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Abstract—Earthquake forecasting is known to be a challenging 

research program for which no single prediction method can 

claim to be the best. At large, earthquake data when viewed as 

a time series over a long time, exhibits a complex pattern that 

is composed of a mix of statistical features. A single prediction 

algorithm often does not yield an optimal forecast by analyzing 

over a long series that is composed of a large variety of features. 

A new analytic framework is proposed that allows these mixed 

features from the time series to be automatically extracted by a 

computer program, and fed into a decision tree classifier for 

choosing an appropriate method for the current forecasting 

task. The motivation behind this concept is to let the data 

decide which prediction algorithm should be adopted, 

adaptively across different periods of the time series. The 

contribution of this paper is twofold: (1) a framework of 

automatic forecasting which is very suitable for real-time 

earthquake monitor is proposed, and (2) an investigation on 

how different features of the data series are coupled with 

different prediction algorithms for the best possible accuracy. 

Keywords-Earthquake prediction; time series forecasting; 

automatic and adaptive forecasting; ARIMA; Holt-Winter’s. 

I.  INTRODUCTION 

In literature a large collection of time series forecasting 
algorithms have been studied and they have been applied for 
different domains such as finance [1], safety of power system 
[2], cargo volume [3], and traffic [4], etc. These algorithms 
show pros and cons in various situations, and mostly they 
were used for manual analysis where human experts were 
involved. Forecasting by manual analysis implied a full set 
of historical data or some intuitively selected length of the 
data series was used to be experimented by several ad-hoc 
forecasting algorithms, often trial-and-error or brute-force 
for the best candidate. This process is not only manual but 
usually would have to be carried out in the backend that falls 
short of real-time prediction capability. 

Automatic forecasting is more desirable than backend 
analysis especially for critical scenarios, for instance, real-
time monitors for earthquake prediction [5, 6], where fresh 
inputs from sensors are streamed in continuously and the 
responsive prediction must be made instantly if a fore-
warning were to be made. This kind of real-time prediction 
scenario would often be handled by a computer program that 
is capable for processing a large amount of data, extracting 
characteristics from them and picking a suitable forecasting 
algorithm plus the required parameters, automatically. 

Furthermore, earthquake data are multi-dimensional in 
nature, so are the prediction tasks. Earthquake data are 
spatial-temporal events; samples are measures of magnitudes, 
frequencies, depth, and they are collected from different 
places at different times. Aggregating up the measurements 
with other seismological and climate factors and time scales 
will multiply the dimensions, therefore demands for 
automatic forecasting for the sake of both speedy and 
accurate prediction results. 

One major obstacle for achieving automatic forecasting is 
the choice of the appropriate time series forecasting 
algorithm and the associated parameters for the best results. 
In the mathematics domain, we are not short of theoretical 
models for forecasting; rather practically, how each of these 
different models could be dynamically chosen in run-time 
based on the characteristics of the latest section of the data 
series that is being analyzed – this forms the motivation of 
the research as in this paper. 

On the other hand, earthquake data when formatted into a 
time series, it is found to possess a set of complex features 
which is often mixed into some composite along a very long 
range of time (>30 years), with no simple distinct 
characteristics. Consequently this implies various prediction 
techniques that have their strengths for different 
characteristics of patterns should be applied in turn 
adaptively for each segment of the time series, instead of 
fixing on a single algorithm that may deem fit at the start for 
the whole of the historical time series. The rationale of this 
adaptive prediction model is based on the observations that 
mixed features reside in earthquake patterns, these features 
are ever changing over time, and local trends are more 
relevant than global trends in earthquake. The second 
observation is still quite debatable because nobody can be 
certain that global trends have absolutely no effect on us 
given that the archival dataset only has a history of merely 
three decades. Local trends however are known to have 
temporal effect over a period of time and relevant to future 
events. For example, seismic activities are related in time 
and over some places, such as fore-shocks and after-shocks. 

