
Issues of Persistence Service Integration in Enterprise

Systems

Ádám Zoltán Végh, Vilmos Szűcs, Miklós Kasza, Vilmos Bilicki

Department of Software Engineering

University of Szeged

Szeged, Hungary

{azvegh,vilo,kaszam,bilickiv}@inf.u-szeged.hu

Abstract—The increasing spread of smart sensors and multi-

functional mobile devices extends the problem space of the

integration issues appearing in information systems. The method

of integrating different data sources (data providers, sensor

devices, data hubs, etc.) highly affects system performance but

development performance has to be considered, as well. One

major topic where automation can help in both areas is

persistence. A well-designed persistence layer service can be used

by a diverse set of various enterprise applications. The

application of the Service Oriented Architecture (SOA) paradigm

can help in engineering such systems. Some methods available in

a SOA-based system approach the problem at high level. This

paper describes a well-maintainable solution at low level, on data

model and data access levels. The main challenge this paper

addresses is: how to increase the efficiency of integration in Java

Enterprise Edition systems in cases when the data model and the

interfaces of data access layer change frequently during

development and even in maintenance phases. Based on real-life

experience gathered during the execution of several telemedicine

projects, our paper presents a solution for publishing a data

model in the form of transferable objects where the developers do

not have to care about the implementation of the assemblers

dealing with transferable objects. The benefits and drawbacks

have been identified with regards to performance and

maintenance costs.

Keywords-integration; persistence; data access; serialization;

maintenance; code generation; Hibernate

I. INTRODUCTION

The heterogeneity of information systems leads to complex

integration processes involving different applications and

services. A major portion of integration problems cover

domain model integration. When the domain entities change

frequently, integration costs can increase significantly. This

variability is definitely typical in the field of telemedicine,

where a diverse set of sensors, data sources and systems have

to work together. This increases the need of a cost-effective

and sustainable model that supports a wide range of services

and devices.

There are several well-known architectural patterns that

help with building simple web applications. Specifically, a

common solution, the Data Access Object (DAO) pattern is

used often for decoupling persistence providers from business

logic. However, it can be hard to define a really usable,

separated persistence service that can be utilized by several

other services – especially in the case of complex enterprise

systems providing integrated services.

One of the popular enterprise platforms, the Java EE

[1][2][3] platform enables the access of databases via Java

Persistence API (JPA [4]) implementations. A typical JPA

implementation serves as an object-relational persistence

mechanism. It also has to utilize proxies that enable the lazy

loading of referenced objects and collections (those not loaded

along with the entities on the owning side of these

relationships). The main problem of this object-relational

persistence mechanism is that the objects managed by the JPA

are not serializable. Neither are the container proxies (e.g.

proxies in Hibernate [5]). Furthermore, these classes could not

be published in any other way either. The proxies describe

typical associations, aggregations, and inheritance, which is

totally useless information after publishing an object, or these

relations could not be resolved in a default way. The

utilization Data Transfer Objects (DTOs [6][7]) can solve

these problems.

A major disadvantage of applying a DTO-based approach

is that it needs manually implemented transformations

between the DTOs and the managed or entity objects. The

implementation of such transformations includes a lot of

repetitive tasks and thus infers the possibility of human errors

and as such, productivity reduction. During the development

of a real commercial system the following question emerges:

how to solve the DTO-related development problems smarter

and faster in a more maintainable way? Hibernate is widely

used in persistence layers, but it does not include any

acceptable toolkits that support proxy serialization.

An additional issue concerns integration middleware

technologies. As almost every single modern enterprise

system employs a middleware product at its heart, these

technologies also affect the maintainability of an integrated

system. Developers usually have to deal with middleware-

related communication rules and interfaces regardless of the

underlying transport mechanism, should it be an Enterprise

Service Bus (ESB) or a web service-based solution (or

anything else dealing with distribution issues). For example, in

the case of an ESB-based system, each invocation is an

assembled ESB message, published through the bus. The

integration solution presented in this paper results in a model

96

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

addressing the aforementioned issues and is based on design

patterns. Metrics-based evaluation (described later in the

paper) points out the productivity and maintenance-related

benefits of the solution.

