

 



357

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

  

X.  TOOL BASED SUPPORT OF THE 
PERFORMABILITY MODELING FRAMEWORK 

The theoretical foundation of the approach is described 
in details in the above sections. We highlight the tool 
support of our performability modeling framework in Fig. 
14. The partial input model of our framework is generated 
using Arctis tool which is integrated as plug-in into the 
eclipse IDE. In the evaluation side, SHARPE tool is used. 
We generate the annotated UML model from the UML 
collaboration diagram, deployment diagram, STM diagram, 
and the performance and dependability related parameters. 
From Fig. 14, it is evident that we need to define 4 inputs 
accordingly: in the performance modeling view, the first 
input UML collaboration diagram and the detail behavior of 
collaborative building block will be generated using the GUI 
(Graphical User Interface) editor of Arctis tool which will 
be saved as XML file and the other two inputs of 
performance modeling view will be generated as XML file 
such as deployment diagram and performance attributes  
incorporated UML model after deployment mapping. The 
inputs of the dependability modeling view such as STM 
diagram and dependability attributes incorporated UML 
model will be generated as XML file as well. We also define 
one output file in text format which is generated as a result 
of the model annotation phase denoting the annotated UML 
model. The annotated UML model file is then further used 
as an input for the model transformation phase to achieve 
automation in model transformation. In the model 
transformation phase, we automate the transformation 

process from annotated UML model to the SRN 
performability model following the model transformation 
rules and afterwards, merging of SRN performance and 
dependability model using guard functions. The input files 
are specified in XML formats. This is because of the fact 
that XML gives benefits to guarantee the robustness, 
flexibility to extend the existing file, and data validation. 
The output files are all in text format as the SHARPE tool, 
that evaluates the performance of the system, accepts the 
input as text format.  

XI.   CASE STUDY 

As a representative example, we consider a scenario 
dealing with heuristically clustering of modules and 
assignment of clusters to nodes [17]. This scenario is 
sufficiently complex to show the applicability of our 
performability framework. The problem is defined in our 
approach as collaboration of E = 10 service components or 
collaboration roles (labeled C1 . . . C10) to be deployed and K 
= 14 collaborations between them illustrated in Fig. 15. We 
consider three types of requirements in this specification. 
Besides the execution cost, communication cost, and cost 
for running background process, we have a restriction on 
components C2, C7, C9 regarding their location. They must 
be bound to nodes n2, n1, n3 respectively. In this scenario, 
new service is generated by integrating and combining the 
existing service components that will be delivered 
conveniently by the system. For example, one new service is 

 

 

Figure 15.  Collaboration & Components in the example Scenario 
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composed by combining the service components C1, C2, C4, 
C5, C7 shown in Fig. 15 as thick dashed line. The internal 
behavior of the collaboration Ki is realized by the call 
behavior actions through the same UML activity diagram 
already demonstrated in Fig. 3(b). The composition of the 
collaboration role Ci of the delivered service by the system 
is demonstrated in Fig. 16. The initial node (  ) indicates the 
starting of the activity. After being activated, each 
participant starts its processing of request which is 
mentioned by call behavior action Pri (Processing of the ith 
service component). Completions of the processing by the 
participants are mentioned by the call behavior action Prdi 

(Processing done of the ith service component). The activity 
is started from the component C7 where the semantics of the 
activity is realized by the token flow. After completion of 
the processing of the component C7, the response is divided 
into two flows which are shown by the fork node f7. The 
flows are activated towards component C1 and C4. After 
getting the response from the component C1, processing of 
the components C2 will be started. The response and request 

are mentioned by the streaming pin res and req. The 
processing of the component C5 will be started after getting 
the responses from both component C4 and C2 which is 
realized by the join node j5. After completion of the 
processing of component C5, the activity is terminated which 
is mentioned by the end node (   ).  

In this example, the target environment consists of N = 3 
identical, interconnected nodes with no failure of network 
link, with a single provided property, namely processing 
power, and with infinite communication capacities shown in 
Fig. 17. The optimal deployment mapping can be observed 
in Table IV. The lowest possible deployment cost, according 
to equation (4) is: 17 + 100 + 70 = 187. 

