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Abstract—Intestinal lumen detection in endoscopic images is
clinically relevant to assist the medical expert to study intestinal
motility. Wireless Capsule Endoscopy (WCE) produces a high
number of frames and automatic classification, indexation and
annotation of WCE videos is crucial to a more widespread
use of this diagnostic tool. In this paper we propose a novel
intestinal lumen detection method based on boosting. In partic-
ular, we use a customized set of Haar-like features combined
with a variant of Adaboost to select discriminative features
and to combine them into a cascade of strong classifiers.
Experimental results show the efficacy of boosted classifiers
to quickly recognize the presence of intestinal lumen frames in
a video.
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I. INTRODUCTION

Wireless Capsule Endoscopy [1], [2] is a technique to
explore small intestine regions that traditional endoscopy
does not reach. A video-capsule, that integrates wireless
transmission with image technology, is swallowed by the
patient and it is propelled through the gut by intestinal
peristalsis. Once activated, the capsule captures two frames
per second and transmits images to an external receiver. The
exam is concluded after about eight hours, that corresponds
to the lifetime of the battery of the capsule. Images taken
during the entire route of the capsule through the intestine
are successively analyzed by an expert. She may spend up
to one or more hours to gather the relevant information for
a proper diagnosis. This greatly limits the use of the capsule
as a diagnotic routine tool.

This state of the things may be greatly improved if the
WCE video is automatically segmented into shorter videos,
each one relative to a different trait of the bowels, and if
reliable automatic annotation tools are available. The goal
of automatically produce a summary of the whole WCE
video is still unaccomplished. Tools to extract semantic
information from such videos are hence relevant.

Within this general framework, in this paper we present
a novel method to automatically discriminate a relevant
subclass of frames. In particular, our classifier sorts the
frames into two categories: “with lumen” (images depicting
the stages of a intestinal contraction where the lumen of
the bowel is well visible) and “without lumen” (Figure 1).
Lumen detection is clinically relevant because it announces

Figure 1. Examples of lumen (a) and not lumen (b) images extracted from
a WCE video.

the presence of a contraction and helps the physician to
study intestinal motility. Alteration of physiological intesti-
nal motility is an indicator of disorders in which the gut has
lost its ability because of endogenous or exogenous causes.
Lumen detection in our approach is obtained as a special
case of object detection, and uses to this aim the Viola and
Jones paradigm introduced in 2001 [3].

This paper is organized as follows: Section II lists related
works and reports examples of object detection based on
an approach similar to ours. Section III describes in detail
how Viola-Jones technique is applied to the present problem.
Section IV reports the experiments conducted on real WCE
video. Finally, Section V draws conclusions and discusses
some future works.

II. RELATED WORKS

Most of the systems reported in literature to recognize
intestinal lumen images refer to classic endoscopy. The
motivation behind these methods is to aid the physician
to individuate lumen region to avoid the collision of the
endoscope instrument with the intestinal mucosa. In this
context, Asari [4] proposes a Region Growing Segmentation
to extract lumen from gray level endoscopic images.

Recently, the original WCE is evolving into a novel
capsule whose movement may be remotely controlled. In this
context, the recognition of lumen could help the capsule to
go through the intestine minimizing collisions and avoiding
to record meaningless frames. To this aim, Zabulis et al.
[5] propose a system based on a Mean Shift Segmentation
algorithm variant to locate lumen regions in WCE frames.
The problem of the detection of images with lumen in WCE
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videos to clinical use is not much investigated. Some works
study the general problem to find contractions to examine
intestinal motility [6]–[8].

The main idea exploited in this work is the Viola-Jones
method for object detection [3], [9]. Initially proposed for
face detection, this technique is based on the use of simple
features calculated in a new representation of the image.
Based on the concept of integral image [10], a huge set of
features is tested and the boosting algorithm Adaboost is
used to reduce this set [11]–[13]. The introduction of a tree
of boosted classifiers provides a robust and fast detection
and minimizes the false positive rate. This strategy has
been proven effective to recognize various kind of objects.
Several systems have been proposed for different recognition
problems, like face, hands and pedestrian [14]–[17]. The
possibility to define a specific set of features and the more
recent release of an open source implementation [18] have
permitted to use extensively this method in Computer Vision.

