
20

International Journal on Advances in Networks and Services, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Multi-Target Data Association in Binary Sensor
Networks for Ambulant Care Support

Sebastian Matthias Müller

OFFIS – Institute for
Information Technology

Oldenburg, Germany
Email: sebastian.mueller@offis.de

Andreas Hein

School of Medicine and Health Sciences
University of Oldenburg

Oldenburg, Germany
Email: andreas.hein@uni-oldenburg.de

Abstract—Numerous applications of home automation, security
and ambulant medical care use binary sensors such as passive
infrared motion sensors or light barriers to monitor activity in the
house. While the data of individual sensors does not facilitate the
recognition and separation of the presence of more than one per-
son, there exist multi-target tracking algorithms that allow for at
least a partial separation of activity in data from multiple persons.
While many tracking algorithms demonstrate good performance
across various sensing modalities and sensor setups, little research
has been done to determine the impact of placement and varying
density of sensors for tracking performance. This paper presents
the results of two evaluations of a Bayesian multi-hypothesis
multi-target tracking algorithm on data of residents monitored
by a network of binary sensors. The algorithm’s performance
is evaluated across varying quantity and placement. It is shown
that the approach outperforms other approaches in low-resolution
setups using data collected in a home lab and further demonstrate
its applicability in a field trial across three households. While
tracking performance naturally decreases with the number of
sensors, it also strongly varies by sensor positioning.

Keywords–Multi-target tracking; Assisted living; Wireless sensor
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I. INTRODUCTION

This article is an extended version of an article originally
submitted to the International Conference on Ambient Com-
puting, Applications, Services and Technologies (AMBIENT)
2015 [1].

The emergence of research on technical support systems for
ambulant care and support for patients and elderly stem from
numerous recent societal developments as well as changes in
demographic structure. First, the coincidence of prolonged life
expectancy [2], [3] and the atomization of households [4], [5]
puts an increasing care demand into the hands of third parties,
especially in Western countries with low birth rates: US census
data shows that the average household size in the United States
declined from 4.5 persons per household in 1900 to 2.6 in
2000 [6]. According to the German Federal Statistical Office,
the number of single households will increase sixfold relative
to the population between 2010 and 2030. At the same time,
the ratio between care personnel supply and demand will cut
in half [7]. Second, increasing life expectancy, in combination
with improved medical care and ”modern lifestyles and behav-
ior” causes an increase in the proportion of population living
with chronic diseases, thus furthering demand for ambulant
care [8]. Third, there is a general trend towards outpatient

care by hospitals. According to the Avalere Health analysis of
American Hospital Association Annual Survey, the percentage
of revenue for community hospitals in the United States has
increased from 25% to approximately 44% in 20 years between
1992 and 2012 [9]. The average length of stay of a patient after
surgery dropped from 7.0 in 1993 to 5.4 days in 2013.

These developments drive the research on technical support
systems in home and care environments. Applications for such
include automated assessments such as mobility measurements
[10], activity monitoring such as the detection of Activies
of Daily Living (ADLs) [11] or fall detection for automated
emergency calls [12]. Existing literature shows the importance
of ADLs such as bathing and eating and Instrumental Activities
of Daily Living (IADLs) as indicators of physical and cognitive
abilities of elderly individuals [13]. ADL performance has
also been shown to improve technology design for patients
suffering from Alzheimer disease [14]. Overall, ADLs and
IADLs are considered the ”gold standard” for measurement
of functional ability. Thanks to the increasing availability of
sensors to detect motion (passive infrared motion sensors) and
activities (door contact sensors, acceleration sensors, RFID
chips and sensors), there is a strong hope to eventually perform
such tests automatically. At the same time, such sensors
can also provide data for other useful services to increase
safety and comfort of people in their home [10], [15], [16].
Most of these, however, have only been tested in one-person
households.

