
81

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Context-, Resource-, and User-Aware Provision of
Services on Mobile Devices

Andre Ebert, Florian Dorfmeister, Marco Maier, and Claudia Linnhoff-Popien
Mobile and Distributed Systems Group

Ludwig-Maximilians-University
Munich, Germany

Email: {andre.ebert, florian.dorfmeister, marco.maier, linnhoff}@ifi.lmu.de

Abstract—Today’s smartphones are equipped with numerous
different sensors and are capable of providing a large number
of diverse services. But due to the high energy consumption of
built-in sensors, as well as because of the energy consumed while
analyzing gathered raw data, a bottleneck in resource supply
is likely to occur during a service provision. This bottleneck
leads to one of the biggest challenges regarding the develop-
ments on mobile devices: the trade-off between a high short-
term service performance and sustainable energy management.
Furthermore, despite of numerous hardware improvements (e.g.,
energy saving displays, batteries with bigger capacities, etc.)
this issue remains unsolved. Hence, software-based approaches
can be used to optimize the resource and energy management
on mobile devices according to the user’s preferences, existing
context information, and the current energetic state of a device.
Moreover, a holistic energy management enables the system to
provide context dependent services.

In this article, we present a concept for custom tailored service
provision on mobile devices in combination with EMMA (Energy
Management Middleware Architecture), a modular architechture
for managing a mobile device’s service infrastructure in relation
to its current resource state as well as to the user’s individual
preferences. Additionally, we give an insight into our prototypical
application, which demonstrates EMMA’s core concepts including
its featured approach of individual service provision.

Keywords–Mobile resource management; User-centric service
provision

I. INTRODUCTION

Depending on the usage intensity, the batteries of today’s
smartphones do not often last longer than for one or two days.
Reasons for that are high performance hardware components
leading to high energy consumption, extensive sensor usage
for data acquisition, improperly developed applications, or
others. With this being a known problem, several hardware-
and software-based approaches for optimizing the energy con-
sumption on mobile devices have been developed. However,
typically, only single components of a mobile system are
subject of optimization, while there are no known approaches
covering all existing subdomains and the corresponding possi-
bilites for saving energy. Furthermore, due to the fact that most
services on a mobile device can be provided by more than one
specific procedure, opportunities for using a granular perfor-
mance and quality concept are facilitated. Disregarding known
hardware-based improvements, this leads to the necessity of

an integrated, software-based energy and service management
approach in order to protect the limited resources on a mobile
device.

But improving a device’s energy consumption is not only
about extending its batteries’ life span. Additional goals are
the increase of the user’s usage experience and the usability
of an energy management system by adjusting specific ser-
vices to individual user needs and requirements. In order to
achieve these objectives, a user’s preferences, current context
information and the device’s energetic system state, as well as
currently active services must be considered [1]. Furthermore,
an energy management system must be able to identify and
prioritize services and functionalities which are important or
critical to the user. At its best, such a system is able to present
these services to the user with a dynamically tailored Quality of
Service (QoS) whenever they are requested. QoS is described
by individual parameters for each service, depending on its
specific output. E.g., the QoS of a data transfer service could
be described by its transfer speed and the amount of data to
be transferred, the one of a positioning service by its accuracy
and the time span needed for acquiring a location.

In order to describe the user’s context and to be able to
react to a present situation, context modeling is required first.
According to Dey, ”Context is any information, that can be
used to characterize the situation of an entity [2]. An entity
is a person, place or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves.” Relying on this definition,
it is possible to identify the kind of raw data which is needed
for context modeling and to specify sources and procedures for
its acquirement. In the following, we present four categories
of sources for determining raw context data.

1) Conventional Sensors: Data about the users environ-
ment, specific activities or current whereabouts can
be acquired with built-in smartphone sensors such as
Global Positioning System (GPS), gyroscope or ac-
celerometer.

2) Communication Interfaces: Network technologies like
Global System for Mobile Communications (GSM),
Universal Mobile Telecommunications System (UMTS)
or Long Term Evolution (LTE) plus Bluetooth and
Wireless Local Area Network (WLAN) can also be
used for determining the user’s location in different
granularities [3][4].



82

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Media Data Analysis: Data like taken pictures or sur-
rounding noises can also be analyzed in order to extract
information about the user’s situation, e.g., concerning
current moods or a visited location [5].

4) User Data Mining: Personal user data like emails,
played media files or calendar entries could be valuable
for the process of extracting context information. Its
analysis can provide knowledge about whereabouts, im-
portant dates like birthdays, or upcoming appointments.

However, using some of the presented approaches for the
acquisition of context information can be very costly. As
shown in Section II, all of them consume energy during the
process of raw data gathering, as well as for the procedure
of extracting information from it. Consequently, the energy
consumption caused by context acquisition always has to
be compared to the savings enabled through context-aware
energy allocation. Besides, there are also privacy issues to be
considered. Especially in 3) and 4), sensitive user data, which
may need additional protection by privacy policies, is used for
analysis.

We are not aware of any concept for an integrated energy
management system, which satisfies all of the aforementioned
needs. However, there are a lot of ideas for partial improve-
ments of single components. In the following, we specify the
requirements for a holistic system and introduce EMMA, an
energy management middleware architecture which considers
the dynamic and modular integration of existing energy im-
provement concepts as well as controlling the device’s service
provision [1]. Furthermore, it monitors the system’s energy
status and adapts it according to the current context, active
services and the user preferences.