III. PROPOSED METHOD

We propose a system that automatically learns and classi-
fies frames where intestinal lumen is well visible. The pro-
cess of automatic annotation of images containing intestinal
lumen can be summarized in the following three steps:

• Evaluation of a customized set of Haar features applied
to the integral images of the training samples.

• Selection of best discriminative features through Ad-
aBoost algorithm.

• Construction of a final boosted classifier based on a
cascade of classifiers whose complexity is gradually
increasing.

To be reliable, such a system must satisfy two require-
ments: it needs a comprehensive set of examples where
the object of interest may occur; a suitable selection of
descriptors required to describe each possible pattern must
be guaranteed. To this aim, Haar-like features, a set derived
from Haar wavelets [19], recognize objects using intensity
contrast between adjacent regions in an image.

Basic Haar features proposed by Viola-Jones for face de-
tection do not have sufficient discriminative power for lumen
investigation: it necessary to define customized variations of
this kind of features. In particular, the features proposed
in this work should provide a strong positive response on
a rectangular region with low intensity called generically
“lumen” and a brighter surrounding area in which appears
the gut wall. By combining a learned evaluation threshold
to each feature, it is possible to assign an image to the
appropriate category. Figure 2 shows an example of this
first kind of proposed features that we call “center-surround”
features.

The typical appearance of a frame that shows an intestinal
contractions consists in lumen surrounded by typical rays
that muscular tone produces due to the folding of the intesti-
nal wall. We hence define two additional “cross-like” kind

Figure 2. Evaluation of a “center-surround” feature in two images, with
and without lumen respectively. sumrect indicates the total value of pixels
intensity within a rectangular region. W and B are related to light and dark
regions of the rectangle.

of features that enhance the discriminative power produced
by the simpler “center-surround” feature (Figure 3). The
calculation of this second kind of features may be efficiently
obtained as for the simpler “center-surround” features.

Using integral image representation, feature evaluation is
accomplished by few memory accesses. It is straightforward
to verify that to compute “center-surround” features, at
any position or scale, only eight lookups are needed. The
remaining two feature typologies require more accesses due
to greater number of rectangular areas. “Cross-features”
require respectively 16 and 24 references from the integral
image.

Once a feature shape has been assigned, it is necessary
to specify the position and the scale within the region of
interest. Specifically, the features are scanned across the
image top left to bottom right using a sliding offset of two
pixels both in the horizontal and in the vertical direction. The
process is iteratively repeated with different feature scales
at each round. To keep the computation of the proposed
features within the same number of lookups into the integral
image, we choose not to change the scale of the image but
to variate instead the size of the features.

The exact representation for the three proposed types of
features is as follows:

f = [xw, yw, swx, swy, xb, yb, sbx, sby, type, θ, ρ] (1)

Figure 3. The two “cross-like” patterns used in the proposed method.
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Figure 4. Schematic features representation. (a) Center-surround feature.
(b) First cross feature obtained by center-surround feature considering the
cross with width sby and height sbx. (c) Second cross feature obtained by
the first taking into account a inner square of width and height greater than
1 pixel respect to the previous version.

The first four elements of f refer to the larger square of the
feature. Similarly, the following four elements relate to the
inner square. The type parameter is an integer that indicates
which type of feature is considered. The last two parameters
are the optimal learned threshold and the polarity to register
the category of images discriminated by that feature.

As discussed before, the “center-surround” features are
evaluated considering difference between the sum of the pix-
els within two rectangular regions (Figure 4a). The second
type of features considers a cross-shaped region to enhance
lumen area. Location and size of this region are constrained
by the size of correlated “center-surround” feature (Figure
4b). The third type of features is calculated in a similar way
considering a larger internal rectangular area (Figure 4c). We
consider the same total number of features for each type.

