
A Factor Model Capturing Requirements for Generative User Interface Patterns

Stefan Wendler, Danny Ammon, Ilka Philippow, Detlef Streitferdt
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, danny.ammon, ilka.philippow, detlef.streitferdt}@tu-ilmenau.de

Abstract — The lowering of efforts for the adaptation of GUI

dialogs to changing business processes is still a worthwhile

goal. In this context, user interface patterns (UIPs) have been

introduced in the development of user interfaces to increase

both usability and reusability. Originally derived from human

computer interaction patterns, UIPs are generative and thus

have to be formalized. Recent approaches for model-based

GUI development employ UIPs with specific notations. These

UIP concepts have not yet been evaluated on the basis of a

stringent set of criteria. We elaborate detailed requirements

for generative UIPs. The resulting influence factor model is

used to assess recent UIP approaches and identify open issues.

Keywords — user interface patterns; model-based user

interface development; HCI patterns; graphical user interface.

I. INTRODUCTION

A. Motivation

Domain. Nowadays, companies heavily rely on systems
that offer a vast support for the activities defined in business
processes. To serve their purpose effectively, those business
information systems provide graphical interaction dialogs to
various users. Besides the enormous effort to be taken into
the specification of the business processes and related
requirements, there are also considerable high costs involved
in the development of GUI dialogs the user interacts with in
order to process certain activities of the business process. In
addition, those dialogs need to be matched with their
currently assigned workflow derived from the respective
business processes. As business information systems must be
changed over time, the need to keep business processes,
application kernel functions and the GUI, that provides the
dialogs based thereupon, in correspondence [1] has arisen.

Problem. Approaches have been proposed that aim at
raising both efficiency and reuse by applying model- and
pattern-based concepts for the development of GUIs and
dialog structures derived from task models. The different
concepts have not been verified yet. Currently, there is no
detailed set of requirements, which can be used as foundation
to assess the pattern concepts employed for GUI generation.

B. Objectives

We review the state of the art of model-based
development processes employing generative user interface
patterns (UIPs) and present answers to following questions:

• What requirements have to be addressed by a general
definition for generative UIPs applied for GUIs?

• What are the capabilities and limitations of current
generative UIP concepts concerning reusability and
variability?

Our main focus lies on the last question, so we formulate
requirements for a UIP definition on the presentation level.
After we analyze current UIP issues, we apply a customized
Global Analysis [2] to derive the factors, which bear the
great impacts on the definition and application of generative
UIPs. As a result, we continue and detail our previous work
[3][4] on initial requirements associated to generative UIPs.

C. Structure of the Paper

The next section provides a brief overview to GUI
development and UIPs. In Section III, we establish a factor
model that captures major requirements for UIPs. The
model-based development approaches are described in
Section IV and are analyzed on the basis of the factor model.
In Section V, we express our findings and conclusions.

II. RELATED WORK

A. Graphical User Interface Development

GUI architecture patterns. Besides the requirements
and software architecture to be changed harmonically, a new
implementation of dialogs induces high costs as reuse of
existing code is hardly possible. More precisely, the GUI
system may be composed of proven architecture patterns that
enable separation of concerns and reduced dependencies like
the Quasar client architecture [8], but these kinds of patterns
are restricted to non-visual aspects of the GUI like event and
data processing or the communication with a workflow
system. As far as visual and closely associated interaction
design aspects are concerned, the common patterns do not
posses the means to offer the desired aspects of reuse.
Moreover, the usability is crucial for dialogs, as it affects
how quickly users are able to learn to use new features of the
GUI and how efficiently they will perform reoccurring tasks.
Usability also is not covered by architectural patterns.

GUI-generators. Generators have been applied for a
longer period now and could not fill the gap, since they can
only cover dialogs that allow a realization based on fixed
layout and interaction definitions. Besides the visual and
interactive aspect, GUI-generators often were based on
information provided by the domain model, so that task
models or other process definitions could not be sourced for
the generation of dialogs with acceptable usability.

B. User Interface Patterns

To overcome the high efforts and permit higher
reusability along with proven usability, patterns of human
computer interaction (HCI) have been integrated as model
artifacts in model-based development. In that environment
HCI patterns had to be formalized in order to obtain a

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

machine processable format. Called generative patterns by
Vanderdonckt and Simarro [6], a new form of pattern has
emerged based on descriptive HCI patterns. Commonly,
these patterns are named User Interface Patterns (UIPs).

Reusability. UIPs as generative patterns are to be
deployed as reusable entities in GUI development. By
specifying dialog parts abstractly (visual parts and
interaction) as well as parameters for variability, UIPs should
facilitate the reuse and automated generation of GUI dialogs.
Configured accordingly, the UIPs would be instantiated to
target contexts. This way, a GUI system should be compiled
by the selection and combination of chosen UIPs. Key
features of this approach shall be the variable application of
UIPs to any appropriate context and their ability to form
hierarchies of further cascading UIP instances. The latter
could form a context-specific composition of already
specified appearance and behavior qualities, which would be
quantitatively adapted to the context when instantiated.

Issues. The application of UIPs for GUI generation has
successfully been probed by past research
[1][11][14][19][24]. As HCI patterns need to be augmented
for automatic deployment, the main issue of finding a
suitable formalization format, which offers a feasible
definition of generative UIPs, has arisen. Current approaches
propose different UIP concepts combined with tools, which
propagate the instantiation of the abstract UIP entity for
various contexts and thus an increase in reuse. Nevertheless,
reusability is still restricted to a limited set of UIPs, which
can be deployed without having to consider all variability
aspects [3]. The potential variations for view, interaction and
in particular the control aspect are so extensive that they
need to be further detailed by a set of comprehensive criteria.

III. REQUIREMENTS FRAMEWORK

UIP definition. The specification of UIPs is impaired by
a fundamental problem that persists in the lack of a dedicated
definition for this generative artifact. Many sources have
been published on HCI or GUI related patterns, but these
either presented no or did not converge towards a unified
definition. We stick to our drafted definition in [3] and use
the term User Interface Pattern (UIP) that addresses the
generative form ready to be instantiated to a certain GUI
context. So, a UIP is settled in close proximity to architecture
and code artifacts assuming presentation responsibilities.

Approach. To overcome the disunity concerning the
definition and features of UIPs, we develop a system of
requirements that is able to express the conception of UIPs
independently from any employment in modeling
frameworks and tools. We apply the Global Analysis [2], as
requirements for UIPs are rather general. So, we refine them
according to their impact on the generative UIP artifact
definition. The background and an initial factor model have
been developed in [4], which is detailed in the following.