To preserve a maximum of privacy and comfort while at
the same time collecting data necessary for the application,
many approaches include the use of ambient sensors such as
motion sensors and light barriers. Since the data collected from
these sensors does not carry identifying information, use of any
such application in settings where more than one person – the
patient – moves or resides becomes difficult. Complex sensors,
such as cameras and microphones are usually considered
invasive and are thus rarely accepted in living spaces. Body-
worn sensors are often forgotten or ignored due to discomfort.
Binary sensors such as light barriers and motion sensors
are easy to retrofit, have relatively little power consumption
and can be installed unobtrusively. A no-requirements sensor
model also enables us to install more complex sensors (such
as laser scanners or depth-finding cameras) as required. The
necessary information can be extracted from their data by
partitioning the sensors’ range and converting activity in each
partition to a binary signal.
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To separate data from multiple persons moving in a space
monitored by binary sensors, a multi-target tracking algorithm
using Bayesian estimation and multi-hypothesis tracking is
presented. This algorithm makes no assumptions on the selec-
tion and placement of sensors or sensing technology. Tracking
takes place on a graph of the sensors and their spatial relation.
It is thus not helpful in determining the precise location of a
present person, but at (or below) room-level accuracy. More
importantly, however, it can help determining when there
is more than one person present, and helps to separate the
activity data. This algorithm performs particularly well on low-
resolution data, such as when only few binary sensors are used.
To study its precision, the algorithm is tested across various
sets of sensors, varying by placement and number. The data
was recorded at a home lab and was labelled and verified using
video recordings. A decreasing number of sensors will likely
have an impact on the tracking accuracy, but is important in
regard to energy consumption, costs and user acceptance. It
is shown that data from two residents in an apartment can be
separated with high (>90%) accuracy, and that the selection
and placement of sensors can play a significant role in tracking
accuracy. To test its applicability, as a second evaluation a field
trial is conducted in which three two-person households are
equipped with sensors and an implementation of the algorithm,
running on a small-form-factor PC, determines the number of
people present.

The remainder of this article is structured as follows:
Section II summarizes related works on multi-target tracking
and activity monitoring in the home using binary sensors. Sec-
tion III describes the algorithm and the theoretical principles
surrounding data association and multi-hypothesis tracking for
single- and multi-target tracking. Section IV describes how
the algorithm and its implementation were evaluated, including
data preparation, the sensor placement concept and the field
trial setup. The results of the evaluation are presented in
Section V. Section VI summarizes the article and Section VII
gives an outlook on future work.

II. RELATED WORK

Prior work has shown that data collected from sensor
networks allow for the deduction of information used in
activity monitoring, care assessments and behavior modeling.
Target tracking, in particular multi-target tracking, is a task
often applied to visual data such as video feeds and images.
The practical application of multi-target tracking in binary or
low-resolution home sensor networks has been subject to little
research.

A. Target Tracking in Home Sensor Networks
Target tracking in the home is a fundamental problem of

ubiquitous computing, and proposed solutions span a variety
of sensors, including cameras, laser scanners, RFID (Radio
frequency identification) and infrared or ultrasound badges
[17], [18], [19].

Wilson and Atkeson describe an algorithm for tracking of
multiple persons and their activity status in a binary sensor
network [17]. Similar to the proposed use of a weighted graph
in this article, the authors use a transition matrix representing
transition probabilities between sensors. By keeping track of
the targets’ identities, personal motion models emerge. The
data association is achieved using a particle filter. During a

five-day experiment in a house instrumented with 49 sensors
(contact switches, motion sensors), data during two-person
scenarios was correctly assigned 82.1% of the time. While
the approach solves both the data association as well as the
identification, it is based on individual motion models and thus
relies on data that is commonly unavailable.

Krüger et al. use a particle filter and action plans to
assign sensor events from motion sensors and light switches
to tracks and simultaneously identify the target [20]. Action
plans describe action sequences in terms of sensor data. These
plans can be synthesized or learned from historic data. For
the evaluation, an office corridor was equipped with six light
switches and six motion sensors. The mean squared error
across time and all targets is reported as approximately 0.26
for two-person scenarios. The work shows how – similar to
trained motion models – previous knowledge of a person’s
plans can help tracking individuals in binary sensor networks.

Oh and Sastry perform tracking on data of binary sensor
networks and passage connectivity graphs [21]. The graphs
are calculated from transition probability matrices. A tracking
algorithm, derived from the Viterbi algorithm, pruning strate-
gies and multiple target tracking extensions are presented. No
evaluation on real world data is conducted.

Marinakis et al. derive the topology of a sensor network in
terms of transition times and probabilities from data of unspec-
ified sensors [22]. The authors use Monte Carlo Expectation
Maximization to assign activity to agents (people present) in
order to build a graph of the sensor network. 95% of the
topology of simulated node graphs is recovered correctly. The
results for a trial using a network of cameras and photocell-
based sensors are not reported.

B. Activity Monitoring in Home Sensor Networks
The aim of this work is to test the performance of a multi-

target tracking algorithm on data collected by binary sensors
such as light barriers and motion sensors. The motivation is
to a) collect activity data of an ambulant care patient, which
is optimally collected during times when the patient is alone
at home (to make sure the data originates from the person in
question only), and b) to activate security measures such as
fall detection and automated emergency calls, which are only
necessary when the person is alone temporarily.