In order to annotate the UML diagrams in Fig. 16 and 17, 
w e  u s e  t h e  s t e r e o t y p e s  < < s a S t e p > > 
<<computingResource>>, <<scheduler>> and the tagged 
values execTime, deadline and schedPolicy which are 
already explained in section 5. Collaboration Ki (Fig. 18) is 
associated with two instances of deadline as collaborations 
in example scenario are associated with two kinds of cost: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.  The target network of hosts 
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Figure 19.  Annotated STM diagram of software component 
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communication cost and cost for running background 
process (BP). In order to annotate the STM UML diagram 
of software process (shown in Fig. 19), we use the 
stereotype <<QoSDimension>>, <<transition>> and 
attributes mean-time-between-failures, mean-time-between-
failure-detect and mean-time-to-repair which are already 
mentioned in section VI. Annotation of the STM of 
hardware component can be demonstrated in the same way 
as STM of software process. 

By considering the specification of reusable 
collaborative building blocks, deployment mapping, and the 
model transformation rule, the corresponding SRN model of 
our example scenario is illustrated in Fig. 20. In our 
discussion we consider M/M/1/n queuing system so that at 
most n jobs can be in the system at a time [3]. For 
generating the SRN model, firstly, we will consider the 
starting node (  ). According to rule 1, it is represented by 
timed transition (denoted as start) and the arc connects to 
place Pr7 (states of component C7). When a token is 
deposited in place Pr7, immediately a checking is done 
about the availability of both software and hardware 
components by inspecting the corresponding SRN models 
shown in Fig. 11. The availability of software and hardware 
components allows the firing of timed transition t7 
mentioning the continuation of the further execution. 
Otherwise, immediate transition f7 will be fired mentioning 
the ending of the further execution because of software resp. 
hardware component failure. The enabling of immediate 
transition f7 is realized by the guard function gr7.  After the 
completion of the state transition from Pr7 to Prd7 (states of 
component C7), immediately, the flow is divided into two 
branches (denoted by the immediate transition It1) according 
to model transformation rule 2 (Fig. 8). The token is passed 
to place Pr1 (states of component C1) and Pr4 (states of 
component C4) after the firing of transitions K7 and K8. 
According to rule 1, collaboration K8 is realized only by 

overhead cost as C4 and C7 deploy on the same processor 
node n1 (Table IV). The collaboration K7 is realized both by 
the communication cost and overhead cost as C1 and C7 
deploy on the two different nodes n3 and n1 (Table IV). 
When a token is deposited into place Pr1 and Pr4, 
immediately, a checking is done about the availability of 
both software and hardware components by inspecting the 
corresponding dependability SRN models illustrated in Fig. 
11. The availability of software and hardware components 
allows the firing of immediate transition w14 which 
eventually enables the firing of timed transition t1 

mentioning the continuation of the further execution. The 
enabling of immediate transition w14 is realized by the guard 
function grw14. Otherwise, immediate transition f14 will be 
fired mentioning the ending of the further execution because 
of software resp. hardware component failure. The enabling 
of immediate transition f14 is realized by the guard function 
gr14. After the completion of the state transition from Pr1 to 
Prd1 (states of component C1) the token is passed to Pr2 
(states of component C2) according to rule 1, where timed 
transition K5 is realized both by the communication and 
overhead cost. When a token is deposited into place Pr2, 
immediately a checking is done about the availability of 
both software and hardware components by inspecting the 
corresponding dependability SRN models shown in Fig. 11. 
The availability of software and hardware components 
allows the firing of the immediate transition w24 which 
eventually enables the firing of timed transition t2 and t4 

mentioning the continuation of the further execution. The 
enabling of immediate transition w24 is realized by the guard 
function grw24. Otherwise, immediate transition f24 guided 
by guard function gr24 will be fired mentioning the ending of 
the further execution because of software resp. hardware 
component failure. Afterwards, the merging of the result is 
realized by the immediate transition It2 following the firing 
of transitions K2 and K4. Collaboration K2 is realized both by 
the overhead cost and communication cost as C4 and C5 

deploy on the different processor nodes n1 and n2 (Table IV). 
K4 is replaced by the timed transition which is realized by 
the overhead cost as C2 and C5 deploy on the same node n2 