A. Criteria for User Interface Patterns

As outlined in [3], sufficient solutions for pattern-based
GUI development have to meet basic criteria. Firstly, they
must enable reusability in the context of vast variability of
stored patterns. Secondly, facilities must permit to compose
several patterns to form a hierarchy of GUI components - an

attribute that is not common for all kinds of software
patterns. Lastly, the instantiation into varying user interface
paradigms, platforms and types should be possible.

The first two criteria are relevant for our scope and we
will decompose them in our factor model as we progress
towards Section III.E. For now, the factor “Reusability of
UIPs” is defined, which is composed by the three factors
“Structural composition ability”, “Behavioral composition
ability” and “Variability of UIP instances”. The split nested
factors are motivated by the following distinction. A single
UIP may be reused for many contexts and for that purpose,
certain variability concerns have to be met that are covered
in the next section. Besides, a combination of more than one
UIP may be reused. In that case, both the structural and
behavioral definitions should be adaptable to the desired
context. Section III.C treats these composition ability factors.

B. Variability of User Interface Patterns

MVC analogy. If one UIP is variably instantiated,
implementations of given architecture components evolve
and eventually differ in certain aspects. For this reason, the
architectural pattern of model-view-controller (MVC) is used
to describe the UIP adaptability for different contexts [3]. An
UIP adaptation changes the actual view structure, data types
for the view parts and the control serving visual and
application event handling of a certain architecture instance.

Variability factor. The above mentioned variability
concerns affect various contents of an instance of a certain
adaptable UIP. The content is materialized by the two
aspects view and interaction in the factor model. Each sub-
factor of variability is operationalized by an aspect. Besides,
the variability factor influences a second dimension, which
describes the moment in time, when the UIP adaptation takes
place. Thus, the configuration factor details variability.

C. Aspects of User Interface Patterns

Purpose. Originally, we described three aspects of UIPs
to detail our definition in [3]. We pointed out the differences
between a concrete specification of a GUI unit, the
abstracted formalization of a UIP and its instances. Here, we
summarize the aspects to further evolve the factor model.

View. By the stereotype but abstract view of a UIP,
selection, arrangement and types of user interface controls
(UI-Controls) are defined. With its abstract definition the
“view aspect” preserves the applicability of a UIP to various
contexts and should not rely on certain GUI frameworks,
hence a UIP must be able to be transformed to desired
platforms. Through the “view aspect”, UIPs can be
categorized into simple and composite patterns. Simple
UIPs, like a simple search [10], consist of a fixed set of UI-
Controls, while composite UIPs, like an advanced search
[10], contain even other UIPs. Therefore, the “Structural
composition ability” is operationalized by the “view aspect”.
To define the visual element structure of a UIP, a developer
may source both UI-Controls and already defined UIPs.

Interaction. A user always perceives and performs
interactions with instances of a certain UIP in the same way.
Combined with the view, the interaction forms the general
purpose of a UIP and so, both aspects constitute the reusable
entity and distinguish UIPs from mere UI-Control
compositions. With interaction states, data handling and

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

presentation related events are defined by referring to view
contents. Moreover, a UIP may demand for structural view
states that are determined at run-time by user inputs.

Control. Composite UIPs, as defined above, actuate in-
and outputs depending on the defined selection, instantiation,
and configuration of their child UIPs. Sections III.D and
III.E treat how control operationalizes “Behavioral
composition ability” and in this regard details the interaction
of several UIPs in one view structure unit. Depending on the
variability configuration dimension, a dynamic control may
be needed where child UIPs are selected and instantiated at
runtime. The following section covers this case.

Reusability factor. View, interaction and control aspects
operationalize the before-mentioned reusability factor. All
three factors ensure either the composition abilities or
variability of UIPs. The reuse of single UIPs for different
contexts is achieved by abstraction in both the structure of
the view and the dynamics of the interaction as well as
parameters that provide instance-specific information.

D. Architecture Experiments

Architecture. For the GUI architecture, we assume a
structure to be established in analogy to Figure 1, which was
derived from [9] and altered for our scope. Notably is the
distinction of three controllers for presentation, dialog and
task. The PresentationController queries data from technical
GUI Framework objects, receives technical events from
them, adapts the DialogVisuals accordingly and finally
forwards events relevant for the application state to the
DialogController. The responsibility of the latter is to
implement application logic, query data from and send data
to the ApplicationKernel after selection based on the Model
data. Additionally, the DialogController decides on the
lifecycle of the Dialog, as it evaluates the state of the Model
and events received from the View. Acting as a factory, the
DialogConfiguration builds the Dialog composition unit, and
for that purpose, communicates with the TaskController,
which initiates the creation or deletion of dialogs.

The architecture is detailed, since a Dialog can be based
on composite UIPs. A child UIP affects the View component
only, while the superior one triggers DialogController
actions, when new sub-dialogs or data must be loaded. Thus,
the factor model lists presentation and dialog action-binding.
cmp GUI architecture

Dialog

Model

- DialogData

DialogConfiguration

DialogEvent

InputDataQuery

GUI Framework

PresentationEvent

DataSelection

ApplicationKernelService

DialogActivity
DialogCompletion

TaskController

DataUpdate

ViewDefinition

Observer

DomainObject

View

DialogController

PresentationControllerDialogVisuals

DialogResult

«call»

«call»
«call»

«call»

«create»

«create»

«create»

«call»

«call»

«create»

«use»

«use»

«call»

«use»

«use»

Figure 1. GUI architecture reference model

Experiments. We presented two architecture concepts to
implement UIPs specified with UIML (User Interface
Markup Language) in [5]. The main findings of our
experiments were that UIPs supporting the criteria in III.A
could not be formalized as single artifacts with UIML. This
was due to the complex example, which required for a
“control aspect” with dynamic configuration.

The advanced search UIP [3] holds a certain number of
search criteria, each demanding a certain UIP type, e.g., a
price range and a date represent two different search criteria.
The states such a composite UIP can adopt cannot be
enumerated by a static specification as they depend on user
input or another context not known at design-time. Figure 2
illustrates an example of an advanced search UIP instance.

Firstly, the object to be searched is selected and secondly,
attributes are offered for search criteria depending on the
choice. The architecture is affected, as new UIPs and UI-
Controls are instantiated for the DialogVisuals. Additionally,
the PresentationController actions and scope are altered.

In [24] and [25] run-time awareness of UIPs is
mentioned, but not further outlined. As outlined in Section
III.B, respective impacts of UIP configuration were included.
Finally, we discovered two possible workarounds for
composite UIPs, which govern the lifecycle of other sub-
ordinate UIPs and thus demand for the “control aspect”.