The paper is organized as follows: Section II gives a

detailed overview of the integration issues in the case of a

typical persistence layer in an enterprise system. Section III

describes the designed model and extensions for an integrated

system. In Section IV a short example of data flow and

transformations is introduced. This covers the automated

persistence layer access. Section V aims at presenting the

comparison and evaluation of the presented model and an

already existing DTO-based solution. Finally, Section VI

contains a summary of the results and a conclusion on the

solution presented in this paper.

II. PERSISTENCE LAYER INTEGRATION ISSUES

A major advantage of Hibernate is the availability of a lazy

initialization mechanism [8]. Using this type of object-

collection handling, developers can save valuable time,

typically for run-time. Hibernate proxies allow late binding

during data access, i.e., the proxies are not resolved unless the

appropriate accessor (getter) methods are called, and thus the

time while the query would run is saved. As soon as the

content of a managed object‟s collection gets needed for some

operations, the proxy cares about running the proper query,

de-serializes the results and returns them as a managed

collection. However, a disadvantage appears when the

managed object is serialized, since the proxies cannot be

resolved. Traditional Hibernate proxies are not serializable.

After serialization and de-serialization of entities, the proxies

are trimmed and the lazy associations and aggregations are

ignored. Afterwards, when these trimmed entities are returned

to the persistence layer, Hibernate detects the ignored

associations, and assumes these aggregations as deleted

references: if cascading is set, the connected objects are

removed and SQL DELETE commands are performed. Figure

1 explains the life cycle of object management. Integration can

work only in the Detached state.

serailzation and
deserialization for

integrationa

serailzation and
deserialization for

integrationa

Transientnew

Persistent

save, update

Detached

evict, close, clear

delete

update, lock

get, load, find,
query, ...

garbage

garbage

Figure 1. Life cycle of a managed object

In an integrated enterprise system, the DTO design pattern

is applied widely in combination with Data Access Objects

(DAOs) to overcome the issues regarding proxy serialization.

The DTO/DAO model allows the sending and receiving of

unmanaged objects and the serialization and de-serialization of

them. The DAO-based data access layer often follows the

System Façade design pattern. The conversion between the

managed objects and the DTOs is provided by DTO

assemblers. The DTO assemblers may follow various design

patterns. DTO definitions are placed in separate classes. A key

problem of the traditional solution is the cost of maintenance.

When a DTO structure changes during development or

maintenance (e.g. changes caused by third-party developers),

maintenance costs increase. A major reason of this increase is

that modifications are propagated across code.

EAR (persistence tier)

High Level DAO
Facade

Low Level DAO
Facade

Operational
Class X1

Operational
Class Xn

Manually
implemented DTO

Assembler

Manually
implemented DTO

Dissassembler

DTO Domain Model

DTO Class D1

DTO Class Dm

Domain Model

Entity Class A1

Entity Class An

Figure 2. A classical type of DTO model

Data Transfer Objects are accessed by external systems

through the DAO layer. Figure 2. explains the DTO

transformation and the DAO: the DAO layer is hidden behind

a System Façade, but this is not crucial in the model. In

enterprise systems, the data provider tier (often the persistence

tier) can publish DAOs even through a JNDI directory, or via

any other suitable mechanisms. The client or the integration

layer is usually responsible for using the DAO, receiving the

DTOs, updating and sending them back to the data provider

layer. As it was mentioned above, on the consumer side

developers also have to deal with the DAO access mechanism

at each invocation targeted at the data access layer. This

mechanism is based on the integration middleware applied in

the system.

III. ARCHITECTURE DESIGN

In this section, our solution is presented that allowed us to

publish DTOs to the client side via DAOs in a way where the

DAO interface definitions are the same as on the data provider

side. Moreover, the DAO implementation automatically

creates a huge part of code for the data consumer side (the

client side). The presented model hides the different

integration layers like ESB, which serialize the objects in

97

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

some manner. The automatic DTO conversion is not our own

development, however the client side DAO generation and the

whole system integration presents a new way.

One of the aforementioned problems is the DTO

assembling and disassembling. In most cases, the assembler

and disassembler codes are written manually and thus the

DTO and the entity stored by JPA or Hibernate are nearly the

same. Writing the assemblers and disassemblers in such a

repetitive way causes code that is hard to maintain. Our

methodology and architectural solution uses the Gilead

framework to solve this maintenance and reimplementation

task. The DTO transformation is executed at the data provider

side where the Hibernate proxies are converted to Gilead

proxies. This transformation solves the lazy proxy problem

because the Gilead proxies are serializable. After the objects

are detached, sent and returned, the proxies are restored by

Gilead. Finally the returned objects are merged to the

managed object instance. Figure 3. represents the high level

layout of the Gilead based system.