Researchers at the Tokyo Medical and Dental University
have collected data from homes instrumented with binary
sensors (motion detectors and contact switches) for one year.
Patterns of activity such as absence, use of stove and sleeping
times were ”clearly identifiable” [23]. Researchers at the
University of Virginia used an array of motion detectors and
contact switches to detect ADLs [24]. Sensor readings are
clustered to groups based on room, duration, and time of day
to show that many clusters correspond to ADLs.

Numerous studies show that data collected from sensor
networks in living spaces allow for the deduction of infor-
mation relevant in applications of activity monitoring, care
assessments and behavior modeling. Logan et al. showed
that ambient motion-based sensors provide the most useful
information for detection and classification of daily in-home
activities in a study compared to RFID, on-body and on-
object sensors. In their study, infrared motion sensors yielded
the best results overall, although classification performance on
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this data was better on activities that are strongly correlated
with locations in the home, such as ”watching TV” and ”meal
preparation” [25].

Data from binary sensors can also be used to calculate
average room residence time and frequency: Assessment tests
are partly realizable by using recordings from light barriers and
reed contacts alone [15]. The authors argue that light barriers
alone do not constitute sufficient evidence of a person entering
a room, because people may change directions between rooms.
It is suggested to combine light barriers with sensors covering
larger areas. Room residence times are calculated by manually
labeling the sensors constituting a room using a floor plan and
knowledge of the sensors’ placement. In a similar study, the
authors model user behavior of a resident from the probability
of location at a certain time of day and the frequency of
presence in a location in a defined period of time [26]. Models
are created for rooms individually (bathroom, bedroom, living
room, kitchen). Based on the number of anomalous behavior
detected, the authors conclude that the models’ performance
varies by room: Presence in the bathroom is best modeled
duration-based, while the timeslot-based model yielded better
results for the other rooms.

Frenken et al. [10] use ambient sensors in an attempt
to automate measurement of mobility and gait velocity, as
required in the Timed Up and Go assessment [27]. For this, five
apartments are equipped with home automation sensors and
one with an additional laser range scanner. It is shown that the
data is suitable to compute gait velocity at home. While data
from the laser range scanner is proven to be more precise than
home automation sensor data, no statistical post-processing or
filtering was performed on the latter.

Shin et al. use motion sensors to determine normal behavior
and to detect unusual behavior [28]. The behavior is described
by ”activity level, mobility level and non-response interval
(NRI)”. Days are divided into timeslots for which the features
are computed. The activity level measures a person’s motion
at a certain timeslot by summing up the number of motion
sensor events detected in its coverage area. The mobility level
is computed by counting location changes during a certain
timeslot as depicted by two different sensors triggering. The
non-response interval is the duration between two consecutive
movements and is calculated by summarizing these no-motion
durations for each timeslot. Using an approach coined ”support
vector data description”, normal behavior and anomalies are
correctly classified with an accuracy of more than 90%.

Skubic et al. use motion and temperature sensors as well
as a pneumatic bed sensor to determine alert parameters
(bathroom activity, bed restlessness, kitchen activity, living
room activity) to model normal behavior [29]. The parameters
are computed for three time periods, a 24-hour day, daytime
(8am to 8pm) and nighttime (midnight to 6am) to describe
the behavior learned over the span of two weeks. Fuzzy
pattern tree and support vector machine classification is used
to determine whether the feature vector of the current day is
abnormal. Both classifiers achieved similar results.

Floeck et al. use automation sensors to identify human
behavior by means of inactivity profiles [30]. Inactivity is
defined as the time between consecutive sensor events, so
that inactivity ends with any detected sensor event. Plots of
inactivity intervals over a learning period of 31 days are

Figure 1. Graph of sensors (with their internal IDs and their spatial relations
used in the evaluation (adapted from [31]).

created for reference, whereby inactivities due to absences
are not regarded. To classify the current day as normal or
abnormal day, the day’s inactivity vector is compared with
the corresponding timeslot in the reference vector. Dice’s
coefficient is used to measure the similarity of these vectors:
An inactivity value is identical to the corresponding reference
value if it is in a predefined tolerance region of the reference
value. A modified approach uses the maximum duration of
inactivity over several days: A threshold is calculated based
on recorded maximum durations plus an additional tolerance
of 30 minutes. When abnormal behavior is detected, an alert
is generated.