UIP context parameters. Firstly, the UIP specification
language should permit parameters essential for an
instantiation to varying contexts. This decoupling of UIPs
from concrete GUI definitions has already been considered
by the model-based approaches, which are assessed in
Section IV. Without such parameters only invariant but most
UIPs simply could not be formalized at design time [4][5].

Virtual user interface. Secondly, UIPs could be split
into several atomic UIPs, which would compose a dialog on
demand of the dynamic control aspect behavior. The atomic
UIPs, being mostly invariant and mainly variable concerning
data types and the number of structure elements, could be
instantiated during run-time by a virtual user interface
architecture [7]. This option would demand for manual
realization or a DSL for DialogController and View creation.

E. Influence Factor Model

The influence factor model continuously has been
supplemented during the previous sections and its final shape
is depicted by Figure 3. The method applied is described in
[4]. We cut-out factors not to be considered here.

UIP definition. The main definition factor is
decomposed by the three aspects derived from Sections III.B
and III.C. These are intended to identify, group and separate
the impacts with respect to architecture responsibilities.

Figure 2. Exemplary advanced search [10] [4]dialog

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

View impacts. The impacts of the “view aspect” are
concentrated on the DialogVisuals component. They are
refined by two factors. “View definition” demands for the
creation of stereotype visual structures composed of UI-
Controls or even UIPs. As these impacts resemble static
elements of a UIP definition, the second factor requests for
parameters to be defined for them. In detail, they need to be
named, enumerated and ordered, arranged in layout and
customized by style in order to enable variability of single
UIP instances.

Interaction impacts. The interaction impacts seem to be
primarily focused on the PresentationController. In fact, the
“Visual element structure states definition” impact depends
on actual View structure composition and so, a point of view.
Hence, the following distinction is made:

Firstly, when UI-Controls are the only components
contained in the visual structure of an individual UIP, several
states may have to be defined, which describe alternative
Views. So, the first impact requires the definition of states a
PresentationController has to ensure. For example, a UIP
may formalize the choice of just two options out of many
available, as it is sketched in Figure 4. Consequently, the
possible states, e.g., activations, deactivations or toggling
collapsible panels [10] of the visual element structure have
to be specified by the UIP. Moreover, the defined view
structure elements need to be bound to presentation related
actions that trigger changes in states or data to be displayed.
The “Presentation action-binding” foresees this binding. In
detail, a certain UI-Control has to be configured to trigger a
change in state of already defined visual elements of the
same scope, e.g., deactivate a delivery address (when it is the
same as billing address), assumed that the toggle button or
checkbox belongs to the same UIP specification unit.

Secondly, superior UIPs of a composition need to specify
an outside view on the sub-ordinate UIPs in order to change
or instantiate new sub-UIPs dynamically. For instance, this is
required when the user triggers the attribute combobox or
buttons on the right hand side of Figure 2, which change
states of criteria rows. Accordingly, when a UIP defines a
composition of UIPs, then the lower situated UIPs constitute
the view structure elements. Therefore, their outside view

states have to be governed by the superior UIP. In this case,
the control related impacts become relevant.

Control impacts. The impacts associated with control
mainly apply to UIP compositions and affect both the
PresentationController and DialogController. Several UIPs
may define the DialogVisuals altogether. In that case the
actions of the PresentationController are scattered among
the individual UIP specifications as each one governs its own
part of View separately. One UIP is to be defined as a
supreme entity to control the other UIPs visual states or
lifecycles. This way, a hierarchical control flow for
presentation is to be established.

The UIP formalization has to enable the combination of
various UIPs with the option to reuse their individual view
state and structure definition. Thus, the encapsulation of
UIPs demands for the autonomy of each UIP unit. As a
consequence, UIPs need to define an interface to report their
changes in state to superior UIPs. For this purpose, UIP
intercommunication events need to be defined that allow for
plugging in UIPs in a flexible way. However, UIPs still need
to be isolated from each other in order to maintain a flexible
composition and exchange options. According to events,
they have to be distinguished as the architecture
differentiates PresentationController and DialogController.
Since the UIPs principally may be combined in any fashion
to build composite UIPs, it is essential that one can define a
differentiated perception for UIP originated events. On the
one hand, one must specify, which UIPs events will trigger a
change in sub-ordinate UIPs view structure. On the other
hand, one has to define the UIP, which provokes application
relevant events that are to be forwarded to the
DialogController. For instance, a button of an online
shopping dialog may trigger to copy billing address data to
delivery address data fields of that dialog. Another button in
a button bar may confirm the entire shopping process, so that
data is validated and delivery address is checked. So, there is
a need for “Dialog action-binding”. The latter could also be
associated to interaction, but we decided that this impact has
a stronger relation to UIP compositions, when the superior
UIP has to filter events from sub-ordinate UIPs and
respectively forward them to the DialogController.

req User Interface Patterns Influence factors

Legend

UIP
definition

View
aspect

Interaction
aspect

Hierarchical control flow for UIP compositions
Control
aspect

Data-binding

Configuration of UIP context at design-timeReusability
of UIPs Variability

of UIP
instances

Structural

composition
ability

Acceptance of
data types

Adaptability
of view
structure

Behavioral

composition
ability

Visual element structure definitionVisual element structure states definition

Intercommunication events definition

Style definition

Layout definition

Encapsulation of UIP artifacts

Dialog action-binding

Configuration of UIP context at run-time

Configuration of UIP
instances

Presentation action-binding

View
definition

View
variability
parameters

Enumeration of elements

Ordering of elements

Naming of elements

Layout placement of elements

Style customization of elements

Influence
factor

Impact

Adaption of presentation control in
correspondence to actual visual structure

dependent
factor

inflicts

impact

nested
factor

operationalized

factor

Figure 3. Influence factors identified for the UIP analysis

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Figure 4. Checkboxes for the choice of two options

IV. EVALUATION OF MODEL-BASED DEVELOPMENT

PROCESSES

Recently, model-based development processes for GUIs
employing UIPs or similar artifacts have been proposed.
Based on available sources, we investigate what generative
UIP concept they have incorporated. Afterwards, we review
the capabilities and limitations of the respective concepts.
More precisely, we consider what impacts of the factor
model in Section III.E are supported or inspired.