In this paper, we propose an adaptive forecasting 
framework for predicting the frequency of earthquakes in 
future time to come. The advantage of our framework is to 
facilitate automatic real-time forecasting. Section 2 reviews 
related works on automatic forecasting. Our proposed 
framework is described in details in Section 3. Section 4 
shows our preliminary experiments. Section 5 concludes. 
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II. RELATED WORKS 

In the literature, tons of forecasting algorithms and 
methodologies have been studied on univariate time series 
data from statistical perspectives. The methods are quite 
mature in terms of accuracy and robustness. Their 
applications are applied in a wide range of domains for 
solving real life problems. Automatic forecasting is a 
relatively unexplored area in software engineering that is 
comprised of different techniques, in addition to of course 
existing forecasting algorithms. The challenges of automatic 
forecasting basically can be divided into three conceptual 
levels: 1. Model selection, 2. Parameters selection for the 
chosen model, and 3. Data selection – how long the input 
data should be used in order to yield a result that has the 
highest accuracy? Given certain input data, how far ahead in 
future time intervals the forecast can sustain its accuracy? 

With these three levels of complications in automatic 
forecasting, this section reviews some related works 
pertaining to practical challenges at each level. 

A. Model Selection 

Most researchers advocated all the popular forecasting 
models should be first trialed and the one that produced the 
lowest error is selected in an automatic forecasting approach. 
The merit of trying out all the models is apparently a way to 
guarantee the best prediction output, which is as good as 
using brute-force approach. The drawback of this method is 
the long computation time required that may be applicable to 
manual analysis where highest accuracy needs to be assured 
and an analyst can take a long time to find the perfect model. 
For real-time forecasting where a very short time constraint 
is imposed, some heuristic search for the optimal model is 
needed. 

In the 70’s, an epitome of using all the forecasting 
techniques in the hope of finding a technique that is best 
suited to a certain scenario is called M-Competition [7, 8] by 
Makridakis et al. It was concluded from M-Competition that 
statistically sophisticated methods might not necessarily 
outperform simple forecasting ones. In year 2000 the same 
authors focused on using only a limited set of exponential 
smoothing models, and they demonstrated that automatic 
forecasting can made to be particularly good at short term 
forecasts [9]; this methodology is extended to seasonal short-
term series where the result beats all other methods. 

Recently, Hyndman and Khandakar [10] improved this 
exhaustive M-Competition approach for finding the suitable 
method in automatic forecasting. They used state space 
models that underlay exponential smoothing methods for 
shortening the search process. And the authors also proposed 
a step-wise algorithm for forecasting with Autoregressive 
Integrated Moving Average (ARIMA) models. 

Lemke and Gabrys in their work [11] suggested 
identifying an extensive pool of computable features from 
the time series for choosing a forecasting method. The 
judgmental feature selection used in [11] was a simple 
decision tree that decides which forecasting method should 
be used. Based on this concept, the author in this paper 
extended the decision tree into one that is for stream mining, 
treating the input time series data as a continuous stream; 

thus instead of preprocessing the full set of time series data 
for constructing (training) up the decision tree, our model 
progressively builds the decision tree ground up and updates 
the decision tree dynamically as each new segment of time 
series arrives. The advantage of using decision tree of stream 
mining is that the forecasting model can better adapt to 
different parts of the time series as supposedly the time series 
should never end but amounts to infinity, and the features of 
the series ever keep changing in values at different times. 
The adaptive model is hence suitable for real-time 
forecasting applications where forecast is made on the ever 
updating data stream. 