As can be seen, most studies of activity monitoring are
designed to be used in single-person households, although the
foundations for data association and identification have been
laid. Whatever the approach is, it is important that a tracking
algorithm works on a multitude of sensor technologies, and
without restricting the setup in terms of sensor density or
placement. In the following section, such an approach, based
on multi-hypothesis tracking, is presented. An evaluation of its
performance using different numbers and placement of sensors
follows.

III. APPROACH

To describe the tracking approach used in these studies, the
idea of the sensor graph is introduced first. Then, Bayesian fil-
ters and how they can be used to help track individuals on this
graph will be explained. Finally, the multi-hypothesis tracking
approach and how it differs from previous implementations is
described.

A. Sensor Graph
A graph of sensors s1, . . . , sN is defined as a weighted,

directed graph G = (V,L), where V = {1, . . . , N} is the set
of nodes in the graph representing sensors, and L is the set of
all edges (u, v) for which there is a direct passage from the
sensing region of sensor u to the sensing region of v which
does not intersect any other sensing regions. Informally, two
sensors u, v are connected if it is possible for a person to
traverse from the sensing region of u to the sensing region of
v without activating any other sensor.

Each resident in the target space is represented by a
discrete Bayesian filter on an unweighted, undirected graph
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Figure 2. Hypothesis formation overview.

consisting of sensors as nodes and edges representing their
spatial adjacency. For the evaluation data, this graph was
published by Crandall et al. [31] (Figure 1). If the adjacency
relations are not known, they can be approximated by a path
planning algorithm using a floor plan, if available [32], or can
be generated from prerecorded data [33].

B. Tracking of individuals
Bayesian filters estimate the state of a dynamic system

from noisy data. The location of a person is described as
a probability distribution over all nodes in the graph, rather
than selecting the most likely sensor as their location, to
represent the location of each individual. This is done because
it may help to calculate a more precise location later on,
especially when sensor regions overlap. More importantly still,
it helps the tracker to recover more quickly when a noisy
measurement is assigned to the individual’s track. Lastly, the
aim is to replace the manually constructed, unweighted graph
with a weighted graph that is constructed from in-situ recorded
data, which reflects individual behavior by using transition
probabilities between sensors as edge weights (cf. [22]).

All sensors are subject to noise, and although only binary
data is sought, the sensors may still fail to detect activity or
detect irrelevant activity, such as from pets or through the
window. Due to duty cycle regulations in the range of 868
Mhz, many motion and home automation sensors come with an
additional source for noise: measurement delay. Many sensors
do not measure or report measurements for a specified amount
of time after triggering. This period can last from a few seconds
to several minutes due to radio communication regulations.
This results in sensors missing the presence or movement, thus
breaking the continuity of measurements of a motion track.

At which point and how many filters are created – that is to
say, how many individuals are assumed to be present – depends
on the performance (belief ) of the previously existing track:
When new measurements cause the current data to be more
likely when assigned to more or fewer tracks (= individuals)
than before, a new filter is spawned or an existing filter is
discarded. The data could be bundled into larger updates within
reasonable time frames (cf. [34]), but in this case an update
occurs for each new sensor event.

C. Multi-target tracking
Fundamentally, to distinguish activity of two or more

persons in an area monitored by binary sensors, the activity

must be spatially separable on the graph. Ideally, there is an
inactive sensor between two persons. This concept has been
thoroughly described by Oh and Sastry [21]. However, whether
two neighboring sensor events are assigned to one or two
targets is determined by the weights of the graph and the
evaluation function.

1) Multi-Hypothesis Tracking: When new sensor data ar-
rives, hypotheses are created by considering all possible as-
signments of the data to existing and new tracks (”hypotheses”)
until the filter’s window size is reached. This is particularly
useful in a low-resolution setting like this, where individuals
may occlude each other in sensor readings for any period of
time. The window size in multi-hypothesis tracking (MHT)
describes the maximum number of events (or time steps) that
are considered before choosing a likely hypothesis. Windowing
is necessary to limit the number of possible hypotheses and to
limit the information loss in case no acceptable hypothesis is
found and the data is discarded. The influence of the window
size on tracking accuracy has been shown previously [35]. For
this evaluation, a window size of 10 events is used. The sensors
used in the field trial collected an average of 25.5 events per
hour, making the average windows size 23.5 minutes. The
sensors used in the home lab have a delay of approximately
two seconds, making the temporal extent of the windows much
smaller.

The idea of multi-hypothesis tracking dates back to 1979,
when Donald B. Reid published ”An algorithm for tracking
multiple targets” [36]. Reid’s algorithm was developed to work
on data from a continuous scale sensor (radar). Therefore, Reid
speaks of associating measurements to clusters. In the work
presented here, the target space is discrete (nodes on a graph),
and targets and their locations are stored as a probability
distribution over the space using Bayesian filters.