A. Annotated Task Models - Queen’s University Kingston

Harmonic evolution. To restrain the disharmonic
evolution of business processes, application kernels and
finally user interfaces, Zhao et al. [1] proposed the
generation of GUI dialogs on the basis of task model
specifications. They applied “usability practices and UI
design principles to guide transformations” in order to ensure
a better usability of generated solutions. So, task activities
were annotated with information about roles, data in- and
output. By parsing the augmented task model and applying
rules, tasks were automatically segmented. For each
segment, windows of a dialog model were derived, so that
tasks handling the same data were kept together. This way
the dialog structure and its transitions were created.

Task patterns. A fixed set of HCI patterns - called task
patterns and based on collections like [10] - was mapped to
specific task type segments on the basis of similar naming
between both. During the transformation phases, a set of
rules was applied for task- and dialog-modeling. For the
presentation model, each occurring data type within the
respective task was mapped to a certain UI-Control. Thus, a
harmonic balance between grouped tasks, stereotype HCI-
pattern assignments and windows with a reduced UI-
Controls was propagated. On this basis, consistency between
changed task models and GUI should be achieved by re-
performing the transformation steps.

Factor support. Analyzing the relations to our factors,
we found out that the only impacts to be mentioned were the
following: For “Visual element structure definition”, the
UIPs were implicitly and strictly assigned by window or
dialog rules according to the information provided in the
mapped task-segment. Only a limited set of “task-patterns”
was introduced so far. A free composition of UIPs was not
possible or even aimed at. In addition, no fancy UI-Controls
like separators, progress bars, sliders etc. were to be included
for view structure definition. Thus, the DialogVisuals were
statically dictated by a limited set of model dependencies.

Concerning “Layout definition”, the general layout
already was determined by the dialog model rules as there
were Editor, Viewer and Dialog windows. Therefore, the
meta-model for presentation was limited to very basic
abstract UI-Controls and did not allow for custom UI-
Controls arrangement like the separation of mandatory from
optional data or a user specific grouping of data.

As far as variability and thus “Configuration of UIP
context at design-time” are affected, the DialogVisuals,
PresentationController and Model (data) were generated on
the basis of GUI-generators. In sum, there hardly was any
variability for the patterns aside from “data-binding” and the
strict automated rules. In this regard, the definition of own
presentation related patterns and usability principles was
considered as future work.

Questions. The formalization of abstract UI-Controls or
task patterns and their instantiation for certain contexts has
not been outlined yet. How the mapping of task-patterns and
tasks is done also remains as a question.

Summary. From our point of view, the approach of
annotated task models combined with a mapping to task-
patterns resembles a pure GUI-generator solution. However,
this generator has much enhanced capabilities compared to
single GUI-generators as it supports a much greater
requirement basis: The task names drive the selection of a
matching task pattern that is composed by certain usability
rules. More important, the process does not need manual
intervention and can be repeated when business processes
have changed. Starting with the task model, the developer is
able to initiate the update for both dialog and presentation
model. Although, the solution promises great automation, it
is not as flexible as the other UIP-based solutions. Its
suitability for a wider range of task types, the customization
of the uniform look & feel and the proposed future work of
integration of own task patterns and UI design principles
should be considered.

B. Patterns in Modeling - University of Rostock

PIC introduction. Forbrig et al. presented their
development environment that employed UIPs in many
consecutive sources. They described an approach also being
based on task-models [11]. Dialog graphs were manually
created with the DiaTask tool performing the steps of
defining views, assigning tasks to those views and finally
creating transitions between views. Then views were
translated to windows for a WIMP paradigm [11] platform
deriving the abstract user interface (AUI). For each
interactive task defined, buttons were created as UI-Controls
of a view within the AUI. The transition of the AUI to CUI
(concrete user interface) was performed by manual
refinement with the XUL-E tool. In this step, buttons from
AUI could be replaced by other UI-Controls or even Pattern
Instance Components (PICs). This way, the abstract
windows with their buttons served as UIP-placeholders for
manual replacement. In this regard, the tool-chain achieved
to maintain the initial connection between UI-Controls and
the task of the original task-model. Both AUI and CUI were
formally described with an enhanced XUL format as the
final output. Hence, PICs drafted an early approach to
formalized HCI patterns, as they only supported a set of five
patterns [12]. Moreover, they allowed for the simultaneous
replacement of more than one button and had task control
data for specific tasks attached, which enabled a more
customized processing of the respective task or domain data.

PIM. Continuing the work on pattern integration into
model-based processes, a new modeling framework was
presented in [13] along with the PIM (Patterns In Modeling)

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

tool. The pattern application areas were expressed as "UI
Multi Model" (task, dialog, presentation and layout). The
PIM was intended to apply and manage patterns for the four
defined models. Mainly, the focus was laid on the task model
and an approach for pattern integration therein. Other models
were not yet supported, but the steps for pattern instantiation
using a wizard were drafted. Firstly, instance structures had
to be specified, describing how often model fragments are
duplicated. Secondly, the variables defined by model
fragments had to be assigned. To express model fragments, a
research into formalization options for the model patterns -
especially presentation and layout - was conducted.

PIC revised. After two years, an overview of earlier
work was provided in [16]. The focus once more lay on task-
patterns to derive dialog navigation structures. It was
outlined that the pattern instantiation process could not be
fully automated. Therefore a “combination of automatisms
and human designer” was propagated. So, a semi-automatic
approach to creation of dialog graphs on the basis of task
models and respective pattern application was introduced.
Thus, the AUI was generated from dialog graphs containing
views as placeholders for UIP integration. For comparison,
the approach by Zhao et al. [1] fully relied on automated
derivation of dialog structures. As before, the CUI was
manually refined by replacement of UI-Controls. XUL-E as
a tool would permit the refinement of view structures within
generated navigation dialogs and their correspondence to the
tasks. Manual customization and instantiation of UIPs was
suggested by relying on PICs as formal HCI pattern
representations, which already resembled context-specific
instances of the respective patterns [17].

Factor support. Although it was proven that the
instantiation of invariant UIPs was possible, this step was
restricted to the replacement pre-determined UI-Controls.
Concerning “Visual element structure definition”, the
presentation model included UIPs implicitly as they were
intended to be changed and adapted manually. For instance,
the content area of each of the wizard dialog windows [11]
had to be customized once more via the replacement
mechanism. The generator created an initial abstract design
like the buttons in the mail client example. Thus, the wizard
pattern was strictly defined and could be adapted only in
limited ranges to the context as the textfields could be
replaced by other PICs or UI-Controls. Additional manual
adjustments were necessary, e.g., to remove the next button
in the last dialog “Apply”. Thus, variability depended on
manual rework. Lastly, not all kinds of UIPs were supported.