B. Parameter Selection 

Many time-series analysis techniques like regression 
analysis and exponential smoothing techniques require a set 
of parameters or constants to be initially chosen by users. 
The forecast accuracy largely attributes to the choice of these 
parameters at all times. Basically, there are two schools of 
researchers on two practices that deal with parameter 
selection. One common practice [12] is to utilize Solver (an 
optimization plug-in for MS-Excel) to simultaneously 
optimize the parameters and smoothing constants in 
spreadsheet prior to forecasting time series data. Rasmussen 
in his work [13] optimized using Solver initial or starting 
parameters as well. This work showed improved fits when 
the initial parameters and the smoothing constants are 
optimized together. The other approach [14] is to treat the 
update equation and the selection of parameters in the 
forecasting equations as a recursive updating function. The 
smoothing parameters are optimally chosen by a simple grid 
search according to some criterion. The solution may fall on 
local optima as the whole set of data are not globally 
considered. 

In our proposed model, we combine the aforementioned 
approaches; because of the rolling nature of our forecasting 
process, the last optimized parameters from the previous 
segment of the time series would serve as the optimal initial 
parameters for the current segment by the concept of [13]. 
The parameters of the forecasting equations for each section 
of the time series are updated iteratively according to [14]. 

C. Data Selection 

The selection of time scales as well as the length of time 
series has been studied widely in the literature. Generally 
forecast combinations that are based on segments of the 
series are said to be superior to their constituent forecasts. 
The rationale behind is that the conditions that vary along the 
time series, consists of trend and other statistical elements 
changes, hence the forecasting parameters drift. Previous 
works [15, 16, 17] show that it is feasible to do forecasting 
over different terms of the time series. Sets of forecasts from 
both short and long terms are merged to outperform either 
one. Cointegration is the core method adopted in piecing up 
the forecasts. This underlying concept of forecasting on 
individual segments instead of a full length of the time series 
drives the need of an adaptive forecasting model which 
continuously chooses the best suitable forecasting techniques 
and parameters on the fly over a train of time series segments.  
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III.  FRAMEWORK FOR ADAPTIVE FORECASTING 

A. Methodology 

Adaptive forecasting is about a continuous forecasting 
process, which takes the time series input as an ever 
changing data stream, and automatically chooses a suitable 
forecasting method based on the characteristics of the recent 
data. The selection of the forecasting method is adaptive to 
the time series whose characteristics may vary across 
different observation time periods. 

A classical forecast development process by Armstrong 
[16] was designed for analyst who makes once-off forecasts 
from a full length of time series. Our adaptive forecast 
however is derived from segments of time series of variable 
length as predefined by the user. The adaptive forecasting 
process can be implemented as a computer software program; 
hence human intervention can be relieved making it suitable 
for automatic and real-time prediction when the source data 
feed is properly setup.  

The methodology of adaptive forecast process which is 
extended from [18] is shown in Figure 1.  

 

 

Figure 1.  Adaptive forecasting methodology. 

The main differences between Armstrong’s process and 
the adaptive process are the use of a decision tree classifier 
in picking the suitable forecasting method and the time series 
is inputted to the classifier progressively in a stream of 
segments. In the original Armstrong’s process, the time 
series is initially studied by identifying the potential 
explanatory variables. Yaffee [19] rendered the series 
stationary in mean, variance, and autocovariance; then next 
step was to manually select a set of forecasting methods from 
a pool of all available methods, probably by domain 
knowledge; tried them out, evaluated their performance. The 
loop repeated by trying the remaining methods if the earlier 
methods were not performing satisfactorily. In our 
methodology this loop is eliminated because the manual 
selection is replaced by a decision tree that instantly finds the 
appropriate method with optimized parameters given the 
statistics of the series segment. 

The operation of the adaptive forecasting is iterating as 
the time series rolls along in segments into the classifier. 
Therefore fresh forecasts are obtained incrementally as time 
elapses based on the latest data segment. According to the 
study in [20], it is known that global trend models may not 
offer the best results. Some researchers advocate that 
forecasting models that tap on local trends can generally 
provide far better descriptions of real data. For instance, 
exponential smoothing algorithms give preference to recent 
trends by exponentially fading off the weights of past factors. 

B. Streaming Operation  

 
Figure 2.  Operational view of adaptive forecasting process – the time 

series is being forecasted in the fashion of sliding-window. 