There are two significant differences between Reid’s origi-
nal work and the approach described here. First, in accordance
with Reid’s type 2 sensor, the sensor model used in this work
expects positive reports only, meaning that only sensor data
reporting activity is considered. However, tracks are updated
per hypothesis, rather than generated and filtered individually
(hypothesis-oriented MHT). This means that hypotheses are
not constructed from compatible tracks, but all possible com-
binations of updates of existing hypotheses. Second, the tracker
is updated every time a sensor reports activity. Because of this,
and the fact that the given state space is discrete, computational
complexity is reduced. For a more detailed description of track-
and hypothesis-oriented MHT, see Blackman [34].

For each triggered sensor, a new hypothesis based on
all previously existing hypotheses is created, in which the
triggered sensor is

• considered noise and discarded,
• used to update one of the existing filters, or
• assigned to a new filter.

2) Filtering: For an unspecified number of possible targets
the number of possible hypotheses follows Bell’s Number
Bn+1. Due to the exponential growth (> 4.74 × 1013 for 20
events), a number of filters to optimize computation efficiency
must be employed.

All hypotheses must pass a gating function before they
are considered for evaluation (see Figure 2). In this case, this
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gating function is a simple comparison of the prior probability
of each filter to a threshold value. Afterwards, hypotheses are
filtered based on confidence, noise ratio and similarity. This
procedure is performed until a single hypothesis remains or
the window size is reached. In the former case, the hypothesis
is accepted, the underlying Bayesian filters updated, and the
window size reset. In the latter case, all hypotheses are
evaluated. If no single, dominating hypothesis can be found,
all hypotheses are discarded and the underlying filters reset.

The size of the window strongly influences the performance
of the algorithm. A larger window size will result in a larger
number of correct associations, but also in a larger number of
discarded sensor events [35].

Figure 2 depicts the general multi-hypothesis tracking
logic. For a more in-depth description of multi-hypothesis
tracking, see Blackman [34] or Reid [36].

IV. EVALUATION

In the following, the data that was collected for both the
home lab tests and field trial in terms of how it was collected
and what was evaluated is described. For the home lab tests,
several subsets of sensors were evaluated to study the impact
of sensor placement on tracking performance. For the field
trial, sensors were installed based on these results.

A. Experiment I: Home Lab
1) Data: The data used for this evaluation was recorded

at the Center for Advanced Studies in Adaptive Systems
(CASAS) at the University of Washington [38]. It shows
activity of two residents of a smart home environment, residing
in a 4-room, 2-story apartment for approximately 8 months.
For this evaluation, subsets of the data recorded by the 50
motion sensors mounted to the ceiling are used. The smart
home is also equipped with contact sensors on doors and
cabinets, temperature, water and electricity sensors. For the
purpose of this trial, however, motion sensors offer the most
precise and least noisy data.

Data for which at least both residents are present and active
is used. Among those, time frames

• that last at least 20 minutes or contain at least 300
sensor events,

• in which both residents change rooms at least once,
and

• in which neither resident is inactive for more than 20%
of the time

are chosen. The result are twenty time frames, with 330 to
910 sensor events with durations between 24 and 530 minutes.
After selection, each of the 13321 sensor events was labelled
as originating from Resident 1, Resident 2 or a third person
using the manually labelled events and the laboratory’s floor
plan.

2) Data Association: The algorithm can track any number
of targets. However, the intended area of application – small
households – allows one to use an evaluation function that
is tailored towards few targets (1-3). For this evaluation, the
algorithm was optimized to track two targets by using an
evaluation function that favors one- and two-track hypotheses.
Equation (1) describes the evaluation function, where h is the
hypothesis in question, conf(pn) is the belief of the Bayesian

filter at the most recent event location n, ‖p‖ is the number of
paths (= targets) in h, and m is the expected number of targets
in the sensor space.

eval(h) =

∑n
i=1 conf(pn)

‖p‖2+m
m+1

(1)

3) Sensor Placement: To get a better understanding of how
the number of sensors affects tracking accuracy, the algorithm
is also applied to subsets of the original set of sensors in
decreasing size (40, 30 and 20 sensors). Instead of choosing the
sensors randomly, characteristics of sensors deemed possibly
influential on tracking performance were chosen:

a) Number of neighboring sensors: Based on the as-
sumption that sensors in doorways, which usually have few
neighboring sensors, are critical in tracking room transitions,
those in larger areas with many neighboring sensors are
removed. The number of neighboring sensors can be calculated
from the sensor graph.

b) Duration of stay: Given that tracking stationary
targets is much simpler than moving targets, subsets of sensors
that cover areas in which the average duration of stay is short
are considered. The duration of stay can be calculated from the
duration between consecutive sensor events in recorded data.

c) Activity: Considering the application of in-home
activity monitoring, it is imperative that the placement of
sensors for tracking accuracy improvement does not interfere
with the necessity of covering those areas in which the majority
of activity is taking place. Thus, sensors based on the amount
of activity covered are selected and filtered. The amount of
activity covered by a sensor is simply calculated by the number
of times it is triggered.