(Table IV). When a token is deposited in place Pr5 (state of 
component C5), immediately, a checking is done about the 
availability of both software and hardware components by 
inspecting the corresponding SRN models illustrated in Fig. 
11. The availability of software and hardware components 
allows the firing of timed transition t5 mentioning the   
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n1 c4, c7, c8 70 2 k8, k9 
n2 c2, c3, c5 60 8 k3, k4 

n3 c1, c6, c9, c10 75 7 k11, k12, k14 
∑ cost 17 100 

TABLE IV.  OPTIMAL DEPLOYMENT MAPPING 

Figure 20.   Equivalent SRN model of the example service 

Start 
Exit1 Pr7 t7 It1 

Prd7 

f7 
[gr7] 

x2 

x1 

K7 

K8 

Pr1 

Pr4 

[grw14] 
w14 

[gr14] 
f14 

x4 

x3 

t1 
Prd1 

K5 

Pr2 
[grw24] 

w24 
x6 

x5 
f24 [gr24] 

t2 

t4 

Prd2 

Prd4 

K4 

K2 

x8 

x7 

It2 Pr5 
t5 Prd5 

[gr5] 
f5 

Pfl 

Exit2 

n n 



360

International Journal on Advances in Networks and Services, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/networks_and_services/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

  

continuation of the further execution. Otherwise, immediate 
transition f5 will be fired mentioning the ending of the 
further execution because of software resp. hardware 
component failure and the ending of the execution of the 
SRN model is realized by the timed transition Exit2. The 
enabling of immediate transition f5 is realized by the guard 
function gr5. After the completion of the state transition 
from Pr5 to Prd5 (states of component C5) the ending of the 
execution of the SRN model is realized by the timed 
transition Exit1.  The definitions of guard functions gr7, 
grw14, gr14, grw24, gr24, and gr5 are mentioned in Table V, 
which is dependent on the execution of the SRN model of 
the corresponding STM of software and hardware instances 
illustrated in Fig. 11. 
 
 

 
We use SHARPE [16] to execute the obtained 

synchronized SRN model and calculate the system’s 
throughput and job success probability against failure rate of 
system components. Graphs in Fig. 21 show the throughput 
and job success probability of the system against the 
changing of the failure rate (sec-1) of hardware and software 
components in the system.  

XII. CONCLUSION AND FUTURE WORK 

We presented a novel approach for model based 
performability evaluation of a distributed software system. 
The approach spans from system’s dynamics demonstration 
through UML diagram as reusable building blocks to 
efficient deployment of service components in a distributed 
manner focusing on the QoS requirements. The main 
advantage of using the reusable software components allows 
the cooperation among several software components to be 
reused within one self-contained, encapsulated building 
block. Moreover, reusability thus assists in creating the 
distributed software systems from existing software 

components rather than developing the system from scratch 
which in turn facilitates the improvement of productivity 
and quality in accordance with the reduction in time and 
cost. We put emphasis to establish some important concerns 
relating to the specification and solution of performability 
models emphasizing the analysis of the system’s dynamics. 
We design the framework in a hierarchical and modular way 
which has the advantage of introducing any modification or 
adjustment at a specific layer in a particular submodel rather 
than in the combined model according to any change in the 
specification. Among the important issues that come up in 
our development are flexibility of capturing the system’s 
dynamics using our new reusable specification of building 
blocks, ease of understanding the intricacy of combined 
model generation, and evaluation from that specification by 
proposing model transformation. However, our eventual 
goal is to develop support for runtime redeployment of 
components, this way keeping the service within an allowed 
region of parameters defined by the requirements. As a 
result, with our proposed framework we can show that our 
logic will be a prominent candidate for a robust and adaptive 
service execution platform. The special property of SRN 
model like guard function keeps the performability model 
simpler by applying logical conditions that can be expressed 
graphically using input and inhibitor arcs which are limited 
by the following semantics: a logical “AND” for input arcs 
(all the input conditions must be satisfied), a logical “OR” 
for inhibitor arcs (any inhibitor condition is sufficient to 
disable the transition) [18]. However, the size of the 
underlying reachability set to generate a SRN model is 
major limitation for large and complex systems. Further 
work includes tackling the state explosion problems of 
reachability marking for large distributed systems.  In 
addition, developing GUI editor is another future direction 
to generate UML deployment and state diagram and to 
incorporate performability related parameters. The plug-ins 
can be integrated into the Arctis tool which will provide the 
automated and incremental model checking while 
conducting model transformation.   