As shown in Figure 2 above, the adaptive forecasting 
process operates in the form of data streaming that could be 
briefly described in the following sequence of steps: 

1. The time series is arriving in segments each of which 

has a certain length, |τ| = size of observation period. 
The length is a user-defined variable that should be 
calibrated in advance. When the length is too long, 
the forecast will be as good as using a global trend 
and time lags would exist in between each pair of 
successive forecasts. If the length is too short, the 
forecasting accuracy degrades due to insufficient 
amount of past data were used. In regression, some 
suggested the minimum length to be the number of 
cycles equals to one plus the number of coefficients. 

2. With each segment of time series data under 
observation, extract a comprehensive set of salient 
characteristics (to be explained in the next section). 
While most of the characteristics would be used for 
training up the forecasting techniques selector, some 
useful salient features can be used for other data 
analysis such as outlier detection, intra-correlation of 
earthquake events, and inter-correlation between 
earthquakes and other external activities. Some 
examples are shown in Figure 3. 
 

    
     (a)                                                (b) 

Figure 3.  Examples of other analysis by using the statistical characterstics 

of Earthquake time series: (a) Intra-correlation between earthquake events 

that happen at the same time across different locations of the Earth, (b) 

comparison of earthquakes of magnitute > 8 and the number of sun spots. 

55

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-158-8



3. A real-time decision tree classifier which is 
implemented by Hoeffding Tree [21] algorithm 
updates itself with the given salient characteristics 
and the feedback errors from the previous evaluation. 
The decision tree chooses a suitable forecasting 
method automatically upon the arrival of a new data 
segment. The fundamental reason for using 
Hoeffding Tree is its real-time ability in handling 
high-speed data stream; its decision tree model can 
be updated (refreshed) almost instantly whenever a 
piece of fresh data arrives. In contrast, traditional 
decision tree requires reading up the whole set of 
past records plus the update for retraining the model.  

4. Once a forecasting method is chosen, it predicts the 
future points by computing over the observation 

points within |τ|. |υ| is the length of forecast-ahead 
period; once again, it is a predefined variable by user. 
In the example shown in Figure 2 which consists of 
a time series of earthquake frequencies occurred in 

Japan from 1973 to 2010, υ/τ is 0.1 where υ=6 

months for testing and τ=66 months for training. So 
the ratio is approximately 0.1 that is common in data 
mining for training and testing a decision tree. 
Generally it is known that the accuracy will drop as 
the forecast-ahead period increases and large 
observation points are needed for a far-ahead 
prediction. 

Without exhaustive mathematical proofs, streaming 
operation for adaptive forecasting has its advantage over 
traditional forecasting from a global trend by looking at the 
example in Figure 2 intuitively. Represented by a dotted line 
along with the time series, the linear regression trend is 
divided into two distinctive eras. Prior to year 1993 the time 
series, as shown by the real data of earthquake frequencies 
that took place in Japan obtained from USGS, exhibits a 
relatively flat gradient. The frequency of earthquake, 
however, started to climb almost steadily from 1993 onwards. 
Consequently this observation is indicating a fact that the 
trend of increase in earthquake frequency suddenly picked 
up in 1993. And this fact is telling us that the use of trend 
information (as a salient feature) must be adaptive in our 
forecasting method. That is, the trend information should be 
observed periodically and only the most updated information 
akin to local trend should be used for forecasting. As a 
counter-example if the global trend that embraces the series 
from 1973 to 2010 is used for forecasting future events from 
now on, the predicted values would likely be underestimated 
because there was indeed an up shift in the trend in 1993.  

 The adaptive forecasting process ensures the 
characteristics of the time series are always up-to-date, and 
the appropriate forecasting method is used based on the 
current values of the salient characteristics. This 
fundamentally changes the forecasting paradigm or tradition, 
from examining the whole series by manually chosen 
forecasting methods, to a new dynamic and adaptive 
streaming manner that facilities real-time and accurate 
forecast. 