These criteria were used to create subsets of data of varying
size, selected by increasing, as well as decreasing order of the
respective criterium (cf. Figure 6).

4) Sensor Clustering: The procedure of selecting subsets
of sensors for tracking performance evaluation was also con-
ducted for sets of 10 sensors. However, due to the selection
criteria, most of the sets had removed whole rooms, and in one
case all data from one individual. Thus, in order to evaluate
tracking performance on 10 sensors, the sensors are clustered
manually by rooms and spatial adjacency (see Figure 3), and
resulting clusters are treated as individual sensors. This results
in a more realistic scenario, in which motion sensors often
cover different size areas up to whole rooms.

For this evaluation, data from all sensors is used, but
the sensor IDs are replaced with IDs for their corresponding
cluster. This way, use of all sensor events is made, but their
spatial resolution is decreased.

B. Experiment II: Field Trial
To test the applicability of the approach in a more realistic

setting, it is tested in an evaluation in three households
equipped with retrofitted sensors. Since the identity of the
residents cannot be reconstructed without video recordings or
other identifying data, this study focuses on comparing the
actual and the calculated number of people present. Thus,
claims about the false associations between residents cannot
be made. However, this information helps developing home
security and care support services that rely on information on
the number of people present.
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Figure 3. Layout of home lab, with placement of sensors and their corresponding clusters. Red lines between clusters lines indicate spatial adjacency as
implemented in the sensor graph. After Crandall & Cook [37].

1) Setup: Each apartment was equipped with 13 to 15 PIR
motion sensors, depending on the size of the apartment. Five
of the sensors were installed to cover as large an area as
possible, to enable an ”inactivity monitoring”. These sensors
were also used in a separate study to detect unusual behavior
(e.g., falls) in order to automatically invoke an emergency call.
The remaining sensors were placed to cover room transitions
(e.g., hallways and door frames) and smaller areas in which
most activity takes place (such as the kitchen counter and the
bathroom sink). The sensors further included two light barriers
and two pressure mats near the front entrance. Their primary
task was to enable detection of people entering and leaving
the apartment. For the sake of this evaluation, however, they
only provide further tracking data. A schema of the hardware
setup is shown in Figure 4. A detailed description of the care
related services implemented in the project has been written
by Pauls et al. [39], [40] and Gerdes et al. [41].

The participants were recruited by the Johanniter-Unfall-
Hilfe e.V. as part of the research project Cicely. Three partici-
pant couples were recruited. All lived in a two-room apartment,
which was subsequently equipped with the sensors, a ”small-
form-factor PC”, a radio receiver to collect the sensor data
and a UMTS router to place emergency calls and to remotely
monitor the correct functioning of the setup.

2) Data: During the evaluation using home lab data, the
tracking results could be validated using video recordings from
video cameras installed in the home lab. During the field trial,
use of video cameras was considered impractical as well as a
burden on the participants’ privacy. Instead, they were asked
to fill out an ”activity log” (see Figure 5), which states sleep
times and the number of people present for the whole duration
of the trial. The sensors recorded data for a period of up to six
weeks. With an average of approximately 610 sensor events
per day, 55000 sensor events were recorded.

Not all data could be used for analysis, as participants
missed to fill out the activity log for parts of the trial. Thus,
this analysis focuses on the time frames in which the number
of targets can be precisely reconstructed.

3) Data Analysis: During the trial, the algorithm ran as
part of a software framework developed for management of
Ambient Assisted Living (AAL) installations. Sensors were
connected to this framework using two 868 Mhz radio re-
ceivers, which were in turn connected to the PC via USB. The
tracking algorithm is implemented in Java, and was started as
a service. Each time a sensor event was registered, the tracker
was updated. At the end of the trial, the raw, recorded data as
well as the tracking output was collected from the households
and the estimated number of people present was extracted from
the tracking results.
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Figure 4. Hardware setup for the field trial including emergency phone, router, radio receiver and sensors.

Apart from the sensor graph, which had to be implemented
after installation, the software setup was equal across all
households. The number of sensors varied based on the size
of the apartment.