 

 
 
 
 
 
 
 
 
 
 
 
 

Function Definition 

gr7, gr14, gr24, gr5 if (# Psrun = = 0) 1 else 0 

grw14, grw24 if (# Psrun = = 1) 1 else 0 
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Figure 21.  Numerical result of our example scenario 

TABLE V.  GUARD FUNCTIONS DEFINITION 
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APPENDIX A 

 
Algorithm 1: rule_1 (ExecCost, CommCost, Ovrhdcost,  
                                    Mappings, CollaborationRoles) 
 
1 If CollaborationRoles A self token generator then 
 
2  Places += “PrA 1” 
3 else (A has a external token generator) 
 
4  Places += “PrA 0” 
5 Places += “PrdA 0” 
6  Places += “PrB 0” 
7    Places += “PrdB 0” 
8 Timed_Transitions += “doA ind” + 1/ execution cost for  
                                                                           collaborationRole A 
9 Timed_Transitions += “doB ind” + 1/ execution cost for  
                                                                           collaboration role B 
10 Timed_Transitions += “exit ind” + 1/ rate for the end  
                                                                            transition 
11  If CollaborationRoles A and B are deployed on the same  
                 node then 
                  
12   Timed_Transitions += “t ind” + 1/ overhead  
                                                                                                 cost 
13  else 
 
14                            Timed_Transitions += “t ind” + 1/ (overhead    

cost + communication cost) 
15  If CollaborationRole A has a external token generator 
                then 
 
16   Timed_Transitions += “Start ind” + 1/ rate of  
                                                                            the token generator 
17 Inhibitor_Arcs += “PrA Start 1” 
18 Inhibitor_Arcs += “PrdA doA 1” 
19 Inhibitor_Arcs += “PrB t 1” 
20 Inhibitor_Arcs += “PrdB doB 1” 
21.  Input_Arcs += “PrA doA 1” 
22 Input_Arcs += “PrdA t 1” 
23 Input_Arcs += “PrB doB 1” 
24 Input_Arcs += “PrdB exit 1” 
25 Output_Arcs += “doA PrdA 1” 
26 Output_Arcs += “doB PrdB 1” 
27 Output_Arcs += “t PrB 1” 
28 if CollaborationRole A self token generator then 
 
29   Output_Arcs += “t PrA 1” 
30 else 
 
31   Output_Arcs += “Start PrA 1” 
32      Print Places, Timed_Transitions, Input_Arcs, Output_Arcs,        

Inhibitor_Arcs 
33 return 
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Algorithm 2: rule_2_a (ExecCost, CommCost, 
Ovrhdcost, Mappings, CollaborationRoles) 
 
1 Places += “PrA 0” 
2  Places += “PrdA 0” 
3 Places += “PrB 0” 
4 Places += “PrdB 0” 
5 Places += “PrC 0” 
6 Places += “PrdC 0” 
7 Places += “Xc 0” 
8 Places += “Xb 0” 
9 Immediate_Transitions += “it ind 1” 
10  Timed_Transitions += “Start ind” + 1 / rate of the  
                                                         external token generator 
11 Timed_Transitions += “doA ind “+ 1 / execution cost  
                                                               of collaboration role A 
12 Timed_Transitions += “doB ind “+ 1 / execution cost  
                                                              of collaboration role B 
13 Timed_Transitions += “doC ind “+ 1 / execution cost  
                                                              of collaboration role C 
14  if CollaborationRoles A and B are deployed on the  
                same node then 
15   Timed_Transitions += “tB ind” + 1/ overhead  
                                                                                                cost 
15 else 

 Timed_Transitions += “tB ind” + 1/ (overhead  
                               cost + communication cost) 

16 if CollaborationRoles A and C are deployed on the same  
               node then 
17   Timed_Transitions += “tC ind ” + 1/ overhead  
                                                                                                 cost 
18  else 
19   Timed_Transitions += “tC ind”+1/ (overhead  
                                                            cost + communication cost) 
20 Input_Arcs += “PrA doA 1” 
21 Input_Arcs += “PrdA it 1” 
22 Input_Arcs += “PrB doB 1” 
23 Input_Arcs += “PrC doC 1” 
24 Input_Arcs += “XB tB 1” 
25 Input_Arcs += “XC TC 1” 
26  Output_Arcs += “Start PrA 1” 
27 Output_Arcs += “doA PrdA 1” 
28  Output_Arcs += “it Xb 1” 
29  Output_Arcs += “it Xc 1” 
30 Output_Arcs += “tB PrB 1” 
31  Output_Arcs += “tC PrC 1” 
32 Output_Arcs += “doB PrdB 1” 
33 Output_Arcs += “doC PrdC 1” 
34  Inhibitor_Arcs += “PrA Start 1” 
35  Inhibitor_Arcs += “PrdA doA 1” 
36  Inhibitor_Arcs += “Xb it 1” 
37 Inhibitor_Arcs += “Xc IT 1” 
38 Inhibitor_Arcs += “PrB tB 1” 
39 Inhibitor_Arcs += “PrC tC 1” 
40 Inhibitor_Arcs += “PrdB doB 1” 
41 Inhibitor_Arcs += “PrdC doC 1” 
42  Print Places, Immediate_Transitions, Timed_Transitions,  
               Input_Arcs, Output_Arcs, Inhibitor_Arcs 
43 return 
 