Query managed
objects with

relations

Detach managed
objects

Send objects to
client side

Client side
operations

Receive objects
from client side

Restore Hibernate
proxies

Reattach the object

Persist
modifications

Prepare Hibernate
proxies / Convert to

DTO-s

Marked phases can be automatic

Figure 3. Lifecycle of a call

The mechanism of proxy replacement seemed to be

simple: the use of the existing Gilead framework provided a

solution for the problem. This enabled us to reduce the costs

of assemblers and dissemblers written manually by developers

where errors occurred very frequently due to careless

modifications and redundant work. The other problem, the

production of automatized DAOs, seems to be more complex.

For example, a data provider layer can publish DAO interfaces

through remote procedure calls or web services, but the clients

in these cases have to resolve and call the appropriate DAO

method manually and they need manual maintenance as well.

As the DAO interfaces are available on the data consumer side

regardless of the actual type of remote invocation mechanism

used, they can be applied to an automatic service invocation

delegation approach. We applied the following model for the

DAO interface implementation on the client side.

A module based on the Abstract Factory design pattern is

responsible for producing DAOs and for caching them. The

DAO production is carried out with the help of Javassist [9].

The essence of generation is a method expecting a DAO

interface and providing a DAO instance in return. It explores

the DAO interface with the help of the Java Reflection API,

and then – using the Javassist API and the underlying runtime

build technique – it creates the appropriate Java code on the

client side. Afterwards, the Java code is compiled and a new

instance is returned. The factory is responsible for storing this

instance in a cache in order to avoid unnecessary

reconversion, since recompilation appears to be a time

consuming process. This way, it should be performed only

once at the server startup. The developed solution has only

been tested with stateless DAOs like most of the solutions

used in the integration (see Figure 4.).

EAR (web tier)
Domain Model

EAR (persistence tier)

Worker Bean

DAOFactory

Generate Service
DAO

create

Manually
implement

Service DAO

create

Integration layer

ESB Service

JNDI Facade

Server Side DAO
(DAO level

facade)

Operational
Class X1

Operational
Class Xn

Domain Model

Entity Class A1Automatic
domain model
transformation

Entity Class An

Entity Class A1

Entity Class An

Generated Client
Side DAO

return created and
instantiated
Worker DAO

Figure 4. Architecture

By using this approach, we managed to reduce the

redundant reimplementation of interfaces on the client side

significantly and also to detect human errors occurring during

development. The implementation we presented is applied in

two real telemedicine projects: the mid-term DEAK-

Medistance [10] and the long-term ProSeniis [11] projects.

Both projects aim at sensor integration, data collection and

storage. The DEAK-Medistance project has approximately 50

user screens, 65k lines of code and 41 entities. In the ProSeniis

project there are approximately 150 user screens, 170k lines of

code and 155 entities. Basically, the implementation of both

projects can be divided into two parts: first, the solution for

98

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

resolving classical unserializable proxies on the data provider

side has been detected; second, we succeeded in the

automatization of DAO implementation production on the

caller (client) side using DAO interfaces.

IV. FLOW OF AN INVOCATION

Considering a separated persistence service in an ESB-

based, integrated enterprise system, this persistence service

provides a data access layer via Enterprise Java Beans-based

actual DAO instances registered in a JNDI directory provided

by the integration middleware. When a data consumer service

wants to interact with the persistence service, it asks the DAO

factory for an appropriate DAO instance that implements a

specific DAO interface. The factory inspects the methods

defined by the interface with the help of the Java Reflection

API and afterwards it constructs a Java class by extending the

interface and its methods. Each method body assembles an

ESB message with three parameters:

 The first parameter defines the name of the concrete
enterprise DAO bean, which can be automatically
prepared from the name of the interface.

 The second parameter defines the name of the method
that will be invoked.

 Finally, the third parameter holds the parameters of the
invocation.

As the factory returns the generated DAO instance, the

data consumer service can simply invoke any of the methods.