In sum, the “Configuration of UIP context at design-
time” relied on the PICs “pre-arranged as components.” [11].
From the wizard-example, we assume that there existed an
explicit dependency to the task information serving
implicitly as UIP-instance parameters. Thus, one could freely
decide on what parameters to be used for particular UIP-
instances, as this was the case for the approach by Zhao et al.

The “Layout definition” was determined by the PICs,
which probably consisted of a strict layout (content area of a
dialog, wizard button bar) and always instantiated the same
button configuration (Prev, Next, Finish).

For “ View variability parameters” the PIM-Tool
approach [13] suggested an instantiation process, which

could have inspired our parameter impacts: The view
structure definition and variable assignments were
introduced. Also, a hierarchical refinement of an entity by
structured patterns concentrated on one of the four models or
a mixed selection of them could be learned from this
approach. Therefore, the following requirements were also
inspired by Forbrig et al.:

The “Hierarchical control flow for UIP compositions”
and the “Dialog action-binding” had been drafted. Based on
published work, we support the assumption, that UIPs must
not interfere with application states since those are to be
determined by tasks. According to the “Intercommunication
events definition” and after following the vision established
by Forbrig et al., one could come to the conclusion that
standard-events were quite relevant to plug-In UIPs for
altering tasks or to allow UIPs for various task-combinations.
After all, the idea of replacement is also important since
UIPs should be exchangeable in dialog placeholders in order
to enable a change in view structure but not in application
workflow. Therefore, UIPs need to be replaceable and
universal in shape and the impact “Encapsulation of UIP
artifacts” may be inspired as well. We vote that the ability to
build a cascade of UIPs is important because artifact details
or their modules and matching project requirements are
hardly the same in different projects. Hence, specific
interpretations and instances are of the essence.

Questions. The main emphasis was put on task modeling
and the application of patterns on that context. How PICs
would be instantiated and applied to contexts is not clearly
outlined. It is also questionable how a PIC was successfully
shaped to be abstract and universally deployable.

Summary. The approach with rich tool support
investigated on the feasibility of “patterns in modeling” [13]
and backed or could have inspired some of our factors
impacts. The PIM-Tool voted for a combination of model-
based and pattern-based approach. This implicated and
required a UIP base model to increase reuse and lessen
efforts for linking and model integration.

Both Zhao and Forbrig et al. followed a similar approach
as they progressed towards the combination of model- and
pattern-based development to ensure cost-effectiveness and
the application of patterns for the sake of good usability.
Forbrig et al. put more emphasis on the pattern aspect. In this
respect, they developed tools and customized formal
languages for the individual models. However, besides tool
support automation could not be increased to the desired
level and manual refinements in interaction with the tools
had to be performed. For instance, task models had to be
shaped to accommodate PICs after the derivation of dialog
graphs. Finally, specific variants of arbitrary UIPs could be
modeled with the tools and thus greater variability could be
achieved compared to Zhao et al.

C. UsiPXML - University of Rostock

Following the former PIM approach, another pattern
application framework for UIPs was presented in [14]. The
models were further elaborated here, as layout and
presentation were intended to refine the AUI and thus enable
the transition to a CUI by instantiation of common solutions
encapsulated by respective patterns. To organize the patterns

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

of all four models, the “User Interface Modeling Pattern
Language” was introduced as a pattern language. The CUI,
where UIP instances were to be integrated next, still needed
manual adaptation work.

Continuing towards formalization of UIPs, they
presented UsiPXML (User Interface Pattern Extensible
Markup Language) as an enhanced UsiXML (USer Interface
eXtensible Markup Language) pattern specification language
for all four models. To provide both context information for
proper usage of a pattern and “implementational
information” [15] for automated processing, UsiPXML
incorporates PLML (Pattern Language Markup Language)
for description and UsiXML as generative part. The PIC
concept of older sources is not mentioned here. In contrast,
the UsiXML enhancements are further elaborated in [15].
The new pattern notation followed the PIM pattern
instantiation steps and thus featured structure attributes,
which would determine how many times (min, max) an
element within the pattern is instantiated. In addition,
variables were incorporated to define mandatory
placeholders for values, which could be governed via
assignments and applied for various purposes. The former
defined how variables would be evaluated. Pattern
references, a third feature, would specify sub-pattern-
relationships for refinement.

However, UsiPXML is no longer mentioned in
subsequent sources again focusing on PICs. Finally, the
goals to be achieved with UsiPXML were relativized in [17]
as they stated PIC “is called instance component, since we
consider the template to be already an instance of the pattern
that is described through this component. We are aware of
the fact that, due to their nature, not all known HCI patterns
can be treated as or translated into an algorithm or a PIC.”

Factor support. For the “Visual element structure
definition” presentation patterns were applied to define view
structures. Concerning UIP compositions, the patterns were
always presented in isolation and never in entirety, so the
real capabilities cannot be judged.

Separate patterns were dedicated to the “Layout
definition” impact. As it was not clearly outlined, where they
could be included in the hierarchy of pattern instances, the
flexibility of the solution cannot be assessed as well.

As far as “View variability parameters” are concerned,
structure attributes as well as variables and assignments were
invented. Those parameters would permit the deactivation of
certain pattern structure parts [15] by “set” assignments.

The “Data-binding” was also realized by the “set”
assignment, so that an implicit mapping of data types to
abstract UI-Controls was possible. This way the developer
did not have to decide for each domain object attribute what
kind of UI-Control or UIP to instantiate in a form.

A hierarchical structure of patterns was employed, so
patterns could be combined via a pattern interface. More
precisely, the variables of higher order patterns could be
passed to the pattern interface of lower patterns in order to
allocate their variable definition. For vast flexibility in
pattern composition ability, such a pattern interface could
have been arranged for potential reusable patterns, but this is
not further mentioned.

The pattern interface, variables and assignment facilities
might have been useful to empower “Hierarchical control
flow for UIP compositions” and the “Encapsulation of UIP
artifacts”, but due to missing examples and language
specifications, these cannot fully be judged. However, the
variables were not standardized for certain pattern types, so
they depend on the individual pattern model fragment and
their evaluation by the assignments. So, a superior UIP needs
to know about implementation details of sub-ordinate UIPs.
That is why the encapsulation eventually might be broken.

Inspired by the realization of the “Unambiguous Format”
[15] pattern, the advanced search criteria rows of Figure 2
could be defined in an abstract manner by UsiPXML, but it
has to be answered how they could be requested during run-
time. Eventually, the realization of “Configuration of UIP
context at run-time” remains unsolved.