In this section, we presented an introduction to energy man-
agement matters on mobile devices as well as pointing out the
necessity of providing custom tailored and context-dependent
services to the user. In Section II, we provide a brief analysis
of a smartphone’s energy consumption in order to understand
which components are responsible for draining its battery and
where improvements can be achieved. Based on a literature
survey and existing approaches for energy management on
mobile devices, as well as on context-aware mechanisms for
optimizing energy consumption, we present the requirements
for an extensive context-aware and user-centric mobile energy
management architecture in Section III. Eventually, the concept
and implementation of this approach, coined Energy Manage-
ment Middleware Architecture (EMMA), will be described in
Section IV. A particular emphasis is laid on the provision
of requested services in dependence of the system’s current
resource state as well as on the user’s personal preferences
and performance claims. After offering some insights into a
prototypical implementation in Section V, a conclusion and
future work are addressed in Section VI.

II. RELATED WORK

In order to optimize the energy consumption on a mobile
device, as well as using information about its context and
energetic state for custom-tailored service provision, one first
needs to understand which of a device’s components or ap-
plications is draining most of its resources. Later on, it is

possible to contrive ideas and optimization concepts based on
this knowledge, as well as on already existing optimization
and provisioning approaches.

A. Individual measuring of energy consumption

There are two different techniques for measuring energy
consumption on smartphones. One relies on software based
functions provided by the operating system; the other one uses
an external power meter. Manweiler et al. describe the installa-
tion and usage of a Monsoon Power Monitor for external power
consumption measurement [6]. However, this approach does
not pay attention to the individual consumption of the device’s
components since it only identifies the overall consumption.
Examples for software based and combined measurement con-
cepts are eProf [7], PowerTutor [8], and WattsOn [9]. They all
make use of predefined energy profiles describing the energy
consumption of specific device components and indicate, that
network and sensor usage, CPUs, displays and media playback
are the main consumers of energy. Additionally, Pathak et
al. [7] examined the energy consumption of different popular
applications like Facebook, Angry Birds and others and figured
out that 65-75% of the consumed energy is used by third-party
advertisement modules. Furthermore, they name typical bugs
in operation systems, which are responsible for the dissipation
of energy.

B. Optimization concepts

In the following, we review different optimization concepts
concerning sensors and data transfer. Furthermore, the usage
of prediction and data mining in order to prioritize, schedule
and optimize tasks on mobile devices is examined.

1) Sensing optimization: There are several approaches for
lowering the energy consumption of mobile devices based on
optimizing sensor usage. Adaptation of QoS parameters is one
attempt that can be used to achieve this goal. In particular,
the trade-off between service quality and consumed energy
is a relevant matter in this context. Besides the adaptation
of a service’s performance, there is also the possibility of
substituting sensors. In this case, specific sensors are substi-
tuted by other technologies which are capable of providing
a comparable service while lowering the energy consumption
[10][11]. If a complete substitution is not possible or needed,
there is also the way of combining sensors, e.g., by triggering
approaches [12]. Here, the acquisition of data from one sensor
is triggered only when a second sensor reaches some kind
of previously defined threshold. An example for this is the
combination of a smartphone’s accelerometer and its GPS
sensor in the SenseLess concept introduced by Abdesslem et
al. [13]. Their approach is to activate the GPS-Sensor only
if the accelerometer detects the user being in motion. For
evaluation, a user is equipped with two smartphones, one
running the standard iOS positioning methods in a 10 second
interval, the other one working with the SenseLess algorithm.
The results showed, that SenseLess needed 85.5% less energy
than the standard approach. The determined locations differed
from 0.4m to 41m with an average value of 8m. But because



83

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the energy consumption was determined on basis of the battery
level, there is cause for inaccuracies through wrong interpreted
up-and-down-movement, as well as due to the systems general
energy consumption. As shown by Priyanta et al. [14], the
combination of different sensors is to be used with caution
and after individual evaluation. In their case, the computing
of determined accelerometer data, which was gathered in a
10-minutes time interval with a frequency of 4Hz to 6Hz,
consumed more energy than the location determination via
GPS for 5 minutes, determining one location fix each minute.
Schirmer et al. compared conventional GPS positioning ap-
proaches to custom triggering and polling concepts on iOS
4.3.1 and furthermore rated them concerning their energy
consumption as well as their positioning accuracy [15]. With
the polling approach, the authors tried to lower the energy
consumption on a mobile device by the usage of a fixed sensor
data request frequency. Thus, unnecessary data acquisition
due to oversampling is about to be obviated. The triggering
approach facilitated the usage of a device’s built in GPS sensor
in combination with its accelerometer. Therewith, the GPS
usage was paused as long as no user movement was detected
in order to save the device’s resources during that time. For
evaluation, Schirmer et al. recorded positioning fixes for a
predefined route, including some predetermined movement
breaks, with all of the three positioning concepts. The analysis
of the result showed, that the performance of the polling was
comparable to the standard iOS procedure. With the help of
the triggering approach, the positioning procedure’s energy
consumption could be reduced, even though the positioning
fixes’ quality was significantly worse. Chon et al. introduce
SmartDC, which not only aims at lowering the energy con-
sumption while determining the users location, but also tries to
predict the user’s future positions and important places [16]. In
order to accomplish that, the authors use unsupervised learning
techniques, mobility prediction, and prediction of system usage
based on Markov models. Using this approach, energy savings
up to 81% and a prediction accuracy up to 80% have been
reached. The maximum delay time was 160 seconds.

A complete substitution of sensors is used for Ambience-
Fingerprinting [17], a technique that is especially suitable for
indoor location determination, where no GPS signal can be
received. Therefore, raw data of different kind is checked for
specific attributes, so called fingerprints. An early concept of
Pirantha et al. enables the user to discover his position via
ultrasonic and radio fingerprints within a cm-accuracy [17].
Azizyan et al. present SurroundSense, a system for location
determination on basis of environmental fingerprints like the
spectral composition of noises or visual signatures [18]. The
authors also analyze the cumulation of existing fingerprinting
techniques, such as motion, noise, acceleration, brightness,
color, and spectral contents of WLAN signals. In an evaluation
with four users in predefined positioning clusters, 93% of
all positions could be determined correctly. However, the
consumed energy was not compared to the consumption of
standard Software Development Kit (SDK) methods.

