
Multiple Pattern Matching

Stephen Fulwider and Amar Mukherjee
College of Engineering and Computer Science

University of Central Florida
Orlando, FL USA

Email: {stephen,amar}@cs.ucf.edu

Abstract—In this paper, we consider certain generalizations
of string matching problems. The multiple pattern matching
problem is that of finding all occurrences of a set of patterns
in a fixed text. This is a well studied problem, and several
popular Unix utilities (grep, agrep, and nrgrep, to name a few)
implement a host of algorithms to solve this problem. In this
paper, we present both exact and approximate multiple pattern
matching, using a uniform paradigm that generalizes the Shift-
AND method of Baeza-Yates and Gonnet. Our algorithm is able
to achieve better performance in certain searching scenarios
when compared with the Unix utilities agrep and nrgrep,
and should be considered being added to the grep family of
searching algorithms.

Keywords-string matching, approximate string matching,
multiple approximate string matching.

I. INTRODUCTION

In this paper, we consider certain generalizations of string
matching problems. The most well known exact string
matching algorithms are the Knuth-Morris-Pratt algorithm
[1] and the Boyer-Moore algorithm [2]. A generalization to
multiple pattern matching using keyword trees was proposed
by Aho-Corasick [3]. Baeza-Yates and Gonnet [4] proposed
a very fast and practical exact pattern matching algorithm in
which the length of the pattern n does not exceed the length
of a typical integer word (typically 32) in a computer so that
bit shift and logical AND operations can be assumed to take
a constant amount of time. The worst case time complexity
is O(m) where m is the length of the text and the algorithm
takes O(n) storage. They also proposed a generalization
of the algorithm to handle arbitrary patterns with errors,
called approximate string matching. Based on this and
other independent ideas, Wu and Manber [5], [6] developed
a whole suite of fast algorithms that can handle exact
multiple patterns and approximate matches, patterns with
unlimited wild card characters, patterns expressed by regular
expressions and patterns with arbitrary cost for different edit
operations (replacement, insertion and deletion operations).
More recently, Külekci [7] developed a competitive exact
multi-pattern matching algorithm for fixed length patterns by
exploiting bit-parallelism. Additionally, many approximate
string matching algorithms for multiple patterns have been
developed which use a wide range of techniques and vary
in performance based on the size and type of input [8], [9],
[10]. Many different approximate string matching algorithms

have been proposed in the literature including the class of
algorithms called the sequence alignment algorithms using
dynamic programming formulations. Interested readers are
referred to the book by Dan Gusfield [11] and a recent
research monograph by Adjeroh, Bell and Mukherjee [12].

An earlier version of this paper due to a regrettable
oversight did not mention the following reference [5] which
essentially presents the same approach we describe here.
Our implementation has some advantages to their approach
which will be described in Section III and IV.

We formulate the problem discussed in this paper as
follows: The input to the problem is a set of patterns
P = {P1, P2, . . . , Ps} of size n =

∑
|Pi| and a text T

of size m, both over a finite alphabet Σ. We will consider a
generalization of the approximate string matching problem.
The output is all substrings (a set of consecutive characters
in T) and subsequences (a set of not necessarily consecutive
characters in T) that are close to the set of patterns P under
some similarity measures. We adopt the edit distance or the
Levenshtein distance as the similarity measure. In particular,
we want to find all patterns in T such that the number of
edit operations do not exceed {k1, k2, . . . , ks} from patterns
{P1, P2, . . . , Ps}, respectively. A string Pi, (1 ≤ i ≤ s),
is said to be at an edit distance ki to a subsequence Q
in T if we can transform Pi to Q with a sequence of
ki insertions of single characters in arbitrary places in Pi,
deletions of single characters in Pi, or replacements of a
character in Pi by a character in Q. If all edit operations
are replacements, it is equivalent to the so-called Hamming
distance or mismatch measure. The quantity ki is typically
a small positive integer (0 ≤ ki ≤ c) where c is a constant.
If all ki’s are integer 0, the problem is reduced to the exact
multiple pattern matching problem. Most approximate string
matching algorithms reported in the literature assume ki to
be constant for all patterns.