Questions. At first we ask, how presentation and layout
patterns are merged in a generated window. Both are “CUI
Model Fragments” [15] and in that source the patterns are
only shown separately but not integrated. As far as UsiXML
is reused here, UsiPXML should have inherited some of its
weaknesses [3][4]. For instance, how could UI-Control types
be platform independently described when UsiXML uses a
strict set of types for UI-Controls? How did UsiPXML allow
for the description of all four 4 models when UsiXML
cannot describe presentation and especially layout models
separately? For a better assessment of these issues, we miss
code examples of UsiPXML.

Summary. This solution may be a great enhancement
concerning the expression ability of generative UIPs. Yet, it
is overshadowed by many open issues concerning impact
details, which have not been presented yet. So, this approach
could not accurately be assessed by us. Moreover, this
approach is limited to UIPs being able to be specified at
design time. A UIP dynamically morphing during run-time
as in Figure 2 most likely cannot be defined with known
UsiPXML facilities. Lastly, the occurrence of sub-patterns
was the only considered relationship so far. “Inter-Model”
[24] patterns have not been considered yet.

D. PaMGIS - University of Augsburg

HCI Pattern language. Engel et al. [20][21][22] state
that current UIP-collections do not reflect the need to
structure the UIPs to certain aspects, which would enable to
select and judge them independently from domain or their
relationships. They express that the abstraction and
organization criteria are not satisfying. Starting with advice,
how to structure a UIP language properly [18], Märtin et al.
gradually advanced to their own concepts for UIP
instantiation. The rules of a global entry point, allowed and
not allowed links within the pattern hierarchy, should guide
the user of the pattern collection, so that he would have to
start with a rather “abstract pattern for the general problem
class” [18] and consequently follow the same abstractions
searching the pattern hierarchy for a solution. It should be
avoided to oversee a potential useful pattern and isolate
individual patterns. The concept was applied in later sources.

PaMGIS. An entirely new modeling architecture was
presented in [19], named “pattern-based modeling and
generation of interactive systems (PaMGIS)” and neglecting

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

the very recent work of PIM, UsiPXML and respective four
pattern types of the University of Rostock. A central pattern
repository would hold patterns for the following modeling
stages. Firstly, an “abstract application model is generated”
(AAM) by interpreting a set of potential input models (task,
user, device, context). Secondly, “a semi-abstract application
model” (SAAM) is generated. During this step, the patterns
might be instantiated. For this purpose, patterns were
composed of both descriptive and generative information. In
detail, the generative part introduced an <automation> XML
tag allowing the parameterization of the respective
<element>, which served as the container and layout unit of
the UIP. The <children> tag referenced child UIPs or UI-
Controls, governed their number, ordering and position in
relation to the parent UIP. This mechanism was based on the
<element> tag and the therein defined attributes of the
respective sub-UIP or UI-Control. The superior UIP could
select from the lower specified attributes.

The approach of PaMGIS was further outlined in [22] by
Engel. He stated that the process was based on the
enhancement of information derived from fully-fledged task-
models and unique pattern models. Patterns would be applied
for both the extended AAM and the SAAM. Furthermore, he
mentioned that the framework contained a repository for UI-
Controls as lowest units in the UIP hierarchy, which would
be mapped to target platforms.

Joined by Forbrig, Engel and Märtin presented further
information about the PaMGIS framework and the DTD
applied for the generative <automation> tag of UIPs in [23].
By example, they outlined the unique way of structuring
UIPs based on [18]. Therein, main categories resembled
technically shaped patterns appropriate for the current GUI
structure element, e.g., a panel or button-bar as sub-patterns.

Factor support. The XML specification defined by the
<automation> DTD is closely related to “Visual element
structure definition”. In general, UIPs are supported as
composites. They always define the inclusion of child
patterns, since even UI-Controls are regarded as patterns.
Their ordering is explicitly determined and constraints are
allowed as well as optionals. However, the composite
patterns only approach is unfavorable, since one cannot
decide on what are composite and what are atomic units of
reuse. For instance, a panel is often to be used as an atomic
unit in Figure 2. The advanced search UIP defines its own
tree of elements or reuses entire UIPs. Not the included panel
should decide on that. Anyway, one cannot use a panel
without children definition in PaMGIS, since this would
result in an empty panel as well as a breach in layout
definition hierarchy. The UIP hierarchy is designed in a way,
that UIP definitions cannot traverse more than one level at
once. So the structure parameters would be limited to a
certain levels scope. Single UIPs were too strictly bound to
the hierarchy, as they always would have to determine about
sub-ordinate UIPs. The leveling would be too strict and one-
dimensional, so that one can only include a certain UIP with
its respective children and not without them. For Figure 2
this would implicate, a specialized set of panels had to be
formalized. Many specialized versions of a panel would have
to be created, because the children hardly would be reusable
in other contexts. In sum, the visual options are detailed, but

high efforts for formalization are needed, as there would be a
high amount of UIPs and branches in hierarchy.

As there is no dedicated layout pattern, “Visual element
structure definition” and “Layout definition” are merged in
UIP definitions. The Layout is governed by the superior UIP,
which refers to parameters provided by the children and
provides values for them. Therefore, layout attributes are
explicitly maintained by children. This may be a drawback
compared to layout patterns used in UsiPXML, hence for
changes in layout each single UIP instance has to be touched.

Concerning “View variability parameters”, there are no
dedicated parameters for the view structure, as each pattern
instance has to be declared explicitly to be included. For
layout, naming and ordering, the respective attributes have to
be assigned with certain values.

Questions. Consequently, each pattern, that reuses
others, needs to define them as children. As Seissler et al.
[24] have found out, the UIP hierarchy may be inflexible or
does not permit all possible combinations of UIPs to form
new UIP compositions. So the UIPs may indeed be very
statically linked among each other. For instance, the panel in
[19] can only be instantiated with the two buttons, since this
pattern has declared them as children. It is questionable
whether for each pattern instance the <automation> has to be
defined over and over, or if one is assisted by a tool. Since
the pattern instance configuration was not described, it is not
clear, how the occurrences of children (min and max) are
configured and how this impacts their order in layout.

 In addition, the concepts for data and action binding
have not been presented yet. Moreover, the intended
realization of control aspect impacts is not clear. This is of
the essence for the fine grained pattern structure and so, each
UIP instance is composite.

Summary. Due to above issues, the variability of this
approach can hardly be assessed. Along with missing
concepts for the control aspect, the generic and fine-grained
UIP categorization approach is arguable and has to be
proved. Both framework and process of PaMGIS were only
drafted by available sources. Therefore, the scope for AAM
and SAAM model generation stages were not outlined as the
application of patterns was only mentioned for the SAAM.