C. Decomposing the Time Series into Salient Features 

Salient characteristics in the context of time series 
forecasting are generally known to be statistical features that 
spur out beyond their nearby data points. Visually they are 
the patterns that are noticeable, outstanding, and prominent 
or can be just easily identified in relative to other parts of the 
time series. Descriptive statistics are usually the mechanisms 
for generating these salient characteristics from the time 
series data. In the adaptive forecasting methodology, 
decomposing the salient features from the time series is a 
task of Obtain Information. The salient features as 
components of a time series can be extracted include but not 
limited to those listed below: 

TABLE I.  SOME USEFUL SALIENT FEATURES FOR OUR MODEL 

Salient features Description 
Level Average value of the time series, (mean, 

variance) 

Trend A reasonably long-term sweep or general 
direction of movement in a time series 

Seasonality Short-term cyclical behavior that can be 
observed several times 

Noise Random variation 

Outlier Outstanding values, known as white noise 

Auto-correlation Cross-correlation of a time series with 

itself, measured in autocovariance 

Stationarity Measure of a stochastic process by its 
change of joint probability distribution. 
Sometimes measured by stationary 
transition probabilities 

Random walk A phenomenon that a time series changes by 
the same probability distribution and the 
movements are independent of each other. 
In this case the past movement of a data 
point fails to predict its future movement. 
The data points take a random and 
unpredictable path. 

 
In addition to those listed above which were used in our 

experiment, there are many other potential salient features 
derived from the time series that may relate to selection of 
the best forecasting method: residuals from previous 
prediction, causal forces, consistent trends, contrary series, 
damped trends, decay forces, decomposition, discontinuities, 
extrapolation, growth forces, inconsistent trends, instabilities, 
opposing forces, regressing forces, reinforcing series, start-
up series, and supporting forces etc. There are also other tests 
and procedures like Anderson Darling normality test, 
information derived from Box pierce test, histogram, and QQ 
plot which shall be exploited in this project. Other factors 
that might influence the accuracy of the final forecasting 
result pertain to the streaming operation of our model, such 

as the choices ofτ, the observation period andυ, the 
prediction period ahead. 

According to [22] it is essential to know the salient 
characteristics of the time series prior to choosing a suitable 
forecasting method, especially for exponential smoothing 
method that largely based on the trend and seasonality of the 
past data points to predict the future ones. In the work [22] it 
was already shown that the exponential smoothing forecasts 
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can become more accurate, if the better the diagnosis of the 
salient characteristics was done on the time series. 

D. Decision Tree As Forecaster Selector 

Extended from Box-Jenkins methodology which finds 
suitable types of autoregressive (AR) and moving average 
(MA) techniques from the salient features of the past values 
of the time series to make forecasts, our model flexibly 
covers a wider range of techniques. The underlying 
assumption for the adaptive model is that the time series is 
composed of a mix of salient features which shall not be 
forecasted very accurately by any single model alone, and 
these salient features change their values across time. 
Therefore a flexible scheme is needed which does not only 
select the best forecaster automatically, the selection scheme 
can have learning ability that dynamically fine-tune the 
‘decision rules’ by itself as time goes. 

In order to support such adaptive forecaster selector, a 
light-weight decision tree based on Chernoff-Hoeffding 
bounds from stream-mining [23] is adopted as a core engine 
for implementation. Readers who want to obtain details 

about the decision tree are referred to [23]. The design of the 
decision tree is quite standard, default parameters are used. 
The main advantage of the so-called light weight decision 
tree is its adaptive ability to readjust its structure (rules as 
tree branches) when input data stream is feeding in. In other 
words, the classifier is able to adapt to the changing salient 
characteristics of the time series as new samples of time 
series are coming in, and it will always choose the relative 
suitable forecasting method for the new samples.  