We develop the exact and approximate algorithms and all
their generalizations using a uniform paradigm that gener-
alizes the Shift-AND method of Baeza-Yates and Gonnet.
In this respect, it is the same approach used by Wu and
Manber [5], but we allow ki to be different for different
patterns. We also use a simplified formulation of the problem
using only six recurrence expressions and provide formal
proofs of correctness of all the algorithms presented. We

78

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

Table I
COMPLETE M MATRIX FOR P = {abc, axa, bc} AND T = εbaxabcx

T ε b a x a b c x
P 0 1 2 3 4 5 6 7
a 1 0 0 1 0 1 0 0 0
b 2 0 0 0 0 0 1 0 0
c 3 0 0 0 0 0 0 1 0
a 4 0 0 1 0 1 0 0 0
x 5 0 0 0 1 0 0 0 0
a 6 0 0 0 0 1 0 0 0
b 7 0 1 0 0 0 1 0 0
c 8 0 0 0 0 0 0 1 0

show that such an approach leads to very fast and practical
performance exceeding the performance of the best algo-
rithms available in the Unix utilities. We use the Baeza-Yates
paradigm of using a binary valued matrix M in which a
few simple operations allow us to extend the algorithm to
multiple pattern matching, both in the exact and approximate
case.

Exact and approximate string matching algorithms find
applications in database search, data mining, text process-
ing and editing, lexical analysis of computer programs,
data compression and cryptography. In recent years, string
matching and sequence alignment algorithms have been
used extensively in the study of comparative genomics,
proteomics, disease identification, drug design and molecular
evolution theory. The remainder of the paper is organized as
follows: Section II lays out the exact multiple pattern match-
ing algorithm, Section III gives its approximate matching
counterpart, Section IV gives our experimental results, and
we make our conclusions in Section V.

II. EXACT MULTIPLE PATTERN MATCHING

This section is included for the sake of completeness and
to set up our notations. We also include a formal proof of
correctness.

Let P = {P1, P2, . . . , Ps} be a set of patterns of size
n =

∑
|Pi| and T be the text of size m preceded by a

character ε which does not occur in any pattern. Define P =
P1P2 · · ·Ps to be the concatenated patterns and M to be an
n×(m+1) binary valued matrix with i running from 1 to n
and j running from 0 to m. Entry M(i, j) is 1 iff characters
indexed by r through i of P exactly match the characters
indexed by i − r + 1 of T ending at the character indexed
by j, where r is the starting index of the pattern containing
the character indexed by i.

The complete M matrix for P = {abc, axa, bc} and T =
εbaxabcx is shown in Table I.

Notice that M(5, 3) is 1, indicating that ax of the second
pattern (r = 4, i = 5) matches the last 2 characters of T
ending at position 3, ax. Anywhere a 1 exists at the end of
a pattern indicates an occurrence of that pattern being found
in the text (for example, M(6, 4), M(3, 6), and M(8, 6)).

Table II
COLUMN 5 TO COLUMN 6 OF M WITH INTERMEDIATE STEPS SHOWN

Column 5 Shift-Or(5) U(c) Column 6
0 1 0 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 0 0
0 0 0 0
1 1 0 0
0 1 1 1

Hence, computing the s rows ending each pattern solves the
exact multiple pattern matching problem.

The algorithm first constructs an n-length binary vector
U(x) for each character x of the alphabet. U(x) is set to 1
for the positions in P where character x appears. From the
example above, U(a) = 10010100.

The algorithm also constructs S and F , n-length binary
vectors giving the start and end indices of all the patterns,
respectively. Formally, S(i) is 1 iff a pattern from P begins
at i in P . Similarly, F (i) is 1 iff a pattern from P ends
at i in P . From the example above, S = 10010010 and
F = 00100101.

Define Shift-Or(j− 1) as the vector derived by shifting
the vector for column j − 1 down by one position and
setting all on bits in S to 1. The previous bit in position
n disappears. In other words, shift column j− 1 down by 1
and perform a bitwise OR with S.

A. Algorithm

M is constructed by a very simple algorithm. Initialize
column 0 to all 0. Column j ≥ 1 is obtained by taking the
bitwise AND of Shift-Or(j − 1) with the U vector for
character T (j). If we let M(j) denote the jth column of
M , then M(j) = Shift-Or(j − 1) AND U(T (j)). Table
II shows one iteration of the algorithm from column 5 to
column 6.

Once column j has been obtained, it can be checked for
any found matches with the aid of the F vector. Let Z be
the bitwise AND of M(j) with F . All locations where Z
is 1 indicate found matches, and can be extracted efficiently
using the following bit trick. Given a binary number X > 0,
in order to find the lowest order bit of X which is turned
on, simply perform the bitwise AND of X with ∼ (X −
1), where ∼ is the bitwise complement. This will give the
number 2a, where a is the index of the lowest order bit
turned on. Finally, this value can be subtracted from X and
this process repeated until X = 0, meaning all matching
locations have been found.