 

Algorithm 3: rule_2_b (ExecCost, CommCost, 
Ovrhdcost, Mappings, CollaborationRoles) 
 
1  Places += “PrA 0” 
2  Places += “PrdA 0” 
3  Places += “PrB 0” 
4  Places += “PrdB 0” 
5 Places += “PrC 0” 
6 Places += “PrdC 0” 
7  Places += “Xb 0” 
8  Places += “Xc 0” 
9  Immediate_Transitions += “it ind 1” 
10  Timed_Transitions += “StartB ind ” + 1 / rate of the  
                                                  external token generator for B 
11 Timed_Transitions += “StartC ind ” + 1 / rate of the  
                                                 external token generator for C 
12 Timed_Transitions += “doA ind “ + 1 / execution cost  
                                                              of CollaborationRoles A 
13 Timed_Transitions += “doB ind “ + 1 / execution cost  
                                                              of CollaborationRoles B 
14 Timed_Transitions += “doC ind “ + 1 / execution cost  
                                                              of CollaborationRoles C 
15  if CollaborationRoles A and B are deployed on the same  
               node then 
16  Timed_Transitions += “tB ind” + 1/ overhead  
                                                                                       cost 
17  else 
18  Timed_Transitions += “tB ind” + 1/ (overhead  
                                                           cost + communication cost) 
19 if CollaborationRoles A and C are deployed on the same  
              node then 
20  Timed_Transitions += “tC ind” + 1/ overhead  
                                                                                                cost 
21.  else 
22   Timed_Transitions += “tC ind” + 1/ (overhead  
                                                           cost + communication cost) 
23 Input_Arcs += “PrA doA 1” 
24 Input_Arcs += “PrB doB 1” 
25 Input_Arcs += “PrdB tB 1” 
26 Input_Arcs += “Xb it 1” 
27 Input_Arcs += “PrC doC 1” 
28 Input_Arcs += “PrdC tC 1” 
29 Input_Arcs += “Xc it 1” 
30 Output_Arcs += “it PrA 1” 
31 Output_Arcs += “doA PrdA 1” 
32 Output_Arcs += “StartB PrB 1” 
33 Output_Arcs += “doB PrdB 1” 
34 Output_Arcs += “tB Xb 1” 
35 Output_Arcs += “StartC PrC 1” 
36 Output_Arcs += “doC PrdC 1” 
37 Output_Arcs += “tC Xc 1” 
38 Inhibitor_Arcs += “PrB StartB 1” 
39 Inhibitor_Arcs += “PrdB doB 1” 
40 Inhibitor_Arcs += “Xb tB 1” 
41 Inhibitor_Arcs += “PrC StartC 1” 
42 Inhibitor_Arcs += “PrdC doC 1” 
43  Inhibitor_Arcs += “Xc tC 1” 
45 Inhibitor_Arcs += “PrA it 1” 
46 Inhibitor_Arcs += “PrdA doA 1” 
47  Print Places, Immediate_Transitions, Timed_Transitions,  
                        Input_Arcs, Output_Arcs, Inhibitor_Arcs 
48 return 
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Algorithm 4: rule_3_ hardware_srn() 
 