The rules in the decision trees need to change though at 
the start the basic tree structure is predefined (pre-trained) 
according to the experiences learnt from our experiments. 
The branching conditions at the tree nodes are more or less 
floppy in a sense that the values are numeric and should be 
adjusted by the learning experience in the form of error 
(residual) feedbacks. For example, IF Trend=strong, THEN 
Regression_Model is chosen; How strong then is strong?  
We started the decision tree with default values, and let the 
data and forecast errors do the fine-tuning – the rules will be 
periodically updated by reassessing the performance.  

 
Figure 4.  Decision tree for deciding which forecasting method to use, based on the salient characteristics of the time series that are currently under 

observation.
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As can be seen from the decision tree in Figure 4, the 
very first thing to determine whether the segment of time 
series is predictable in a sense that its past can predict its 
future or not. Such predictability of the series can be 
evaluated by checking the behavior of random walk. A 
random is a series in which changes from one time period to 
the next are completely random. It is a special case of AR(1) 
model in which the slope coefficient is equal to 1. In our 
experiment of Japan earthquake frequency time series, the 
AR(1) model has a slope coefficient of 0.5722 and standard 
error 0.0383 that is more than 10 standard errors away from 
1, signifying that the series is not a random walk. (In contrast 
a financial series of S&P500 monthly closing prices between 
May 1995 and August 2003 has a slope coefficient of 0.985 
and a standard error 0.015 [24]).  

Since the predictability of our earthquake data is 
validated, the decision tree then proceeds to select a suitable 
forecasting method. From experiences, as shown in our 
decision tree, trends, stationarity and seasonality of a series 
are significant factors for choosing a prediction method. In 
general the higher the node or the conditions for the 
branching split is the more decisive power it has in the 
decision making. Nevertheless the example in Figure 4 
shows a decision tree that is constructed with conditions of 
the main salient features. There are other salient factors, 
perhaps slightly less important are not shown but they are 
there to further extend out the tree with more conditions 
down at the branches. 

IV. EXPERIMENTS 

Forecasting experiments are run by using our proposed 
adaptive model and other well-known forecasting methods 
alone, in order to validate the efficacy of the new model. 

The time series data we used were real data originally 
downloaded from USGS archive. The raw data are historical 
records of earthquakes that happened in Japan from January 
1973 to December 2010 of magnitudes of all levels. For the 
sake of general interest, the data are transformed into 
frequency of earthquake per month, with Richter magnitude 
of at least scale 3. The data has a mean frequency 36.09 per 
month, standard deviation 33.22, maximum 482 and 
minimum 8 times per month respectively. By just visually 
inspecting the time series as shown in Figure 2, the data has 
a complex mix of salient characteristics; it is somewhat 
stationary with a slow shift of a rising trend, obviously at the 
pivot year of 1993, and a sharp drop at the end of the year 
2008. A new trend seems to develop from 2008 afterwards, 
and apparently this local trend is quite unknown due to the 
shortage of data between 2008 and current year (2011). The 
seasonality of the time series, as shown in the ACF Plot of 
autocorrelations in Figure 5 has a set of values exceeding the 
UCI and LCI, indicating that there is a substantial extent of 
seasonality though not very strong. The seasonal cycles lack 
of a strong regularity too as seen in the plot. At the decision 
tree this salient characteristics should fall upon Holt-Winter 
model and occasionally into autoregression models as the 
applied methods. The PACF Plot of partial autocorrelations 
suggests that the seasonal data depend on other external 
factors most of the time as well. 

 

Figure 5.  ACF Plot of the earthquake frequency time series 

 
Figure 6.  PACF Plot of the earthquake frequency time series 

Preliminary results were obtained from running the 
proposed adaptive model based on the decision tree specified 
in Figure 4. In general the adaptive model shows its 
advantage in finding a suitable model therefore producing 
supposedly the best available result. As observed from the 
preliminary results from Table 2, the adaptive model can 
achieve a slightly higher accuracy than most of the other 
methods which are applied alone, except when there are 
large fluctuations and sudden change in the patterns. This 
suggests that additional salient features other than those 
shown in Figure 4 in the decision tree ought to be used.  