2) Optimizing data transfer: Due to the extensive energy
consumption of data transfer and communication technologies,
this field provides a lot of possibilities for achieving energy

savings. 2G, 3G, and 4G networks each use a different amount
of energy for different tasks. Hence, already by choosing
the best suited technology for each task, the overall energy
consumption can be lowered. For example, 2G networks are
suited better for calls than 3G networks, but 3G networks
are much more efficient for data transfer [19]. Perucci et al.
conclude that – even though additional power is consumed
by the handover process needed for changing networks –
significant energy savings can be achieved by consistently
switching to a 2G connection for calls [20].

Furthermore, both Balasubramanian et al. [19] and Falaki et
al. [21] reveal that not only the overall size of the transferred
data is responsible for the consumed energy, but also the size of
single transferred packages: Especially, small packages cause
a transfer overhead up to 40%. Moreover, the Transmission
Control Protocol (TCP) requires multiple transfers of the same
packages due to package loss. To this end, Falaki et al. propose
a bigger server side buffer and an optimization of the usage
rules for the transfer networks in order to solve these problems,
predicting energy savings up to 35%.

Another transfer-related optimization approach is TailEnder,
provided by Balasubramanian et al. [19]. TailEnder divides
applications into two groups, i.e., applications that tolerate
delays in data transfer and those, which can profit from data
prefetching. Based on this classification, data is loaded in bun-
dles to minimize the device’s staying in the high energy state
of the IEEE 802.11 standard. Additionally, TailEnder makes
usage of the advantages of the different transfer networks. In
comparison to other approaches, 60% more newsfeeds and
up to 50% more search results for web requests could be
processed while consuming the same amount of energy.

3) Using History and data-based prediction: The analysis
of user preferences and interaction patterns, as well as the
usage of data mining techniques on historic or context data
can reveal precious insights concerning the energetic regulation
of a mobile system. For example, calendar or appointment
specific data can be used to predict a user’s current and future
whereabouts. Predictions about the device’s future energy
level, combined with the information about upcoming tasks
can be used to adapt the energy balance oriented to tasks rated
critical by the user [22]. Oliver et al. succeeded in predicting
the energy level of mobile devices correctly for a time slot of
one hour with an error rate of only 7%. Within 24 hours the
error rate was 28%. In order to achieve that, they classified
the gathered data of more than 17,300 BlackBerry users and
clustered it afterwards [23][24].

Trestian et al. conducted a network-based study which
should reveal relations between the user, his movement pat-
terns and used applications, in order to predict common
interaction patterns. Their results indicate that the usage of
specific applications is significantly related to the user’s current
movements or his location [25].

III. REQUIREMENTS

As shown in Section II-B, there are numerous approaches,
which address single optimizations for specific system com-
ponents or services. None of them tries to wrap all existing



84

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concepts in one architecture, which organizes them in a mod-
ular way and provides requested services with an adequate
output quality. In order to create a holistic energy management
system which is capable of providing custom tailored services
to a user, the following requirements for such an architecture
can be identified:

1) Universal validity and responsibility: The energy
management system is solely responsible for managing
all resources of the system and the access to them. It
receives all service and resource requests and answers
them in an adequate and energy efficient way.

2) Context and user awareness: Typical context data
like the current time and location, upcoming tasks,
individual user preferences or social relations, as well as
the systems current energetic state are used to provide
services in a customized manner respecting the user’s
situation and whereabouts.

3) Modularity: A holistic energy management system is
comprised of a multitude of different components, each
responsible for different subtasks. In order to benefit
from existing and future ideas in each of these areas,
functionality is encapsulated in only loosely coupled
modules, which can be altered or replaced without
affecting the rest of the system.

4) Scalability and extensibility: New energy optimization
concepts or services can get installed in an easy way,
the user is able to use improved modules without non-
trivial update processes.

5) Definition of generic interfaces: To make the integra-
tion of new modules possible, a definition of generic
interfaces oriented on the lowest common denominator
of installable modules is necessary.

6) Adaptive data collection: If data collection is required
(e.g., sensor data), the system selects a service that
acquires data adaptively to given preconditions. This
may be the system’s current energy state, the ser-
vice quality as demanded by the service requester or
forecasts concerning needed energy for future tasks.
Furthermore, collected data needs to be cached for later
usage.

7) Task prioritization: In order to take the user’s prefer-
ences concerning critical tasks into account, the system
is able to adhere to task priorities and assign more
privileges to higher prioritized tasks.

8) Clarity and comprehensibility: The architecture must
be structured in a clear and comprehensible way. This
is essential to enable developers to integrate new opti-
mization concepts or module packages into the existing
system.

IV. EMMA - AN INTEGRATED MANAGEMENT APPROACH

Based on the requirements identified in Section III, we now
present a holistic approach for managing resources in a user-
centric and context-aware way, coined EMMA (Energy Man-
agement Middleware Architecture) [1]. Furthermore, EMMA
allows an easy integration of existing and future energy op-
timization concepts. It provides its services in an adaptive,

context- and preferences-aware manner, controls service pa-
rameters and monitors the system’s energy state. EMMA runs
continuously in the background and is the exclusive interface
to the system’s resources (such as sensors) and services for
other applications. Thus, EMMA is able to coordinate resource
demands of all applications and to fulfill their requests in the
most energy-efficient way.

A. Main components
EMMA consists of two main components, namely, the

Control Unit and the Service Provider. These and their sub-
components are depicted in Figure 1. In the following, the
components are described.