The body of the invoked method builds the ESB message and

passes it to the bus.

usersDAO.getUsers
Generated code calls

the transfer layer

Transfer layer calls the
back-end

beFaced.call(UsersDAO
.class, args)

Lookup UsersDAO local
implementation from

JNDI

Call usersDAO proxy
resolver

Call local
usersDAO.getUsers

return
entityManager.createQ

uery(…)

Figure 5. Flow of an invocation

The bus then transmits the ESB message to the persistence

service, where a Session Façade interface is responsible for

receiving all incoming messages. The receiver looks up the

requested DAO (defined by the first parameter) in its JNDI

directory. Afterwards, it gets a reference for the concrete DAO

instance and then it tries to find the target method based on the

second and third parameters of the incoming message using

reflection again. If the corresponding method is found, the

invocation is delegated to the DAO by passing the parameters

defined in the third argument of the ESB message. The DAO

uses the Gilead framework to clone and merge proxies. The

result is returned in the same way via the bus (Figure 5).

As it can be seen, our approach simplifies the interaction

between data consumer and data provider services in the

system. Moreover, it hides the integration middleware-specific

invocation delegation and thus developers dealing with the

client side code can concentrate on the business logic –

similarly to the method they use while applying the DAO

objects in a simple 3-tier application. This integration model

can be adapted for other types of interactions; it is not limited

to persistence services.

V. EVALUATION OF PERFORMANCE AND

MAINTAINABILITY

Performance and maintainability cannot be defined in a

general way. This fact is true from another aspect as well, as

during system integration a solution that is well maintainable,

general and includes a lot of automatization can mean several

limitations regarding speed and usability. Furthermore, the

model that performed well in theory and in limited-scale

experiments was subject to vertical profiling to make the

measurement of the suspected performance decrease possible

and to be able to compare the performance decrease with the

maintenance advantages.

The experiment was performed on a developer workstation

(Intel Core I5 CPU, 8GB RAM, Java 1.6.0_18). During the

experiment, manual and automatic tests were administered.

Logging was carried out with the Test & Performance Tools

Platform (TPTP) 4.7 profiler; the platform was a JBoss

4.2.2.GA application server instance. TPTP ran as follows: the

TPTP agent ran individually and remotely connected to a

starting JBoss. The monitoring results were visualized with the

help of Eclipse Helios Performance plugin, which was

connected to the separately running TPTP agent.

A. Comparsion of performance

During performance measurement metrics were primarily

assigned to running time. The consumer-producer call time

and the time spent in the generated code were also measured.

A real telemedicine application of the classical DAO and the

latest re-written version of the application which showed the

potentials of novelty presented system were compared.

TABLE I. PERFORMANCE METRICS (SMALLER VALUES ARE BETTER)

Metric Classic DTO model Presented model

CGT 0 ms 727 ms

TCMC 51 ms 56 ms

BTMC 3 ms 10 ms

CCS 15 18

The measured values are presented in Table 1. The
following metrics were used to measure the absolute
performance in a discrete way:

 CGT: Average Time of Code Generation per class –
the time while the code generation runs. Since the
presented model requires the automatic generation of

99

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

proxy classes, this is an additional one-time cost of the
model. This metric is measured in milliseconds.

 TCMC: Total Cost of Method Call on client side.
Average total time spent with calling methods
provided by the service layer and called by the client.
The time spent in the service methods is also included.
This metric is measured in milliseconds.

 BTMC: Base Time of assembling Method Call.
Average total time spent with calling methods
provided by the service layer and called by the client.
The time spent in the service methods is not included.
This metric is measured in milliseconds.

 CCS: Size of the Call Stack. Total size of the stack on
the client while calling a service method. This metric is
measured in stack size.

It can be seen that our solution impacts performance in a
negative way. However, this impact is quite low (some
milliseconds), considering a simple call.

B. Comparsion of maintainability

The notion of maintainability can be divided into two

parts: understandability and modifiability. As a rule of thumb,

these characteristics are usually measured by implementing

static metrics such as NC (Number of Classes), NA (Number

of Attributes), DIT (Depth of Inheritance Tree), etc. Besides

these product metrics it is advisable to measure process

metrics as well. Process measurement involves simple metrics,

such as the number of code lines that should be changed to

provide a specific maintenance operation.

The following metrics were used for measuring

maintainability:

 ISCL: Interface Signature Change by Lines of code.