TABLE II.  COMPARISON OF ADAPTIVE MODEL AND OTHERS ALONE 

 
 
Our adaptive model was probably impaired by the mis-

classification by the trend strength into ARIMA. ARIMA 
was under-performed in time series forecasting in this case 
because the trend was not clearly strong and the trend might 
have badly affected by the outlier. A snapshot of forecasting 
performance as shown in Figure 7 sheds some light on the 
causes. Evidently the forecast by ARIMA under predicted 
most of the peaks especially the large ones – outliers. The 
magnitude of under prediction was almost by half in year 
2000 July where Japan had an exceptional large number of 
earthquakes (482 times). Also the model showed a 
consistently long period of over-prediction throughout year 
2010, because of the sudden and sharp change of trend. 
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V. CONCLUSION AND FUTURE WORKS 

In previous studies combined forecasts have generally 
been shown to outperform the forecast from the single best 
model. It is generally known to many researchers that no 
single forecasting method can always yield the best results. 
Therefore selection of the appropriate forecasting methods 
for different time series has been a popular research topic. 
Most of the works in the past however concentrated on 
defining certain fixed rules or guidelines in choosing the best 
forecasting method. The full time series was often 
considered under this forecaster selector by diagnosing its 
salient characteristics. This automatic selection of 
forecasting methods was extended and pondered on in this 
paper, with the aim of designing an adaptive model that can 
be applied in real-time forecasting while the time series was 
analyzed on the fly. A dynamic decision tree from stream 
mining was applied in the new model which is able to adjust 
the rules as reflected by the structure of decision tree. The 
time series is analyzed in consecutive segments, each of 
which the salient characters are extracted and used for the 
decision tree to decide on the forecasting method. An 
experiment was conducted by taking the live earthquake data 
from Japan. Importantly this particular time series shows a 
good example of a complex series that embrace of different 
salient characteristics at different times; therefore, intuitively 
no single method should be used to forecast the whole time 
series since different forecasting method has its strength and 
weakness for different values of salient characteristics. 

The contribution of this paper is a framework and 
methodology that can be programmed in an automated 
system for continuous forecasting, such as earthquake pre-
warning system, for instance. 
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Figure 7.  Time series plot of earthquake frequncies that took place in Japan from 1973 to 2010; the forecasting method used is ARMIA(1,1,1) 

 

 

Appendix  -  Autoregressive Model Selection Criteria (Source: [25]) 

 

1. If none of the simple autocorrelations is significantly different from zero, the series is essentially a random number or 

white-noise series, which is not amenable to autoregressive modeling. 

 

2. If the simple autocorrelations decrease linearly, passing through zero to become negative, or if the simple 

autocorrelations exhibit a wave-like cyclical pattern, passing through zero several times, the series is not stationary; it 

must be differenced one or more times before it may be modeled with an autoregressive process. 

 

3. If the simple autocorrelations exhibit seasonality; i.e., there are autocorrelation peaks every dozen or so (in monthly data) 

lags, the series is not stationary; it must be differenced with a gap approximately equal to the seasonal interval before 

further modeling. 

 

4. If the simple autocorrelations decrease exponentially but approach zero gradually, while the partial autocorrelations are 

significantly non-zero through some small number of lags beyond which they are not significantly different from zero, 

the series should be modeled with an autoregressive process. 

 

5. If the partial autocorrelations decrease exponentially but approach zero gradually, while the simple autocorrelations are 

significantly non-zero through some small number of lags beyond which they are not significantly different from zero, 

the series should be modeled with a moving average process. 

 

6. If the partial and simple autocorrelations both converge upon zero for successively longer lags, but neither actually 

reaches zero after any particular lag, the series may be modeled by a combination of autoregressive and moving average 

process. 
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