1) Control Unit: The Control Unit is the central component
dedicated to respond to service requests, select appropriate
services based on context, preferences and demands, and
monitor services and the system’s energy state. If required,
it adapts service parameters to ensure execution of critical
tasks. In order to make intelligent decisions, the Control Unit
employs information obtained from sub-components such as
the Energy Manager, the Schedule Manager and the Service
Identificator. Service requests, responses, and communication
with the Service Provider, as well as among the subcomponents
themselves are handled by a dedicated Controller. The Energy
Manager analyzes the energy status of the whole system,
calculates energy consumption of individual tasks and tries
to predict future energy levels. These results can be combined
with information about charging opportunities in vicinity or in
near future, to reserve energy for future tasks or to preserve
execution of critical tasks by performance adaptation for the
longest time possible. The Service Identificator selects the
most appropriate service for any given service request from
the whole set of available services – as provided by the
Service Provider – based on service parameters and quality of
service characteristics. In general, service selection algorithms
are geared towards a specific subset of services, since service
parameters vary for different kinds of services. In order to
monitor active and upcoming services, the Schedule Manager
keeps track of currently running and future tasks, as well as
respectively associated information.

2) Service Provider: The Service Provider is a passive
component which does not contain any logic or executive
power. Its core task is the integration and administration of
service modules, as well as the provision of all requested
services, the registration of needed callbacks and the caching
of sensor data. To achieve that, the Registry Manager scans
the folders containing all installed modules and corresponding
manifest files, in order to identify added or removed modules
for installation or removal. Afterwards, the current system
state is saved in the Registry Cache, which provides these
information for module identification matters to the Control
Unit. As soon as a module was identified and released for
usage by the Control Unit, the Service Provider creates a new
service object and integrates the identified module in order
to use its unique functionalities. The service is accessible via
specific interface methods (see Section IV-D).

In order to avoid redundant acquisition of raw data, the Ser-
vice Provider caches sensor data or other requested information



85

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and provides it, if needed. In case that granularity, accuracy,
and recency of cached data comply with the demanded QoS-
parameters contained by an incoming service request, it can
be answered by returning this data. The advantage of this
procedure is obvious: By responding to requests with cached
data, the instantiation of a new service object can be avoided
and existing resources can be preserved for upcoming tasks.

Control 
Unit

Communication Interface

ControllerModule Identificator

Energy Manager

Schedule Manager

Service 
Provider

Service Administrator

Registry Manager Cache Manager

Data CacheRegistry Store

Application Layer

Middleware

App1 App2

Figure 1. Overview of the EMMA concept and its components.

B. Modular service concept
A core feature of EMMA is its modular service concept.

A service is defined as any functionality, that a user or
an application might request, e.g., data transfer, acquisition
of sensors data or media playback (see Section IV-C). In
order to maximize the efficiency of providing these services,
EMMA uses a highly modular concept. To this end, for each
functionality a service class is defined in a formal way. Each
service class might use different technologies to provide a
requested service and the selection of a specific module might
depend on diverse request properties, e.g., on the demanded
service quality or the system’s currently available energy. The
internal logics of these different technologies are wrapped
completely transparent in a service module and it is neither
visible to requesting applications, nor the EMMA architecture

itself. The number of possible service modules per service
class is unlimited, and the logic that is wrapped inside the
module package is completly up to the module developer. The
only thing, which needs to comply with EMMA’s development
guidelines, is the proper implementation of the predefined
interfaces of the parent service class, as well as the delivery of
an associated manifest file. The manifest contains information
about the modules QoS parameters, as well as its parent service
class and must be transcripted in a standardized way.

Later on, after the best suited module for a specific use case
was identified (see Section IV-E), it is integrated into a service
object at runtime (see Section V-B). Apart from the growing
diversity of available technologies, this simple plug-and-play
integration is another advantage of EMMA’s modular concept.
It enables optimized logic and improved technologies being
integrated without the necessity for a complete system update
(see Section V).

C. Requesting services
In order to answer an incoming service request in an

adequate manner, several processes need to be executed. This
is due to the necessity of considering the user’s context and
preferences, as well as the most recent energetic system state.
Figure 2 illustrates the handling of a service request in context
of a positioning service. As soon as a new service request was
received at the communication interface, the parent class type
of the requested service is extracted from the request’s data
package. This information is necessary to check if another
instance of the requested service class is already active. If
so, the service quality provided by the already active service
object is checked and compared to the requested minimum
QoS (1). E.g., in context of a positioning system, the minimum
QoS-parameters would be matched if the delivered positioning
accuracy is the same or higher than the requested. Furthermore,
also the update frequency for new positioning fixes should
be equal or higher. If a service, which covers the demanded
quality requirements is active, it can be used for replying to
the request by registering a new callback and return it in a
response package (2). Thus, the request was answered and
the procedure terminates successfully. But sharing of services
is not possible for all kinds of requests, e.g., a data transfer
service cannot be shared due to individual parameters such as
its destination address or the data to transfer. In this case a
new private service object needs to be created and returned.

If there is no comparable service running, the system checks
if the demanded service is a single request or if it requires
periodic updates (3). As long as no periodic updates are
required, an inquiry for cached data is directed to the Service
Provider. Cached data is usable if a) it is output of the
requested service class, b) it is of the demanded recency, and
c) it is corresponding with the QoS-parameters described in
the requests data package. If there is cached data of this kind
(4), it can be packed into a response package and returned
to the requester (5). In this case, the procedure terminates
successfully.