V. RESULTS

A. Home Lab
Tracking accuracy using all sensors is 90.3%. This is the

percentage of all sensor events across all time frames that are
correctly associated to any of the targets. Correct association is
determined by the labels in the dataset, which have been added
manually after reviewing video recordings. The accuracy of
individual time frames ranges from 62.1% to 99.5%, with a
median of 93.1%. After reviewing the individual time frames,
it can be seen that the variance in accuracy between time
frames can be largely attributed to the varying complexity
of the recorded activities. In some time frames, the residents
spend little time in the same room, but move independently
across the lab, thus making it easy for the tracking algorithm
to separate the data. In other time frames, the residents spend
much time close to another.

The median rate of false associations (events that are falsely
associated to another target) per time frame is 5.88%, making
false associations the largest source of error. It is clear why:
While the other errors (wrongly discarding the data as noise
(0.44%) and failing to associate the data to any target (0.59%))
commonly affect singular sensor events, false associations
usually cause a large number of consecutive events to be
associated falsely.

1) Subset Data: Figure 6 shows tracking accuracy across
sensor subsets. The sets vary by the number of included sensors
(x-axis) and their selection criterion. As can be seen, tracking

Figure 5. Example excerpt of an activity log showing date, time (from, to),
bed rest, absence, visit and number of people.

accuracy generally decreases with reduced sensor count. This
is to be expected as the resolution of the tracking space
decreases and situations with overlapping motion increases.
Down to 30 sensors, tracking accuracy decreases only slightly
for all but one sensor set. For the set of sensors with much
overall activity, accuracy even increases slightly. The graph
also shows that performance variation increases with a de-
creasing number of sensors. While tracking accuracy varies
between 85.8% and 90.6% with 40 sensors, with 20 sensors
accuracy ranges between 59.5% and 88.2%.

2) Clustered Data: Tracking accuracy on the clustered data
set is 77.2%. This result is considerably lower than results with
ten individual sensors. However, using the selection criteria
explained above, more than half of the 10-sensor sets either
removed whole rooms from the data, or all data from one of
the residents. As a result, the evaluation using ten individual
sensors is considered invalid. Considering that each of the
rooms the clusters represent could be monitored using a single
well-placed sensor, the tracking accuracy is surprisingly high
relative to the number of sensors used.

In terms of estimation of people present, the algorithm was
correct 84.5% of the time. This means that, for 84.5% of sensor
events and tracking updates, the number of tracks spawned by
the algorithm matches the actual number of people present.
As previous studies have shown, this performance is at least
as good as with the full, unclustered set of sensors [42].

B. Field Trial
Across all households, the number of people present was

correctly estimated 84.0% of the time. This means that, for
84.0% of sensor events and tracking updates, the number of
tracks spawned by the algorithm matches the number of people
present according to the activity log. This includes data from
three households and all motion sensors. This matches the
results of the clustered home lab data. The average time for the
algorithm to recover (to restore the correct number of tracks)
after a tracking error amounts to 9.7 sensor events, or 101
seconds.

Upon further inspection, it can be seen that the largest
share of incorrect estimations lies in the night time. It becomes
obvious that, when an individual is inactive, their track profile
will slowly fade during updates caused by activity of other
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Figure 6. Tracking performance across sensor groups.

individuals. This happens, for example, when one of the
residents is restless at night, or when two individuals are
monitored by one and the same sensor.

Furthermore, the estimation error in terms of their impact
on home security and ambulant care scenarios is considered:
The algorithm could be used to activate or deactivate an alarm
system when the house is empty, or to place an automated
emergency call when a sole individual shows unusual behavior.
Thanks to the light barriers and pressure mats, it is known
when an individual left the apartment. Thus, the timestamps
of the outer pressure mat with an appropriate change in the
number of tracks in the output of the algorithm are compared.
On average, it took 40 seconds between a person leaving the
apartment and the appropriate fading of their track path. Since
the number of updates depends on the amount of activity, this
amount of time varied up to 174 seconds.

VI. CONCLUSION

Technical systems to measure mobility parameters and to
implement safety concepts in the home are one possibility
to help caretakers manage the future challenges imposed by
current and future changes in demography and care. In the
upcoming decades, there will be continuously more people
requiring care and fewer young people to carry out this care.