Notice that at any given time the algorithm only ever
needs the previous column of M in memory when com-
puting the next, so this algorithm is efficient in terms of
memory. The number of bit operations is Θ(mn). However,

79

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

when n is less than the size of a single computer word,
each operation can be done very efficiently as single-word
operations. Even when n is larger than a single computer
word, each operation can be done as just a few single-word
operations. Hence, for reasonably sized sets of patterns, this
algorithm is efficient in both time and space regardless of
the size of the text.

B. Proof of Correctness of Exact Multiple Pattern Matching
Algorithm

We prove correctness of the algorithm described by in-
duction on the columns of M . Column 0 of M is computed
correctly, since it is set to all 0, and it corresponds to
character ε which does not occur in any pattern in P . Assume
that all columns j−1 < m are computed correctly. We will
prove that column j is computed correctly.

Recall that M(j) = Shift-Or(j− 1) AND U(T (j)). By
assumption, M(j − 1) is computed correctly. Thus Shift-
Or(j−1) is correct from column j−1. Namely, this vector
will contain a 1 only in locations which match up until the
(j−1)− th character of T with some prefix of a pattern Pi

or in locations which are the first character of some pattern.
Note that because we only shift down by one, it is only
possible for the last character of one pattern to interfere
with the first character of another pattern. However, the first
character of each pattern will always be set to 1 by the
definition of Shift-Or, so no actual interference will take
place.

Now this value is bitwise ANDed with U(T (j)), meaning
only those locations which match with the current character
will stay on. Thus, all previous matches that continue to
match will stay 1, and any previous match that no longer
matches will become 0, and any previous mismatch will stay
0. Therefore, M(j) is correctly computed, and the algorithm
correctly computes all columns of M .

III. APPROXIMATE MULTIPLE PATTERN MATCHING

We now address the l-edits problem of finding all approx-
imate matches to a set P of patterns with at most l edit
operations (replacements, insertions, or deletions). Recall
that r is the starting index of the pattern containing character
P (i). Define M l(i, j) as a natural extension of M(i, j),
where M l(i, j) is 1 iff P [r . . . i] can be converted to some
suffix of T [1 . . . j] with no more than l edit operations. The
exact multiple pattern matching problem is a special case of
this problem where l = 0.

The complete M matrices for P = {abc, wxz, qrs} with
k values {2,2,2} and T = εabdwxyzqt are shown in Table
III.

Notice that M1(5, 4) is 1, indicating that wx of the second
pattern (r = 4, i = 5) matches a suffix of T ending at
position 4 with at most 1 edit operation, in this case the suffix
being w and the edit operation being to delete P (5) = x
from P . M1(6, 7) is 1, indicating that an occurrence of wxz

Table III
COMPLETE M MATRICES FOR P = {abc, wxz, qrs} WITH k VALUES

{2,2,2} AND T = εabdwxyzqt

M0

T ε a b d w x y z q t
P 0 1 2 3 4 5 6 7 8 9
a 1 0 1 0 0 0 0 0 0 0 0
b 2 0 0 1 0 0 0 0 0 0 0
c 3 0 0 0 0 0 0 0 0 0 0
w 4 0 0 0 0 1 0 0 0 0 0
x 5 0 0 0 0 0 1 0 0 0 0
z 6 0 0 0 0 0 0 0 0 0 0
q 7 0 0 0 0 0 0 0 0 1 0
r 8 0 0 0 0 0 0 0 0 0 0
s 9 0 0 0 0 0 0 0 0 0 0

M1

T ε a b d w x y z q t
P 0 1 2 3 4 5 6 7 8 9
a 1 1 1 1 1 1 1 1 1 1 1
b 2 0 1 1 1 0 0 0 0 0 0
c 3 0 0 1 1 0 0 0 0 0 0
w 4 1 1 1 1 1 1 1 1 1 1
x 5 0 0 0 0 1 1 1 0 0 0
z 6 0 0 0 0 0 1 1 1 0 0
q 7 1 1 1 1 1 1 1 1 1 1
r 8 0 0 0 0 0 0 0 0 1 1
s 9 0 0 0 0 0 0 0 0 0 0