Else, if the request was not of a single nature, or if there is no
data of sufficient quality in the cache, the system checks for the



86

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Service Request

IsHigherOr
EqualService

Running

No

Yes

Register 
Callback

Retrieve And 
Return 

Service Data

Service 
Terminates
Successful

IsSingleRequest
Yes

IsDataAvailable
Yes

Service 
Terminates
Successful

NoNo

IsCriticalTask
Yes

Fastlane:
Proceed 
With All 

Requested 
Actions

Retrieve 
System 

Energy Level

No

Identify 
Service 
Module

IsService
Allowed

Identify 
Service
Module

Yes

No

IsScheduling
Possible

Yes Move Task to 
Schedule

Request 
Gets Paused

Check Tasks
Priority

No

No

IsLowPriority
Yes

No

IsRefusedByUser

NoPerformance
Adaption

Cancel
Procedure

Request
Gets Canceled

Yes

High
Priority

Low 
Priority

Intermediate 
Priority

Start Service
Register Callback

Package Return Data
Return Package

Initiate Monitoring

Request
Terminates
Successful

1

3

2

4
Package And

Retrieve
Return Data

5

6 7

8

9

10

11
12

13

15

14

17

16

18

Figure 2. Handling of a service request with EMMA

request’s priority in order to rate it critical or not (6) compared
to other tasks. Critical tasks possess the highest priority in
the EMMA system (see Section IV-G); their priority is rated
critical by the user. Only special services, e.g., the device’s
emergency call function, are automatically classified as critical.

If a request is rated critical, all demanded procedures are
executed without further examination and disregarding any
relevant system states (7), e.g., the current battery level. The
response is returned by undertaking all needed actions (18)
and the procedure terminates successful.

Failing this, a system check regarding its current energetic
state is carried out (see Section IV-F), in order to discover
potential resources applicable for new tasks (8). In favor of
this goal, the energy consumption of currently active services is
considered as well as predicted consumption of services which
are scheduled for future usage. Additionally, information about
the current battery level or the user’s position (e.g., nearby
power supplies) is also respected. That is why even with a
drained battery the energetic system status of a device could be
rated as non-critical, because the user is able to easily charge
his phone.

If it turned out in step (8), that there is enough energy
for the new service, the identification of a suitable service
module is initiated (see Section IV-E). For this purpose, the
Control Unit’s Controller obtains a list containing all available
service modules of the requested service class and forwards it
to the Module Identificator. This unit tries to identify the best
suited module by processing the class specific identification
algorithm in combination with the QoS-parameters provided
by the requester (9). In case that there is no module belonging
to the desired service class, the procedure is terminated. If
there are modules of the desired service class, but none of
them matches the requested QoS in an exact way, a pointer
to the module with most similar features and performance
parameters is returned. In a worst case scenario, no module
can be identified. In an unfavorable scenario, a module with
a higher energy consumption than allowed or with a lower
service quality than demanded is identified. That is why the
performance and consumption parameters of a module again
are verified and compared to their counterparts given by the
system. Purpose of this check is to determine if the module’s
features are compatible to the system’s energy state (10),
before a new service object is instantiated combined with
the integration of the identified service module. If a service
creation is not possible, the system tries to schedule the task
(12) without the need to cancel it. This procedure provides
the feature of resuming to a task as soon as new resources
become available again. But due to individual peculiarities,
this is not possible for all services. Reasons for that may be
a high service urgency, because of the service’s individual
features or due to a user’s preferences; other services may
only be reasonable at a given time. E.g., a navigation service is
likely to be needed immediately, while a transfer service could
possibly get scheduled for a future point in time. The decision
of scheduling tasks or not is carried out by processing a given
flag in the requester’s package whether a task is schedulable
or not. If not, the system continues with the verification of the
request’s priority (13) (see Section IV-G). The priority flag is
also included in the request’s data package and was extracted
from the users preferences as well as by analyzing the devices
usage history. After its extraction, the priority can be compared
to priorities of other tasks. If the new task possesses the
highest priority (14), compared to the tasks that are responsible



87

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for scheduled or currently active services, the system tries
to free energy for the new task by throttling, canceling or
pausing active services. But the adjustment of active services
needs to be handled with care to avoid possible inefficiencies.
E.g., canceling a transfer service during a data transmission
process could force the new transfer of the whole amount
of data on resuming to a task. This would lead to a higher
energy consumption compared to just finishing an ongoing
transmission. If an upcoming task possesses the lowest priority
level, the procedure is canceled immediately and the request
gets marked as a failure (16). In other respects, if the task is
prioritized with an intermediate level, the system again tries
to adjust, pause or cancel services owned by lower prioritized
tasks. If that is not possible or the additional provided energy
is not sufficient, the user is invited to choose which services
are important to him and which are likely to be canceled. In
order to keep up the system’s usability, this approach is only
used in combination with higher prioritized tasks. Additionally,
all taken adjustment actions are logged to enable a later on
analysis of the systems behavior. In case that a service was
approved in (10) or (7), or if enough energy could be freed after
the prioritization procedure, a new service object, containing
the identified module, gets created, followed by the preparation
of a return package (18).

Generally, return packages can contain three different types
of data: 1) a callback registered with a running service instance
(2), 2) requested low level data sets provided by the cache (5)
or 3) a freshly created private service object. After service
usage, the service object is released by the requester and is
not available for usage any more.

D. Communication interfaces

The EMMA concept defines a fixed set of internal and
external interfaces used for communication. Internal interfaces
cover up all routing information and services, e.g., to realize a
working connection between a service object and its integrated
service module (see Section V). In contrast, external interfaces
are responsible for processing service requests and responding
to them. Therefore, data bundles are used to maintain the com-
munication between EMMA and any applications requesting a
service. These bundles contain the ID of the requested service
class, as well as information about the requester’s service
priority, the expected service runtime and QoS-parameters.

The structure of corresponding response bundles is similar.
If a request is answered positively, the reply contains the
requested service, as well as information about its actual
instantiation, as the returned service may either be a callback
function the requester can use, a dedicated service object or
simply the requested data. The information about its actual
instantiation facilitates correct data unmarshalling.

E. Identification of suitable services

In order to be able to choose the most appropriate service
module, EMMA executes an individual identification algorithm
for each service class. This is necessary to ensure that the
performance of the chosen module matches both, the energy

deallocated by the system and the demands of the service
requester. Reasons for the necessity of having separate selec-
tion algorithms for each class are the different numbers of
parameters, which are necessary for an adequate description
of a service’s energy consumption and its QoS-characteristics.