1  Places += “H_run 1” 
2  Places += “H_fail 0” 
3  Places += “H_recover 0” 
4  Places += “H_backup 1” 
5  Timed_Transitions += “T_fl ind” + 1/ cost for the 
                                    transition between H_run and H_fail 
6  Timed_Transitions += “T_dt ind” + 1/ cost for the  
                              transition between H_fail and H_recover 
7  Timed_Transitions += “T_rcv ind” + + 1/ cost for  
                  the transition between H_recover and H_backup  
8  Timed_Transitions += “T_bfl ind” + 1/ cost for the  
                                transition between H_backup and H_fail 
9  Timed_Transitions += “T_sw ind” + 1/ cost for the  
                                transition between H_backup and H_run 
10  Input_Arcs += “H_run T_fl 1” 
11  Input_Arcs += “H_fail T_dt 1” 
12  Input_Arcs += “H_recover T_rcv 1” 
13  Input_Arcs += “H_backup T_sw 1” 
14  Input_Arcs += “H_backup T_bfl 1” 
15  Output_Arcs += “T_fl H_fail 1” 
16  Output_Arcs += “T_dt H_recover 1” 
17  Output_Arcs += “T_rcv H_backup 1” 
18  Output_Arcs += “T_sw H_run 1” 
19  Output_Arcs += “T_bfl H_fail 1” 
20  Inhibitor_Arcs += “H_run T_sw 1” 
21  Print Places, Timed_Transitions, Input_Arcs,  
                        Output_Arcs, Inhibitor_Arcs 
22  return 
 
 
 
 
Algorithm 5: rule_3_software_srn() 
 
1 Places += “S_run 1” 
2 Places += “S_fail 0” 
3 Places += “S_recover 0” 
4 Timed_Transitions += “T_sfl ind ” + 1/ cost for the  
                                       transition between S_run and S_fail 
5 Timed_Transitions += “T_sdt ind ” + 1/ cost for the  
                                transition between S_fail and S_recovery 
6 Timed_Transitions += “T_srcv ind ” + + 1/ cost for  
                           the transition between S_recover and S_run 
7 Input_Arcs += “S_run T_sfl 1” 
8 Input_Arcs += “S_fail T_sdt 1” 
9 Input_Arcs += “S_recover T_srcv 1” 
10 Output_Arcs += “T_sfl S_fail 1” 
11 Output_Arcs += “T_sdt S_recover 1” 
12 Output_Arcs += “T_srcv S_backup 1” 
13 Print Places, Timed_Transitions, Input_Arcs,  
                       Output_Arcs 
14 return 
 
 
 
 
 
 

 
Algorithm 6:  software_sync_srn() 
 
1 Places += “S_run 1” 
2 Places += “S_fail 0” 
3 Places += “S_recover 0” 
4 Places += “P_hf 0” 
5 Timed_Transitions += “T_sfl ind” + 1/ cost for the  
                                      transition between S_run and S_fail 
6 Timed_Transitions += “T_sdt ind” + 1/ cost for the  
                                transition between S_fail and S_recover 
7 Timed_Transitions += “T_srcv ind” + 1/ cost for the  
                                  transition between S_recover and S_run 
8 Timed_Transitions += “T_recv ind” + 1/ cost for the  
               transition between P_hf and S_run + “guard hd_up()” 
9             Immediate_Transitions += “t_hfl ind 1 guard                             

hd_down()” 
10            Immediate_Transitions += “t_hf ind 1 guard 

hd_down()” 
11            Immediate_Transitions += “t_hfr ind 1 guard 

hd_down()” 
12 Input_Arcs += “S_run T_sfl 1” 
13 Input_Arcs += “S_fail T_sdt 1” 
14 Input_Arcs += “S_recover T_srcv 1” 
15 Input_Arcs += “S_run t_hf 1” 
16 Input_Arcs += “S_fail t_hfl 1” 
17 Input_Arcs += “S_recover t_hfr 1” 
18 Output_Arcs += “T_sfl S_fail 1” 
19 Output_Arcs += “T_sdt S_recover 1” 
20 Output_Arcs += “T_srcv S_run 1” 
21 Output_Arcs += “t_hfl P_hf 1” 
22 Output_Arcs += “t_hf P_hf 1” 
23 Output_Arcs += “t_hfr P_hf 1” 
24 Output_Arcs += “T_recv S_run 1” 
25 Print Places, Timed_Transitions, Immediate_Transitions,  
                        Input_Arcs, Output_Arcs 
26 return 
 
 
hd_up() 
 
1 if place H_run has one token then 
2   return TRUE 
3 else 
4  return FALSE 
5 return 
 
 
hd_down() 
 
1 if place H_run has zero token then 
2   return TRUE 
3 else 
4  return FALSE 
5 return 
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Algorithm 7: collaboration_role_sync_srn() 
 