E. Encapsulated UIML - University of Kaiserslautern

Reflection of recent approaches. Seissler et al. shortly
reflect previous approaches and present their rather new
pattern application framework in [24]. Concerning PaMGIS,
they claim, separation of concerns was compromised, since
layout information was implicitly included in the generative
part of <automation> (anchor attribute) and this way, layout
and presentation structure were mixed up. In addition, the
pattern language suggested was “very fine-grained (and
complex)” and thus contradicted the idea that patterns would
cover a broader view on the problem. Regarding UsiPXML,
it is described as “one of the more mature approaches”, but
also has a weak spot, since links between individual patterns
were rated as rather static. Finally, it was implied that UIP
compositions could not be built flexibly.

Process. Within their process, they suggest the “Use
Model” for tasks, “Dialog Model” for the states of view and
finally a “Presentation Model” to express certain interaction

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

objects and their layout. For each model patterns could be
defined. The patterns were classified according to their
relationships on the model layer and to each other. Single
patterns do stand alone; “intra-model” patterns reference
sub-patterns of the same model and “inter-model” patterns
reference patterns of other models and may include both
other kinds. In contrast to UsiPXML, separate notations were
being used for every model. The presentation used UIML
and both held structure (UI-Controls) and layout. Rather than
deriving dialog graphs from tasks, they defined infinite state
machines for dialogs to be interpreted at run-time.

Pattern instantiation. A “generative pattern solution”
consisted of the three parts “Pattern Specification Interface”
(PSI), “Pattern Interface Implementation” (PII) and “Model
Fragments” [24]. The PSI offered instance parameters of two
types, as there were variables and constraints (data type, min,
max and default) to be defined for each model fragment. A
selection acted as a special variable to enable a choice out of
more than one data option. Furthermore, model fragments
constituted the core solution (e.g., UIML for presentation)
and thereby a non-altered notation. The enhancements were
limited to the PSI and PII. The latter is realized via XSLT
and allowed the specification of four basic operations. It put
the parameters to effect on the core part: The structure of a
model fragment might be altered by add, remove and replace
operations. The assign operation passed parameters to the
corresponding model fragment attributes in order to assign
data to defined variables. After selection and instantiation,
patterns were integrated to be finally interpreted.

For future work the tool-chain has to be developed, the
pattern notation is to be tested according to its formalization
capabilities and lastly, a refinement of inter-pattern
relationships is to be sought after.

In a more recent source, Breiner et al. [25] once more
introduce their model framework, but add the conclusion that
HCI patterns are difficult to integrate in model-based
processes, since they missed a “lingua franca or modeling
standard”. They outline the process of pattern formalization
and add that a pattern commonly features both fixed and
adaptable content. In the future, the automation of pattern
instantiation and integration shall be investigated. Another
aspect, aimed at in future, focuses on how to determine and
consider user capabilities during GUI creation at run-time.

Review of criticism. To begin with, we consider their
way of argumentation for criticism on other approaches. In
principle, Seissler et al. do not provide information on
requirements allowing for a comparison with the other
approaches. According to their valuation, UsiXML has least
weaknesses. We wonder, what a direct comparison between
their and the UsiPXML approach would result in.

According to PaMGIS, they regard the mix-up of layout
and presentation patterns as unfavorable. A separation might
be irrelevant, since layout patterns in PaMGIS would always
serve as a container in the final hierarchy. The UsiPXML
separation may eventually be mixed up in the same model as
it seems (both are rooted as “CUI Model Fragment”). It is
arguable, whether layout patterns are an aspect and thus can
be applied almost anywhere at a certain stage in PaMGIS
pattern language. It might be no help keeping layout
separately in this kind of pattern hierarchy. In this respect,

the fine grained structuring of patterns for PaMGIS has been
criticized, too. There might be too many levels of
decomposition, but Märtin and Roski suggested starting to
search in the highest hierarchy in order to preserve all
options. However, from the statements by Seissler et al.
about UsiXML keeping core models encapsulated an indirect
critic about PaMGIS can be uttered: PaMGIS merges model
information to create AAM and subsequently the SAAM.
Thereby, it was not mentioned if and how backwards links,
as Forbrig et al. have propagated, are established.

Factor support. Seissler et al. have drafted their
thoughts on “View variability parameters”. They follow the
idea to incorporate parameters on a very general level, as
those are not categorized as structure, layout related
information. Instead, they define parameters individually and
ad-hoc for each model fragment. This way, parameters are
clearly bound to the core pattern contents and are dependent
on tool algorithms, like this is the case for UsiPXML and
PaMGIS. Using the four operations supported by the PII,
versatile modifications on the model fragment similar to the
capabilities of UIML 4.0 template handling can be achieved.
In addition, they augment the UIML features with
parameters, since they state “PICs might be interpreted as
attributed templates that can be instantiated” [24]. Therefore,
they may have realized all impacts of the “view aspect”.

As far as “Configuration of UIP instances” is concerned,
this may be realized for design time only. They are aware of
the need to configure UIPs at run-time [25] and thus support
the respective impact. Nevertheless, they did not present a
concept, how parameters could be changed at run-time.

Questions. Since Seissler et al. propose the PSI, the
“Encapsulation of UIP artifacts” seem to be realized. As the
parameters were also not standardized in analogy to
UsiXML, this impact finally might not be met. A superior
UIP requires information about the variables roles in the
actual “Model Fragment” and their handling by the PII. In
addition, it was not presented how UIPs may be composed.

Summary. This approach is very promising, but not easy
to valuate, since no full UIP has been presented as working
example. In addition, they fail to argue deeply for thoughts
on the instantiation mechanism and pattern notation. Facing
UsiPXML, their approach seems not to be backed entirely by
their criticism. Despite this, their pattern categories may
trade off, since they are more oriented towards pattern inter-
relationships. However, it is arguable if categories by Märtin
et al. will work in complex examples as well or will prove to
be too atomic for a high usability in pattern composition.
Seissler et al. strive for many goals such as dialog transitions,
presentation model UIML fragments to be interpreted at run-
time and maybe re-configurable at run-time. Up to now, a
comprehensive proof of concept has not been given.