The simplest case of describing a module’s characteristics is
by the usage of two different performance parameters, which
form a performance set. One parameter always represents
the module’s energy consumption, the other one describes a
corresponding QoS-specific feature. Each module can possess
any number of performance sets describing varying pairs of
consumption and service quality related to different modes of
operation. In this two dimensional space a target area can be
identified between the point-of-origin and the intersection of
the values of deallocated energy and requested service quality.
In the following, the identification algorithm iterates across all
existing modules of the requested service class and checks if
any set of their performance parameters is located within the
target area. If only one module can be found, this module will
be selected. If several modules match the given thresholds, the
one with the least energy consumption is selected. Otherwise,
if no module can be found, the target area is extended and the
same procedure is started again.

The complexity of the individual identification algorithms
depends on the number of features, which are necessary for
describing a module’s performance. According to the current
concept state, the mere provision of a service is regarded more
important than the meeting of given performance parameters
or the approved energy consumption. In case that no compa-
rable module is offering the same service at a lower energy
consumption, even a module with a much higher consumption
than approved can be provided in order to meet the user’s
demands.

F. Continuous monitoring

In order to adapt the system’s performance and to keep
critical services running as long as possible, EMMA con-
tinuously monitors the system’s energy state. Therefore, not
only the current energy consumption but also the predicted
consumption for future tasks, which can be determined by
analyzing the active and upcoming tasks’ schedules, combined
with prediction techniques (see Section II-B3), is included.
Additionally, relevant context information is considered, e.g.,
loading stations near a user’s position (see Section IV-H).
Each monitoring cycle is triggered by new incoming low level
information concerning the system’s power supply, e.g., the
most recent battery level or changes in charging state. In
order to visualize the monitoring process, Figure 3 shows
each individual step which needs to be undertaken to control
and adapt the system’s resource usage. First, the system’s
current energetic state is determined by the Control Unit (1).
The Schedule Manager provides information about effectively
active services and the energy consumed by them. Together
with predictions concerning the amount of energy that is
needed for these and other upcoming tasks in the future, it
can be forecasted if the energy will last for these duties (2).
If there are no worries about the upcoming energy supply



88

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and if there is no need - or not enough resources left -
to upgrade the service quality of currently active tasks, the
monitoring procedure terminates without further actions (5).
Else, measures need to be initiated to adjust the system’s
energy balance (4). Generally, the system’s performance can
be adjusted into two directions: Given that either more energy
than expected is available and the system’s performance has
been throttled before or a request demands a higher service
quality than currently granted, the performance of a service as
well as its QoS can be increased. In contrast, if there is less
energy available than expected or a new high-priority service
is started, the performance of active services can be throttled
in order to free new resources. After undertaking demanded
performance adaptations, the monitoring process jumps back
to step (1) and the system’s energetic state is checked again.
If no further adaptations are necessary, the process terminates
in (4).

To adapt the performance of a service module, it can
be modified within its possible performance spectrum, e.g.,
throttle some or all of its individual performance attributes. If
there are more adaptations needed, e.g., because of a better
service quality or if even more energy is needed than the
adjustment of a specific module can provide, the whole module
can be replaced by another of the same service class but with
different performance parameters. The adaptation of service
performance commonly results in a change of service quality.

1

2

3

4

4

System 
wake-up

Check energetical 
system state 

Check for active
services

isEnergyStateSufficient Yes 

Check energetical 
system state 

Procedure 
terminates
successful

Figure 3. General overview of the EMMA concept and its components.

G. Task prioritization

Prioritizing tasks is one of EMMA’s core concepts and not
replacable for two different reasons. On the one hand, in
order to make decisions concerning performance adaptations, a
comparison as well as an evaluation of the scheduled service’s
performances is needed (see Section IV-F). On the other hand,
there are services and applications with a critical priority,

which means their execution has to be enforced despite a lack
of energy or other resources.

Furthermore, as long as no user specific preferences
concerning a service’s priority exist, each service gets
assigned with the standard priority PRIORITY_MEDIUM.
In order to take account of the user’s personal prefer-
ences, EMMA provides a granular priority concept. The
priority levels, featured by the prototypical implementa-
tion are PRIORITY_CRITICAL, PRIORITY_HIGH and
PRIORITY_LOW. Afterwards, they can easily be extended
with custom priority levels. The declaration of a service as
critical is meant to ensure its execution, even under unfavorable
circumstances.

Moreover, the usage of priority tags enables the constitution
of hierarchical layers between all existing services, applica-
tions and tasks, which results in an order for sequential task
processing. The processing direction itself is determined by
the current use case. E.g., if new energy resources need to be
freed, services from the lowest hierarchical layer are adjusted,
paused or canceled in the first instance. Else, if there is an
existing energy surplus that allows a performance lift of before
throttled services, services in the highest hierarchical layer are
considered first.

H. Energetical relevant context

The usage of context with energetic relevance is also one of
EMMA’s key features. It is especially needed for making de-
cisions concerning the usage of the mobile device’s resources.
The Energy Manager component, which is part of the Control
Unit, is responsible for that.

Concrete statements concerning the system’s current energy
state can be determined by appropriate Application Program-
ming Interfaces (APIs), which are part of every recent smart-
phone operation system (e.g., the Android BatteryManager
[26] or the iOS UIDevice-object [27]). In contrast, the pre-
diction of forecasts concerning upcoming tasks and related re-
source drain is much more difficult. To achieve this, logs about
application or service usage can be used as well as information
about calendar events, the user’s social environment or related
preferences (see Section II-B3). If it is obvious that there are
not enough resources available for future tasks, the QoS can be
adjusted. Alternatively, if a context information indicates that
at the time of an upcoming task a power supply is available,
possible resource shortages could be ignored.