1  Places += “PrA 0” 
2  Places += “PrdA 0” 
3  Places += “P_fl 0” 
4  Immediate_Transitions += “fA ind 1 guard sw_down()” 
5  Timed_Transitions += “Start ind” + 1 / rate of the  
                                                         external token generator 
6  Timed_Transitions += “doA ind” + 1 / execution cost  
                                                                of collaboration role A 
7  Timed_Transitions += “End1 ind” + 1 / rate of the End1  
                                                                                         transition 
8  Timed_Transitions += “End2 ind” + 1 / rate of the End2  
                                                                                         transition 
9   Input_Arcs += “PrA doA 1” 
10   Input_Arcs += “PrA  fA 1” 
11   Input_Arcs += “PrdA End1 1” 
12   Input_Arcs += “fA End2 1” 
13   Output_Arcs += “Start PrA 1” 
14   Output_Arcs += “doA PrdA 1” 
15   Output_Arcs += “fA P_fl 1” 
16   Inhibitor_Arcs += “PrA Start 1” 
17   Inhibitor_Arcs += “PrdA doA 1” 
18   Inhibitor_Arcs += “P_fl fA 1” 
19   Print Places, Timed_Transitions, mmediate_Transitions,  
                         Input_Arcs, Output_Arcs, Inhibitor_Arcs 
20  return 
 
 
sw_down() 
 
1 if place H_run has zero token then 
2   return TRUE 
3 else 
4  return FALSE 
5     return 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Algorithm 8: building_block_sync_srn() 
 
1  Places += “PrA 0” 
2  Places += “PrdA 0” 
3  Places += “PrB 0” 
4  Places += “PrdB 0” 
5  Places += “P_fl 0” 
6              Immediate_Transitions += “fA ind 1 guard                           

sw_down()” 
7              Immediate_Transitions += “fB ind 1 guard 

sw_down()” 
8              Timed_Transitions += “doA ind” + 1 / execution 

cost of collaboration role A 
9              Timed_Transitions += “doA ind” + 1 / execution  

cost of collaboration role B 
10            Timed_Transitions += “Start ind” + 1 / rate of 

Start 
11             if CollaborationRoles A and B are deployed on 

the same node then 
12                          Timed_Transitions += “T ind” + 1/ 

overhead cost 
13  else 
14  Timed_Transitions += “T ind” + 1/ 

(overhead cost + communication cost) 
15  Input_Arcs += “PrA doA 1” 
16  Input_Arcs += “PrA fA 1” 
17  Input_Arcs += “PrdA T 1” 
18  Input_Arcs += “PrB doB 1” 
19  Input_Arcs += “PrdB fB 1” 
20  Output_Arcs += “Start PrA 1” 
21  Output_Arcs += “fA P_fl 1” 
22  Output_Arcs += “fB P_fl 1” 
23  Output_Arcs += “doA PrdA 1” 
24  Output_Arcs += “doB PrdB 1” 
25  Output_Arcs += “T PrB 1” 
26  Inhibitor_Arcs += “PrA Start 1” 
27  Inhibitor_Arcs += “PrdA doA 1” 
28   Inhibitor_Arcs += “PrB T 1” 
29  Inhibitor_Arcs += “PrdB doB 1” 
30  Inhibitor_Arcs += “P_fl fA 1” 
31  Inhibitor_Arcs += “P_fl fB 1” 
32   Print Places, Timed_Transitions, 

Immediate_Transitions, Input_Arcs, Output_Arcs, 
Inhibitor_Arcs 

33  return 
 
sw_down() 
 
1 if place S_run has zero token then 
2   return TRUE 
3 else 
4  return FALSE 
5     return 
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Algorithm 9: parallal_process_sync_srn() 
 
1  Places += “PrA 0” 
2  Places += “PrdA 0” 
3  Places += “Xa1 0” 
4  Places += “Xa2 0” 
5  Places += “P_fl 0” 
6  Places += “PrB 0” 
7  Places += “PrdB 0” 
8  Places += “PrC 0” 
9  Places += “PrdC 0” 
10  Places += “XB 0” 
11  Places += “XC 0” 
12  Immediate_Transitions += “it ind 1” 
13  Immediate_Transitions += “fBC ind 1 guard sw_up()” 
14            Immediate_Transitions += “f´BC ind 1 guard sw_down()” 
15.        Timed_Transitions += “Start ind” + 1 / Start transition 

rate 
16 if CollaborationRoles A and B are deployed on the same 

node then 
17                          Timed_Transitions += “TB ind” + 1/ overhead 

cost 
18  else 
19                           Timed_Transitions += “TB ind” + 1/ (overhead 

cost + communication cost) 
20  if CollaborationRoles A and C are deployed on the 

same node then 
21                        Timed_Transitions += “TC ind” + 1/ overhead  

cost 
22  else 
23                          Timed_Transitions += “TC ind” + 1/ (overhead 

cost + communication 
cost) 