We consider only squared features, i.e., those with equal
horizontal and vertical scale sw. The internal region relative
to lumen varies from a minimum size 2×2 up to (sw−2)×
(sw − 2) pixels. Once fixed the size of the external section,
the descriptor associated with the lumen is shifted across the
external descriptor resizing at each step (Figure 5).

The resolution of a WCE frame is reduced to 24 × 24
pixels in this phase of processing. Hence the total number
of features per scale is equal to the total amount of different
features in the image multiplied by the allowed variations
of magnitude. For example, a 7× 7 feature contains sixteen
regions of size 2× 2, nine of size 3× 3, four of size 4× 4
and one of size 5 × 5. Hence, the total number of features

Figure 5. An example of features variations used in our algorithm. Given
feature size, all 2×2 regions are considered in each location (a). This cycle
is reiterated by increasing the size of the inner square (b) until maximum
amplitude is achieved (c).

of size 7 × 7 is 2430, equal to the number of windows in
the image (assuming a horizontal and vertical offset of two
pixels) for the total number of variations. Table I summarizes
the feature counting for the chosen scales.

A. Training

During the training phase, the dataset is rescaled to 24×24
pixels. The integral image representation of gray tone train-
ing samples is used to compute feature scores. Application
of AdaBoost provides a list of best discriminative features.
In particular, we build a binary classifier for each feature
(weak classifier). Initially all the examples have the same
weight. For each boosting step, the determination of a new
weak classifier involves the evaluation of each feature on
training data. The crucial feature is selected according to
the weighted error that each feature shows on the training
data. In the successive round, the samples are reweighted to
emphasize the misclassified ones. This is the most expensive
section of the training module.

The result of the training module is a strong classifier
computed as weighted linear combination of weak classifiers
built during each round of boosting. The whole boosting
process is iterated, varying at each step the number of weak
classifiers. The result is the realization of a cascade of strong
classifiers with a gradually increasing number of features.

Learning requires that each strong classifier shows a
prescribed detection rate, while maintaining a definite rate

Table I
FEATURES NUMBER PER SCALE. THE FIRST COLUMN REFERS TO THE
SIZE OF THE FEATURE WHILE THE SECOND IS RELATED TO MAXIMUM

SCALE ALLOWED FOR THE LUMEN AREA.

Feature Max
size Internal #Features #V ariations Total

scale
5× 5 3× 3 100 5 500
7× 7 5× 5 81 30 2430
9× 9 7× 7 64 91 5824

11× 11 9× 9 49 204 9996
13× 13 11× 11 36 385 13860
15× 15 13× 13 25 650 16250
17× 17 15× 15 16 1015 16240
19× 19 17× 17 9 1496 13464
21× 21 19× 19 4 2109 8436
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of false positives. In particular, it is required a minimum
detection rate and a maximum false positive rate to be
satisfied at every level of the cascade. For each strong
classifier, a weak classifier is added until it reaches the
required parameters for the current level of the cascade.
Similarly, a new strong classifier is associate to the cascade
until total false positive rate is above a certain threshold.

One of the advantages of the proposed system is that
the user only needs to define the features set to be used
and the false positives and detection rates for each level of
the cascade. All the internal parameters are automatically
selected during the training phase.

B. Test

In the proposed system, each test image is scaled to
24× 24 pixels and it is labelled as “lumen” or “not lumen”.
This monoscale procedure combined with selection of best
features during training allows real time application of our
system. Please notice that, differently than in the case where
the object to recognize may appear at different scales, in
the present case a “mono-scale” choice has been shown
adequate.

IV. EXPERIMENTAL RESULTS

In this section, we report of the experiments carried out
to verify the efficacy of the proposed method. To train the
classifier, we have considered the integral images of a dataset
made of 5000 images, 1500 positive and 3500 negative,
rescaled to 24 × 24 pixels. The positive images have been
manually selected from WCE videos previously labelled by
the expert. The selected images represent a comprehensive
set of scenes where the intestinal lumen can be present,
including location and scale changes within the image. Dif-
ferently, the negative examples have been randomly selected
from videos that not contain any lumen. Both typical smooth
images and images containing other judged negative events,
like the presence of bubbles, bleedings, residuals, share this
set.