V. CONCLUSION AND FUTURE WORK

Results. We presented an overview of recent approaches
to generative UIP deployment within model-based
development. Different researchers proposed their own
model frameworks and UIP formalization techniques. Our
analysis revealed that they either could not cover every
factor (especially the UIP configuration at run-time) or have
significant issues to be solved. A reason for that may be

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

found in missing criteria to guide the applied concepts and
UIP representations. In our opinion, a sufficient notation for
UIPs has yet to be developed or refined based on available
approaches. Until now, there have been no efforts for
standardization concerning a unified UIP specification. In
contrast, UIML and UsiXML both have emerged as strong
options for GUI specification. Whether they can serve as a
basis to develop a language dedicated to the specification of
generative UIPs, remains an open research question.

Achievements. We refined our earlier work [3][4][5] and
elaborated a detailed requirements model for the analysis of
UIP formalization and instantiation aspects. As we found
strong support or inspiration by the other approaches, the
established factor model can be used for their verification.

Limitations. We did not consider devices, environments
[21] or user skills [25] for UIPs. The categorization of UIPs
[18], their descriptive relationships [20], their mapping to
tasks [16], as well as their instantiation for paradigms
different than WIMP also were not covered.

Future work. We strive to communicate the
requirements for UIPs more deeply and in more detail. Other
researchers involved in UIP related topics may reassess their
aims and capabilities on the basis of the presented factors.
They are sincerely invited to suggest improvements. Our
analysis solely is based on the sources included in references.
A deeper comparison of the approaches could be initiated by
contacting the respective authors to honestly ask for current
tools or UIP notations to be evaluated in a practical study.

REFERENCES

[1] X. Zhao, Y. Zou, J. Hawkins, and B. Madapusi, “A Business-
Process-Driven Approach for Generating E-commerce User
Interfaces,” Proc. 10th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 07),
2007, Springer LNCS 4735, pp. 256-270.

[2] C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture. Boston, Addison-Wesley, 2000.

[3] D. Ammon, S. Wendler, T. Kikova, and I. Philippow,
“Specification of Formalized Software Patterns for the
Development of User Interfaces,” Proc. 7th International
Conference on Software Engineering Advances (ICSEA 12),
Nov. 2012, Xpert Publishing Services, pp. 296-303.

[4] S. Wendler, I. Philippow, “Requirements for a Definition of
generative User Interface Patterns,” Proc. 15th International
Conference on Human-Computer Interaction (HCII 13), July
2013, in press.

[5] S. Wendler, D. Ammon, T. Kikova, and I. Philippow,
“Development of Graphical User Interfaces based on User
Interface Patterns,” Proc. 4th International Conferences on
Pervasive Patterns and Applications (PATTERNS 12), July
2012, Xpert Publishing Services, pp. 57-66.

[6] J. Vanderdonckt and F. M. Simarro, “Generative pattern-
based Design of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 12-19.

[7] E. Denert and J. Siedersleben, “Wie baut man
Informationssysteme? Überlegungen zur
Standardarchitektur,“ Informatik Spektrum, 23(4), Aug. 2000,
Springer, pp. 247-257.

[8] M. Haft, B. Olleck, “Komponentenbasierte Client-
Architektur,” Informatik Spektrum, 30(3), June 2007,
Springer, pp. 143-158.

[9] J. Siedersleben, Moderne Softwarearchitektur - Umsichtig
planen, robust bauen mit Quasar. 1st ed. 2004, corrected
reprint, Heidelberg, dpunkt, 2006.

[10] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com 20.01.2013.

[11] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
Support for an Evolutionary Design Process using Patterns,”
Proc. Workshop: Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[12] R. Rathsack, A. Wolf, and P. Forbrig, “Using HCI-Patterns
with Model-based Generation of Advanced User-Interfaces,”
Proc. MoDELS'06 Workshop on Model Driven Development
of Advanced User Interfaces (MDDAUI 06), Oct. 2006,
CEUR Workshop Proc. Vol-214.

[13] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM Tool:
Support for Pattern-driven and Model-based UI
development,” Proc. 5th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
06), Oct. 2006, Springer LNCS 4385, pp. 82-96.

[14] F. Radeke and P. Forbrig, “Patterns in Task-based Modeling
of User Interfaces,” Proc. 6th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Nov. 2007, Springer LNCS 4849, pp. 184-197.

[15] F. Radeke, “Pattern-driven Model-based User-Interface
Development”, Diploma Thesis in Department of Computer
Science, University of Rostock.

[16] A. Wolff and P. Forbrig, “Deriving User Interfaces from Task
Models,” Proc. Workshop: Model Driven Development of
Advanced User Interfaces (MDDAUI 09), Feb. 2009, CEUR
Workshop Proc. Vol-439.

[17] A. Wolff and P. Forbrig, “Pattern Catalogs using the Pattern
Language Meta Language,” Electronic Communication of the
European Association of Software Science and Technology,
vol. 25, 2010.

[18] C. Märtin and A. Roski, “Structurally Supported Design of
HCI Pattern Languages,” Proc. 12th International Conference
on Human-Computer Interaction (HCII 07), July 2007,
Springer LNCS 4550, pp. 1159-1167.

[19] J. Engel and C. Märtin, “PaMGIS: A Framework for Pattern-
Based Modeling and Generation of Interactive Systems,”
Proc. 13th International Conference on Human-Computer
Interaction (HCII 09), July 2009, Springer LNCS 5610, pp.
826-835.

[20] J. Engel, C. Herdin, and C. Märtin, “Exploiting HCI Pattern
Collections for User Interface Generation,” Proc. 4th
International Conferences on Pervasive Patterns and
Applications (PATTERNS 12), July 2012, Xpert Publishing
Services, pp. 36-44.

[21] J. Engel, C. Märtin, and P. Forbrig, “HCI Patterns as a Means
to Transform Interactive User Interfaces to Diverse Contexts
of Use,” Proc. 14th International Conference on Human-
Computer Interaction (HCII 11), July 2011, Springer LNCS
6761, pp. 204-213.

[22] J. Engel, “A Model- and Pattern-based Approach for
Development of User Interfaces of Interactive Systems”,
EICS 2010 Proc. ACM SIGCHI symposium, June 2010,
ACM, pp. 337-340.

[23] J. Engel, C. Märtin, and P. Forbrig, “Tool-support for Pattern-
based Generation of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 24-27.

[24] M. Seissler, K. Breiner, and G. Meixner, “Towards Pattern-
Driven Engineering of Run-Time Adaptive User Interfaces for
Smart Production Environments,” Proc. 14th International
Conference on Human-Computer Interaction (HCII 11), July
2011, Springer LNCS 6761, pp. 299-308.

[25] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient Generation of Ambient Intelligent User
Interfaces,” Proc. 15th International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Sept. 2011, Springer LNCS
6884, pp. 136-145.

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