This metric measures the average number of code

lines that need to be changed after modifying the

signature of an interface method.

 AIL: Addition of new DAO interface. This metric

measures the number of code lines that need to be

changed after the introduction of a new DAO

interface.

 DACL: Change of a domain class attribute set. This

metric measures the average number of code lines

that need to be changed after modifying the attribute

set of a domain entity.

 DCML: Modified lines when adding a new class in

the domain model. This metric measures the number

of code lines that need to be changed when adding a

new class in the domain model (excluding the class

definition itself).

 DACC: Change of the domain class Attribute set.

This metric measures the number of positions in code

that need to be changed after modifying the attribute

set of a DAO class (including the propagation of the

changes).

 DCMC: Count of modifications when adding a new

class in the domain model (except the class definition

itself). This metric measure the number of positions

in code that need to be changed after the introduction

of a new container entity.

TABLE II. MAINTENANCE METRICS (SMALLER VALUES ARE BETTER)

Metric Classic DTO model Presented model

ISCL 8 5

AIL 8 4

DACL 18 6

DCML approx. 2x class size 0

DACC 4 1

DCMC 3 0

As it can be seen in Table II, the measurement revealed that
since code developers does not have to deal with DTO
codebase maintenance, significant time can be saved. This is
true only in cases when the DTO matches a managed object
definition or its subset.

VI. CONCLUSION

The generation of consumer-side DAO implementation

significantly reduces development and maintenance costs. The

presented solution enables various types of simplified service

invocation delegation in the integration layer. If we want to

enable a new integration layer, our only task is to implement

the specific generator and the connector at the data producer

side. We can also state that automated DTO transformation

means some decrease in performance. Tasks done by Gilead

proved to be the bottleneck. As a future development, using

own assemblers and disassemblers instead of Gilead could be

a solution. Regarding maintainability, the code structure and

costs of maintenance have improved to a big extent. Less

maintenance of code means fewer human errors, which is

critical in rapid development cycles. Saving the development

costs of the DTO assemblers can mean lower profit. A bigger

profit occurs in the reusability of the DTOs on the client side.

The generators of the designed DAOs can be reused and

extended for any arbitrary serial integrated layer.

Employing DTOs for divided domain model, the managed

entities can pose certain limitations. The current solution can

be used successfully only in cases where there is no need to

employ DTOs with aggregated data.

ACKNOWLEDGMENT

The work presented in this paper was partly funded by the

National Innovation Office, Hungary (project No. OM-

00191/2008-AALAMSRK „ProSeniis‟), Telenor 19/55 1I066,

Nokia Komarom 19/55 1C117 and GOP-1.1.2-07/1-2008-

0007.

REFERENCES

[1] Beth Stearns, Inderjeet Singh, and Mark Johnson, Designing
enterprise applications with the J2EE platform, 2nd ed.

100

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

[2] “Java 2 Platform, Enterprise Edition (J2EE) Overview.” [Online].

Available: http://java.sun.com/j2ee/overview.html. [Accessed: 31-Mar-2011].
[3] Adam Bien, Real World Java EE Patterns Rethinking Best

Practices. 2009.

[4] Merrick Schincariol, and Michael Keith, Pro JPA 2: Mastering
the Java(TM) Persistence API (Expert’s Voice in Java Technology). 2009.

[5] Christian Bauer, and Gavin King, Hibernate in Action. Manning

Publications Co.
[6] Alexandar Pantaleev, and Atamas Rountev, “Identifying data

transfer objects in EJB applications,” in Proceedings of the 5th International

Workshop on Dynamic Analysis, 2007, p. 5.

[7] Martin Fowler, Analysis Patterns: Reusable Object Models.

Addison-Wesley Professional.
[8] “Chapter 19. Improving performance.” [Online]. Available:

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/performance.html.

[Accessed: 31-Mar-2011].
[9] Shigeru Chiba, “Javassist - A Reection-based Programming

Wizard for Java,” Proceedings of OOPSLA’98, 1998.

[10] “Főoldal | medistance.hu HU.” [Online]. Available:
http://medistance.hu/. [Accessed: 31-Mar-2011].

[11] “ProSeniis.” [Online]. Available: http://www.proseniis.hu.

[Accessed: 31-Mar-2011].

101

PATTERNS 2011 : The Third International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-158-8