To train the cascade of classifiers, we need to establish a
maximum false positive rate and a minimum detection rate
to satisfy to each layer of cascade. In particular, we require
that 98% of positive images must be recognized at each level
while maintaining a maximum amount of false positives
equivalent to 80%. At the next levels of the cascade these
two values are computed relatively to the new dataset whose
positives set is composed by every lumen recognized as such
by the previous classifier and the negatives set includes the
remaining false positives. A strong classifier will be added
to the cascade until the total false positive rate drops to zero.
With these data, we have obtained a six level cascade for
a total of 325 features (Figure 6). The total detection rate
of the cascade, D, and the final false positive rate F , are
obtained as a combination of intermediate outcomes on the

Figure 6. Cascade of classifiers. di and fi represent detection and false
positive rate at the ith level of cascade. L and NL indicate “lumen” and
“not lumen” images, respectively.

cascade:

D =

N∏
i=1

di = 95, 7% F =

N∏
i=1

fi = 0% (2)

where N is the total number of layers of the cascade.
To test the effectiveness of trained cascade, we have con-

sidered a collection of ∼ 5000 images randomly extracted
from a test set of frames disjoined from the training set.
During testing phase, we consider the integral images of
test set rescaled to 24×24 pixels with the respective labels,
the cascade of boosted classifiers as it has been obtained
during training and, finally, a threshold that determines the
rigorousness of the classifier. Each test sample gets through
each single node of the cascade; a positive outcome is sent
by the classifier i to the more complex classifier i + 1. An
image is labeled as lumen if positively overcomes each node
of the cascade. If at any point the test image is judged
negative, it is rejected immediately without further test.
The classification performance has been evaluated in terms
of precision and recall by comparing our results with the
annotations provided by the specialist. Table II shows the
results.

All experiments have been conducted on a consumer
level PC with Intel R©CoreTM2 Duo processor and 4 GB
of RAM. Calculations have been performed in MATLAB
environment.

By varying the rigidity threshold from a minimum to a
maximum value, we can construct a ROC curve comparing
the detection rate versus the number of false positives.

Table II
CLASSIFICATION RESULTS

Recall Precision Accuracy T ime

90, 5% 71% 92, 4%(4642/5025) 600frames/sec
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Higher threshold values minimizes both detection and false
positive rates. Similarly, a low threshold will lead to accep-
tance of a greater number of lumen images while increasing
the probability of detecting false positives. Figure 7 reveals
that is possible to reach a detection rate above 90%, keeping
the amount of false positives at about ∼ 500 instances, i.e.,
10% of the test dataset.

Figure 8 shows some examples of the false positives for
the proposed method. In many circumstances, the intensity
contrast between adjacent regions does not correspond to
the presence of a lumen. A common problem is the fact that
Haar features are sensitive to illumination changes. Vari-
ations on the lighting conditions may cause the cascade to
detect lumen that was not predicted during the training stage.
Likewise, in some images, folds of the intestinal wall may
produce contrasted regions that confuse the Haar features. If
new kind of images are presented to the classifier, detection
is difficult and the amount of false positives increases. To
deal with this problem, training data must include as many
examples as possible to predict only true lumen.

V. CONCLUSION

In this paper we introduced an automatic lumen detection
algorithm for endoscopic images. Inspired by Viola-Jones
object detection system, we show that using AdaBoost
learning-based algorithm combined with a cascade of strong
classifiers leads to a good rate of detection minimizing
running time. Experimental results show that the proposed
system detects positive images using exclusively Haar-like
proposed features. A cascade of six strong classifiers reaches
a recall of 90,5% with a precision of 71%. Our detector is
flexible and easily extensible to other semantic objects in
endoscopic applications.

Figure 7. ROC curve for the detector with 325 weak classifiers.

Figure 8. Example of some false positives detected by the system.
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