M2

T ε a b d w x y z q t
P 0 1 2 3 4 5 6 7 8 9
a 1 1 1 1 1 1 1 1 1 1 1
b 2 1 1 1 1 1 1 1 1 1 1
c 3 0 1 1 1 1 0 0 0 0 0
w 4 1 1 1 1 1 1 1 1 1 1
x 5 1 1 1 1 1 1 1 1 1 1
z 6 0 0 0 0 1 1 1 1 1 0
q 7 1 1 1 1 1 1 1 1 1 1
r 8 1 1 1 1 1 1 1 1 1 1
s 9 0 0 0 0 0 0 0 0 1 1

is found in the text ending at position 7. Here, the suffix of
T is wxyz, and the edit operation is to insert T (6) = y into
the pattern between x and z. Anywhere a 1 exists at the end
of a pattern in M l indicates an occurrence of that pattern
being found in the text with at most l edit operations.

Formally, in order to compute M l(j) (for l ≥ 1), the
following six recurrences may be used, an improvement to
the seven recurrences given in [5]. Simply take the bit-wise
OR of the following expressions, where A ⇓ x denotes
shifting column A down by x bits and discarding any bits
which shift past bit n:

1) M l−1(j)
2) Shift-Or(M l(j − 1)) AND U(T (j))
3) M l−1(j − 1) ⇓ 1
4) M l−1(j − 1)
5) M l−1(j) ⇓ 1
6) (S ⇓ l) AND U(T (j))
Essentially this says that P [r . . . i] will match a suffix of

T [1 . . . j], with at most l edit operations, iff at least one of
the following conditions hold:

80

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

1) P [r . . . i] matches a suffix of T [1 . . . j], with at most
l − 1 edit operations

2) P [r . . . i − 1] matches a suffix of T [1 . . . j − 1], with
at most l edit operations, and P [i] = T [j]

3) P [r . . . i − 1] matches a suffix of T [1 . . . j − 1], with
at most l − 1 edit operations, and P [i] is replaced by
T [j]

4) P [r . . . i] matches a suffix of T [1 . . . j − 1], with at
most l− 1 edit operations, and T [j] is inserted into P
after character P [i]

5) P [r . . . i − 1] matches a suffix of T [1 . . . j], with at
most l−1 edit operations, and P [i] is deleted from P

6) P [r . . . l] may be deleted and P [i] = T [j]
There is only one exception to this recurrence, which

occurs when computing M1. For M1, you must also OR this
result with the binary vector S to allow the first character
to be replaced or deleted.

As in the exact case, we must take care to show that this
recurrence does not cause any interference between patterns.
The second, third, and fifth expressions all cause the current
column to be shifted down by 1. But for all l ≥ 1, M l(j) is
1 for all on positions in the S vector. Since shifting down by
1 can only cause the last character of some pattern to shift
into the first character of the next pattern, then any 1 shifted
into the first position of a pattern would have been set to 1
by the S vector. The other possible shift occurs in the sixth
expression, where S is shifted down by l bits. The only way
for this shift to overlap with other patterns is when l ≥ |Pi|
for some i. In this case, the shift by l bits overlaps into bit
b = l−|Pi|+ 1 of Pi+1. But since |Pi| ≥ 1, then b ≤ l, and
so this bit will be on for Pi+1 since these b characters of P
may freely be deleted. In fact, it is possible for the shift by
l to overlap with patterns past Pi+1, but the same argument
holds for why this overlap does not cause interference for
all subsequent patterns. Thus, bit shifting does not cause
interference between the patterns.

A. Algorithm

After establishing the recurrence for approximate pattern
matching, the algorithm for computing all approximate
matches from a set P of patterns to a text T follows
quite naturally. The only substantial change from the exact
matching case is that instead of a single F vector, we now
have a set of F vectors. Let K = max{k1, k2, . . . , ks}.
Then compute F0, F1, . . . , FK , where Fj(i) is 1 iff pattern
p from P ends at i in P and j ≤ kp.

There are several ways to organize computation of the M
matrix, but it makes the most sense to compute each column
j for all M l before computing any column j+1 for any M l.
Of course, each column will be computed in increasing order
of l from 0 to K. Each column of M0 is computed using
the recurrence given in the exact case, and each column of
M l for l ≥ 1 is computed using the recurrence given for the
approximate case.