Anyways, predictions are not only used for making decisions
towards resource management, they can also be used for peri-
odical resource consumption monitoring. If it is obvious that
enough resources for the lift of a service’s performance quality
are available, some services can be selected for a performance
increase by using the before described prioritization system.

V. IMPLEMENTATION

In the following, some technical details concerning the
general implementation of EMMA’s prototype as well the
construction of individual service objects are presented.



89

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Basic parameters

In order to assess the feasibility of our approach, we
developed a prototypical application of EMMA with the aid
of the Google Android API (target version 18). In its current
form, however, the prototype was not yet integrated as an
exclusive service manager into the operating system. Instead,
due to access and rights restrictions of the Android SDK it has
been implemented as part of the application layer. Our goal
in this first version was to evaluate the technical feasibility
of EMMA’s core concepts without analyzing any possible
increase in energetic efficiency in detail, yet.

In order to cope with EMMA’s claim for modularity, the
logic of service modules is capsuled in .dex-archive files,
whose content is described both machine- and human-readable
in corresponding XML manifest documents. The latter contain
all information about a module’s performance, nature, and
energy consumption and can hence be used to dynamically
identify any modules matching a service request. Our prototype
is able to respond to incoming requests for either a continuous
or a one-time positioning service by selecting the most appro-
priate service module, taking into account the current energy
state of the device, as well as context information and currently
active, or scheduled services.

Figure 4. Screens of the EMMA prototype application.

To achieve this, the device’s current energy consumption
is determined at first. In order to keep the implementation
overhead for the energy measurements as low as possible,
the energy consumption is approximated by a simple model
based on test results obtained from a HTC Desire using the
PowerTutor application [8]. By combining these information
with knowledge about active and scheduled services as well
es their estimated runtime, it is now possible to calculate the
energy remaining for new services. In order to identify a suit-
able service module, the requested QoS parameter contained
in a request bundle and the amount of remaining energy are
considered for building a target area (see Section IV-E). After
identification, the chosen module is integrated into a singleton

service object. According to the current concept, the identified
module is not restricted in its energy consumption once it was
installed, but it can be replaced by a more economical one if
its consumption is extensive.

In order to be able to use the module’s functionalities after
its integration, a standard callback object provided by the
Android SDK is installed in the service object, serialized and
returned to the service requester. The latter is now able to listen
for positioning updates after rebuilding the callback from its
serialized version.

B. Constructing service objects

From a technical point of view, a service object consists of
several individual components, which are visualized in Figure
5. In case of our prototypical implementation, each individual
service object is derived from a basic service object and
expands it with individual functionalities. Generally, a service
object can be seen as an empty hull not realizing any kind of
own logic. It merely implements all predetermined integration
and communication gateways, in order to ensure a smooth
integration of external logic modules. For the most a basic
service object encapsulates all available information related to
the service class it represents as well as the service modules
which are allowed to become integrated. Moreover, it provides
a standardized interface and related functions for accessing the
service logic inside of the integrated module. On the upper left,
all registered callbacks, which are organized in a list are shown.
If a service is suitable for simultaneous usage by multiple
users, a new user callback is registered here. This approach
prevents the system from an unnecessary, parallel execution
of multiple instances of the same service. Additionally, each
registered callback contains a unique ID, which is returned to
a service requestor after its registration. The ID ensures, that
a callback can be identified and removed after service usage.

Basic Service Object

Access Interface
startService()
stopService()
registerCallback()
etc.

Registered Callbacks

System Callback

Module Container
Interface for integration of a service module

Figure 5. Schematic representation of a service object.

Furthermore, each service object possesses an individual and
private system callback, which manages the internal commu-
nication to the service module. It enables the reception of



90

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

messages directly from the service module and mirrors them
in a second step to each registered user callback.

On the upper right side of Figure 5, examples for possible
access procedures are shown. These are necessary for a direct
service or logic access, e.g., for delivering data sets or for
starting or stopping a service, etc. All required methods for
accessing a service class are defined in a unique way, which
needs to be implemented by each module of this specific
service class. Additionally, the module’s container implements
some further gateways for integrating the service module
into its service object. At runtime, all logic contained in the
module archive is loaded dynamically into the program code
by using the Android-specific, reflection-based DexFile [28]
and DexClassLoader-classes [29].

VI. CONCLUSION AND FUTURE WORK

By introducing EMMA, we provided a holistic, modular
concept for individual and context sensitive energy manage-
ment, which meets the requirements stated in Section III. The
modular concept applies facilities for user-centric service pro-
vision and renders the usage of partial optimization concepts
as well as of their energetic savings potential. Furthermore,
the provided architecture makes the integration of third-party
logic a more trivial task for users and developers.

EMMA in its current state is to be considered a basic
architectural framework. Lots of details need an initial clarifi-
cation or further composition, e.g., the specification of different
service classes and service modules. The process of identifying
and providing services needs further improvements, as well. In
its current state, tasks need a manual prioritization undertaken
by the user. In order to automate this process, the usage
of training or machine learning algorithms is conceivable.
Furthermore, a capable security concept must be provided due
to the possibility of including third-party code dynamically into
the system at runtime. This feature indicates that additional
security measures are inevitable in order to avoid the execution
of malware within EMMA and to avoid the system’s abuse.

In context of a following expert’s discussion consisting of 8
participants with IT background, which was aimed to evaluate
EMMA’s feasibility and utility, we found that the procedure of
integrating modules and the conventions for developing them,
as well as the interface descriptions for requesting services
need to become more facilitated. In their current state, they
seemed to be not as clear as needed for an unrestricted and
easy system usage. In a final step, a second implementation
of the EMMA concept with the goal of evaluating its actual
energy savings potential is to be carried out. Especially, the
integration of the architecture as part of the operational system
proves to be a challenge, since current platforms like iOS or
Android do not allow this without significant interventions in
their system’s core.