The article at hand describes an algorithm to enable previ-
ously developed concepts of care support and health monitor-
ing in the home for households of more than one person. This
is achieved through a multi-target tracking algorithm in a space
monitored by binary sensors. The system utilizes ambient
binary sensor technologies, which is considered less obtrusive

than video cameras and microphones, and more suitable for
older people. It enables the separation of sensor data generated
by multiple persons in smart home environments without the
need for identifying sensors. The approach makes it possible
to install services of home security and ambulant care support
in multi-person households, which previously have only been
possible to use in single-person households.

The algorithm makes use of a graph consisting of sensors
as nodes and their spatial relations as vertices. Compared to
other related works, the algorithm works particularly well in
low-resolution settings (i.e., with few binary sensors). It was
shown that tracking accuracy can be improved by placing
sensors based on activity characteristics. For example, sensors
with many neighboring sensors provide a consistently higher
accuracy than those with few, and sensors in places where the
duration of stay is long on average prove to be less beneficial
than those where duration of stay is short.

It was shown that the decrease of tracking accuracy result-
ing from smaller sets of sensors (i.e., decreased target space
resolution) can be largely absorbed by selective placement of
sensors. It was shown that tracking two targets in a network
of 20 sensors or more can be achieved for over 90% of the
time.

It must be noted that differences in tracking performance
may not only be due to advantageous sensor placement, but
also due to favorable data: While tracking in space with many
adjacent sensors works well, it neglects in part space where
tracking might be particularly difficult but useful, such as in
narrow hallways. The share of total events covered by the
different subsets of sensors range from 11 to 98%.
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The algorithm was also successfully used in a field trial and
it was shown that it is possible to correctly estimate the number
of people present over long periods of time. The algorithm
was also found to be useful for applications of home security
and technical care support, as it swiftly determined when a
person has left or entered the monitored area. A conclusion of
whether the error rates are sufficiently small for use in practical
applications cannot be given, because this depends largely on
the application itself. For example, in order to collect mobility
data of an individual during times they are alone at home, only
a small percentage of the overall time is required to collect
this data. However, an accuracy of more than 90% may still
not be sufficient for the data to be used in medical decision
making. It was shown that the implementation of the algorithm
works reliably with different sensors and sensing technologies
to separate sensor data of two residents in a shared apartment.
The number of people present was correctly calculated 84.0%
of the time. This is less than expected, but can largely be
explained by difficulties differentiating between absence and
inactivity, such as when people are sleeping.

The results of the field trial show that the tracking al-
gorithm is sensitive to differences in the amount of activity
between individuals. This is due to the fact that the number
of updates is based on the number of sensor events received,
and every track that is not assigned any event during an update
fades, i.e. , a smoothing function to this track’s probability dis-
tribution is applied. When the peak probability of a track falls
below a certain threshold, it is removed from the hypothesis
space. This is done to enable fading of tracks when individuals
leave the house without the need to rely on special sensors
monitoring the entrance and exit doors. However, this is cause
for tracking errors when one individual is inactive, such as
during night. Neither the installation of additional sensors nor
the omission of the smoothing function seem viable options at
this point, and the problem remains unsolved.

VII. FUTURE WORK

The home lab experiment gives insight into the importance
of sensor placement for multi-target tracking using binary
sensors. The next step must be to find the ideal sensor setup
for the data used in this evaluation, which may be a mixture of
the sensor subsets and criteria examined here, and may contain
criteria which were not yet considered.

Furthermore, the algorithm’s performance with more than
two targets must be evaluated. The tracking of two to three
individuals is sufficient for most applications this approach is
targeted towards. However, the approach is not theoretically
limited in its applicability and studies with three or more
individuals may provide better insight into the limitations of
the algorithm.

It is further planned to include identifying information in
the algorithm so as to not only associate the data to tracks, but
to identify the target. This could be easily achieved using the
labelled data from the home lab (c.f. Nillius et al. [43]), but ul-
timately it may be possible to assign tracks to individuals using
unsupervised clustering techniques, using the meta information
of sensor placement and expected number of people present.
This way, the sensor graph could be replaced by individual
motion models, further improving tracking accuracy.
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der selbstbestimmung am lebensende: Empowerment für patienten in
der spezialisierten ambulanten palliativversorgung (sapv) – das bmbf-
projekt cicely,” Zeitschrift für Palliativmedizin, vol. 15, no. 03, 2014,
p. V135.

[42] S. M. Müller, E.-E. Steen, and A. Hein, “Inferring multi-person presence
in home sensor networks,” in Ambient Assisted Living. Springer, 2016,
pp. 47–56.

[43] P. Nillius, J. Sullivan, and S. Carlsson, “Multi-target tracking-linking
identities using bayesian network inference,” in Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on,
vol. 2. IEEE, 2006, pp. 2187–2194.