Once column j is computed for all M l, all matches can
be obtained with the aid of the F vectors. Let Zl be the
bitwise AND of M l(j) with Fl, and Z be the bitwise OR
of Z0, Z1, . . . , ZK . All locations where Z is 1 indicate found
approximate matches, and can be extracted efficiently using
the same bit trick described for the exact matching case. In
this way we allow each pattern to have a unique number of
edit operations allowed, which is a new contribution by our
algorithm.

B. Proof of Correctness of Approximate Multiple Pattern
Matching Algorithm

The proof follows by induction on M l. M0 is the exact
case and so is correct from before. M1 only allows one char-
acter to be edited. The first character can be a replacement by
the special case for M1. Otherwise, the first expression lets
M1 stay a match if M0 was a match. The second expression
allows 1-edits to continue to be 1-edits when P [i] = T [j].
The third expression allows character P [i] to be replaced by
character T [j] after an exact match. The fourth expression
allows a single character to be inserted into the pattern after
an exact match. The fifth and sixth expressions allow a single
character to be deleted from the pattern after an exact match
or a single character to be deleted from the beginning of the
pattern if P [r+ 1] = T [j], respectively. This list handles all
the ways a pattern can be a 1-edit from the text, and so M1

is correctly computed.
Now assume that for some l − 1, M2 through M l−1 are

computed correctly. We prove that M l is computed correctly.
When computing M l, the possible events are that (l − 1)-
edits continue to be l-edits, l-edits match at the next pair of
characters and may be kept as l-edits, or P [i] is replaced,
T [j] is inserted after P [i], or P [i] is deleted. The first two
cases are handled exactly by the first and second expressions
of the recurrence, respectively. The next three cases are
handled by the last four expressions, allowing for (l − 1)-
edits to continue to be l-edits by replacement, insertion of a
character into a pattern, or deletion of a character (or set of
initial characters) from a pattern, respectively. Since M l−1

is assumed to have been computed correctly, this correctly
computes M l.

Similar to the exact case, the number of bit operations
is Θ(mnK), and the memory usage is O(nK). However,
when K is a small constant and n is the size of only a few
computer words, this algorithm is very practical.

IV. EXPERIMENTAL RESULTS

We have developed the algorithms described in this paper
and written C code to implement the ideas presented. In this
section we give some timing results, comparing our method
with the current methods which are used in practice.

Our exact matching algorithm is competitive with fgrep
(invoked using the grep -F command), the standard Unix
utility for doing exact pattern matching on a set of patterns.

81

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

Table IV
TIMES COMPARING PATS TO FGREP

Text File Text Size Pattern File Time
PATS .25s

English Text1 12MB 10 4–6
length words fgrep .321s

PATS 1.92s
English Text2 115MB 30 common

English words fgrep 2.83s
PATS 2.1s

Random Text 100MB 30 common
English words fgrep 2.5s

PATS 3.6s
Genome3 215MB 6 common motifs

(short strings) fgrep 3.8s

fgrep implements the Aho-Corasick algorithm, a linear time
algorithm for searching for a set of patterns in a given text.
Table IV shows our timing results comparing our exact
matching algorithm, PATS, to fgrep. Our results show a
modest improvement over fgrep in certain searching sce-
narios, especially when n is small and many patterns can be
expressed as just a few computer words. Of course, when
the number of patterns gets too large (and hence n starts
to grow to more than just a few computer words), fgrep
becomes faster and would be the preferred method.

Where our algorithm shows its true usefulness is when
doing approximate pattern matching against a set of patterns.
The Unix utility agrep written by Manber and Wu [6] is
known to be one of the fastest for doing approximate pat-
tern matching. Another popular utility for fast approximate
pattern matching is nrgrep, written by Navarro0 [13]. Our
method does not always match the times of these methods
when searching against a single pattern, but when looking
for approximate matches against a set of patterns we can beat
these current methods, sometimes by very large margins in
appropriate search settings. This is largely due to the fact
that existing tools for multiple pattern matching must be
re-run for each approximate match, where our algorithm
is able to do multiple pattern approximate matching in a
single pass. Table V shows our timing results comparing
our approximate matching algorithm, APATS, to agrep and
nrgrep.

We also ran our algorithm against 2 sets of English texts,
one small text1 and one large text2, varying k over all values
from 0 to 8. The results are shown in Fig. 1 and Fig. 2.