24         Timed_Transitions += “End ind” + 1 / End  transition 
rate 

25  Input_Arcs += “PrA doA 1” 
26  Input_Arcs += “PrdA it 1” 
27  Input_Arcs += “Xa1 TB 1” 
28  Input_Arcs += “Xa2 TC 1” 
29  Input_Arcs += “PrB fBC 1” 
30  Input_Arcs += “PrB f´BC 1” 
31  Input_Arcs += “PrC fBC 1” 
32  Input_Arcs += “PrC f´BC 1” 
33  Input_Arcs += “P_fl End 1” 
34  Input_Arcs += “XB doB 1” 
35  Input_Arcs += “XC doC 1” 
36  Output_Arcs += “Start PrA 1” 
37  Output_Arcs += “doA PrdA 1” 
38  Output_Arcs += “it Xa1 1” 
39  Output_Arcs += “it Xa2 1” 
40  Output_Arcs += “TB PrB 1” 
41  Output_Arcs += “TC PrC 1” 
42  Output_Arcs += “fBC XB 1” 
43  Output_Arcs += “fBC XC 1” 
44  Output_Arcs += “f´BC P_fl 1” 
45  Output_Arcs += “doB PrdB 1” 
46  Output_Arcs += “doC PrdC 1” 
47  Inhibitor_Arcs += “PrA Start 1” 
48  Inhibitor_Arcs += “PrdA doA 1” 
49  Inhibitor_Arcs += “Xa1 it 1” 
 

 
50  Inhibitor_Arcs += “Xa2 it 1” 
51  Inhibitor_Arcs += “PrB TB 1” 
52  Inhibitor_Arcs += “PrC TC 1” 
53  Inhibitor_Arcs += “P_fl f´BC 1” 
54  Inhibitor_Arcs += “XB fBC 1” 
55  Inhibitor_Arcs += “XC fBC 1” 
56  Inhibitor_Arcs += “PrdB doB 1” 
57  Inhibitor_Arcs += “PrdC doC 1” 
58  Print Places, Timed_Transitions, Immediate_Transitions, 
                          Input_Arcs, Output_Arcs, Inhibitor_Arcs 
59 return 
 
 
sw_up() 
 
1 if place S_run has one token then 
2   return TRUE 
3 else 
4  return FALSE 
5     return 
 
 
sw_down() 
 
1 if place S_run has zero token then 
2   return TRUE 
3 else 
4  return FALSE 
5     return 
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Algorithm 9: basic_bulding_block_srn() 
 
1  if CollaborationRoles A has a self token generator then 
2   Places += “Pri 1” 
3  else 
4   Places += “Pri 0” 
5  Places += “Prdi 0” 
6  Timed_Transitions += “do ind ” + 1/execution cost for  
                                                                       collaboration role i 
7  if i is getting token from external token generator then 
8   Timed_Transitions += “Start ind” + 1 / Start  
                                                                                                rate 
9    Output_Arcs += “Start Pri 1” 
10    Inhibitor_Arcs += “Pri Start 1” 
11   Inhibitor_Arcs += “Prdi do 1” 
12  else if i is getting token from another CollaborationRoles 
13   Timed_Transitions += “Enter ind” + 1 / cost of  
                                                                                   the  transition 
14   Output_Arcs += “Enter Pri 1” 
15  else 
16   Output_Arcs += “Exit Pri 1” 
17   Input_Arcs += “Pri do 1” 
18  if i is passing its token then 
19   Timed_Transitions += “Exit ind ” + 1 / rate for  
                                                                                                    Exit 
20   Input_Arcs += “Prdi Exit 1” 
21   Output_Arcs += “do Prdi 1” 
22         Print Places, Timed_Transitions, Input_Arcs, Output_Arcs,  
                                                                                     Inhibitor_Arcs 
23 return 
 