REFERENCES

[1] A. Ebert, F. Dorfmeister, M. Maier, and C. Linnhoff-Popien, “Emma: A
context-aware middleware for energy management on mobile devices,”
in CENTRIC 2014, The Seventh International Conference on Advances
in Human-oriented and Personalized Mechanisms, Technologies, and
Services, pp. 48–53, IARIA, 2014.

[2] A. K. Dey, Providing architectural support for building context-aware
applications. PhD thesis, Georgia Institute of Technology, 2000.

[3] P. A. Zandbergen, “Accuracy of iphone locations: A comparison of
assisted gps, wifi and cellular positioning,” Transactions in GIS, vol. 13,
no. s1, pp. 5–25, 2009.

[4] B. Li, J. Salter, A. G. Dempster, and C. Rizos, “Indoor positioning
techniques based on wireless lan,” in LAN, First IEEE International
Conference on Wireless Broadband and Ultra Wideband Communica-
tions, Citeseer, 2006.

[5] M. Schirmer and H. Höpfner, “Senst*: approaches for reducing the
energy consumption of smartphone-based context recognition,” in Mod-
eling and Using Context, pp. 250–263, Springer, 2011.

[6] J. Manweiler and R. Roy Choudhury, “Avoiding the rush hours: Wifi
energy management via traffic isolation,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services,
pp. 253–266, ACM, 2011.

[7] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,” in
Proceedings of the 7th ACM european conference on Computer Systems,
pp. 29–42, ACM, 2012.

[8] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pp. 105–114, ACM,
2010.

[9] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to
estimate app energy consumption,” in Proceedings of the 18th an-
nual international conference on Mobile computing and networking,
pp. 317–328, ACM, 2012.

[10] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive
gps-based positioning for smartphones,” in Proceedings of the 8th
international conference on Mobile systems, applications, and services,
pp. 299–314, ACM, 2010.

[11] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency
of location sensing on smartphones,” in Proceedings of the 8th in-
ternational conference on Mobile systems, applications, and services,
pp. 315–330, ACM, 2010.

[12] I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury, and L. Cox,
“Enloc: Energy-efficient localization for mobile phones,” in INFOCOM
2009, IEEE, pp. 2716–2720, IEEE, 2009.

[13] F. Ben Abdesslem, A. Phillips, and T. Henderson, “Less is more:
energy-efficient mobile sensing with senseless,” in Proceedings of the
1st ACM workshop on Networking, systems, and applications for mobile
handhelds, pp. 61–62, ACM, 2009.

[14] B. Priyantha, D. Lymberopoulos, and J. Liu, “Littlerock: Enabling
energy-efficient continuous sensing on mobile phones,” Pervasive Com-
puting, IEEE, vol. 10, no. 2, pp. 12–15, 2011.

[15] M. Schirmer and H. Höpfner, “Senst*: approaches for reducing the
energy consumption of smartphone-based context recognition,” in Mod-
eling and Using Context, pp. 250–263, Springer, 2011.

[16] Y. Chon, E. Talipov, H. Shin, and H. Cha, “Mobility prediction-based
smartphone energy optimization for everyday location monitoring,” in
Proceedings of the 9th ACM conference on embedded networked sensor
systems, pp. 82–95, ACM, 2011.

[17] N. B. Priyantha, The cricket indoor location system. PhD thesis,
Massachusetts Institute of Technology, 2005.

[18] M. Azizyan, I. Constandache, and R. Roy Choudhury, “Surroundsense:
mobile phone localization via ambience fingerprinting,” in Proceedings
of the 15th annual international conference on Mobile computing and
networking, pp. 261–272, ACM, 2009.

[19] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: a measurement study and
implications for network applications,” in Proceedings of the 9th ACM



91

International Journal on Advances in Networks and Services, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/networks_and_services/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SIGCOMM conference on Internet measurement conference, pp. 280–
293, ACM, 2009.

[20] G. P. Perrucci, F. H. Fitzek, G. Sasso, W. Kellerer, and J. Widmer, “On
the impact of 2g and 3g network usage for mobile phones’ battery life,”
in Wireless Conference, 2009. EW 2009. European, pp. 255–259, IEEE,
2009.

[21] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, pp. 281–287, ACM,
2010.

[22] N. Ravi, J. Scott, L. Han, and L. Iftode, “Context-aware battery manage-
ment for mobile phones,” in Pervasive Computing and Communications,
2008. PerCom 2008. Sixth Annual IEEE International Conference on,
pp. 224–233, IEEE, 2008.

[23] E. Oliver and S. Keshav, “Data driven smartphone energy level predic-
tion,” University of Waterloo Technical Report, 2010.

[24] E. Oliver, “Diversity in smartphone energy consumption,” in Proceed-
ings of the 2010 ACM workshop on Wireless of the students, by the
students, for the students, pp. 25–28, ACM, 2010.

[25] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz, “Primary user
behavior in cellular networks and implications for dynamic spectrum
access,” Communications Magazine, IEEE, vol. 47, no. 3, pp. 88–95,
2009.

[26] “Android Developers - Monitoring the Battery Level and Charging
State.” http://developer.android.com/training/monitoring-device-
state/battery-monitoring.html, 2015. [Online; accessed 06-January-
2015].

[27] “Apple Developers - UIDevice Object.” https://developer.apple.com/
library/ios/documentation/UIKit/Reference/UIDevice Class/index.html,
2015. [Online; accessed 06-January-2015].

[28] “DexFile - Android Developers.” http://developer.android.com/
reference/dalvik/system/DexFile.html, 2014. [Online; accessed
25-July-2014].

[29] “DexClassLoader - Android Developers.” http://developer.android.com/
reference/dalvik/system/DexClassLoader.html, 2014. [Online; accessed
25-July-2014].