As seen, when k = 0, agrep and nrgrep both exceed

0We thank Dr. Navarro deeply for his personal communication and
providing source code for our testing

1War and Peace from Project Gutenberg
2Selected works by Jane Austen, William Blake, Thornton W. Burgess,

Sarah Cone Bryant, Lewis Carroll, G. K. Chesterton, Maria Edgeworth,
King James Bible, Herman Melville, John Milton, William Shakespeare,
and Walt Whitman from Project Gutenberg

3Chromosome 1 of Celera Genome from NCBI
4Chromosomes 1–6 of Human Genome from NCBI

Table V
TIMES COMPARING APATS TO AGREP AND NRGREP

Text File Text Size Pattern File k Time
APATS .29s

English Text1 12MB 30 common
English words 1 agrep 1.4s

nrgrep 1.4s
APATS 2s

English Text2 115MB 100 common
English words 2 agrep 153s

nrgrep 177s
APATS 1.15s

Random Text 100MB 100 common
English words 2 agrep 78s

nrgrep 104s
APATS 82s

Genome4 1.3GB 12 common motifs
(short strings) 1 agrep 144s

nrgrep 297s

Figure 1. 12MB text searching for 30 common English words

the performance of APATS. This is due to these algorithms
being tailored to perform special exact pattern matching
algorithms for the k = 0 case. However, for k ≥ 1, APATS
shows excellent performance, doing far better than both
agrep and nrgrep for all values tested. Testing was limited
to 8 due to limitations of the agrep software.

Our implementation can be downloaded at http://www.cs.
ucf.edu/∼stephen/pats-apats.

V. CONCLUSIONS

We have developed a very fast utility for exact and
approximate pattern matching on a set of patterns. It is our
hope that this algorithm would be added to the grep family
of pattern matching algorithms and used in cases where it is
expected to perform better than the current implementations,
especially in cases where approximate pattern matching is

82

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

Figure 2. 115MB text searching for 20 English words of length 9–12

desired against a reasonably sized set of patterns. Another
advantage of our algorithm is that it is very simple, both
in concept and implementation. The run-times presented in
this paper could no doubt be improved with a focus on op-
timizing implementation details. We have only implemented
the algorithms exactly as they are presented.

REFERENCES

[1] D. E. Knuth, Jr, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–
350, 1977.

[2] R. S. Boyer and J. S. Moore, “A fast string searching
algorithm,” Commun. ACM, vol. 20, no. 10, pp. 762–772,
1977.

[3] A. V. Aho and M. J. Corasick, “Efficient string matching: an
aid to bibliographic search,” Commun. ACM, vol. 18, no. 6,
pp. 333–340, 1975.

[4] R. A. Baeza-Yates and G. H. Gonnet, “A new approach to
text searching,” SIGIR Forum, vol. 23, no. SI, pp. 168–175,
1989.

[5] S. Wu and U. Manber, “Fast text searching: allowing errors,”
Commun. ACM, vol. 35, no. 10, pp. 83–91, 1992.

[6] ——, “Agrep - a fast approximate pattern-matching tool,” in
In Proc. of USENIX Technical Conference, 1992, pp. 153–
162.

[7] M. Kulekci, “Tara: An algorithm for fast searching of multiple
patterns on text files,” Computer and information sciences,
2007. iscis 2007. 22nd international symposium on computer
and information sciences, pp. 1–6, 2007.

[8] R. Baeza-Yates and G. Navarro, “New and faster filters
for multiple approximate string matching,” Random Struct.
Algorithms, vol. 20, no. 1, pp. 23–49, 2002.

[9] K. Fredriksson and G. Navarro, “Average-optimal single and
multiple approximate string matching,” ACM Journal of Ex-
perimental Algorithmics, vol. 9, 2004.

[10] H. Hyyrö, K. Fredriksson, and G. Navarro, “Increased bit-
parallelism for approximate and multiple string matching,”
ACM Journal of Experimental Algorithmics, vol. 10, 2005.

[11] D. Gusfield, Algorithms on strings, trees, and sequences:
computer science and computational biology. New York,
NY, USA: Cambridge University Press, 1997.

[12] D. Adjeroh, T. Bell, and A. Mukherjee, The Burrows-Wheeler
Transform:: Data Compression, Suffix Arrays, and Pattern
Matching, 1st ed. Springer, July 2008.

[13] G. Navarro, “Nr-grep: A fast and flexible pattern matching
tool,” Software Practice and Experience (SPE, vol. 31, p.
2001, 2000.

83

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

