
Three Patterns for Autonomous Robot Control Architecting

Carlos Hernández, Julita Bermejo-Alonso, Ignacio López and Ricardo Sanz
Autonomous Systems Laboratory

Universidad Politécnica de Madrid, Spain
Emails: carlos.hernandez@upm.es, jbermejo@etsii.upm.es, ignacio.lopez@upm.es, Ricardo.Sanz@upm.es

Abstract—Construction of robotic controllers has been usu-
ally done by the instantiation of specific architectural designs.
The ASys design strategy described in this work addresses
the synthesis of custom robot architectures by means of a
requirements-driven application of universal design patterns.
In this paper we present three of these patterns —the Epistemic
Control Loop, the MetaControl and the Deep Model Reflection
patterns— that constitute the core of a pattern language for
a new class of adaptive and robust control architectures for
autonomous robots. A reference architecture for self-aware
autonomous systems is synthesized from these patterns and
demonstrated in the control of an autonomous mobile robot.
The term “autonomous” gains a deeper significance in this
context of reflective, pattern based controllers.

Keywords— Patterns; autonomous systems; robot controllers;
reconfiguration; model-based systems; meta-control.

I. INTRODUCTION

Control architectures for autonomous mobile robots have a
long and heterogeneous history [1]–[3]. In some of these
cases, robot controllers have been built from scratch as ad-
hoc solutions without any underlying systematic software
architecture. The architectural foundation is implicit and the
effort is focused on specific, concrete, needed functional-
ities and component technologies to provide them. These
elementary functionalities are then deployed, integrated and
operated over a minimal integration platform to generate the
robot control system [4].

An architecture-centric approach is strongly needed in
robotics. Focusing on architecture means focusing on the
structural properties of systems that constitute the more per-
vasive and stable properties of them [5]. Controller architec-
ture —the core set of organizational aspects— most critically
determines the capabilities of robots, resilience in particular.
Robot mission-level resilience is to be attained by maximiz-
ing architectural adaptivity from a functional perspective [6].
In this vein, the Autonomous Systems Programme (ASys)
tries to leverage a model-based [7], architecture-centric,
process for autonomous controller construction.

This paper describes some developments in this direction
in the form of reusable design patterns. The paper is
organized as follows: Section II describes the use of design
patterns as an architectural strategy; section III describes the
three target design patterns; section IV describes the refer-
ence architecture generated using these patterns; sections V
and VI contain a roadmap for future work and conclusions.

A. The ASys Research Programme

The ASys Programme [8] is a long term research effort of
very simple purpose: develop domain-neutral technology for
building custom autonomy in any kind of technical system.
In this context, autonomy has a broader meaning that the
regular use of the term in autonomous mobile robots [9].
ASys pursues the identification of core architectural traits
that enable a system to handle any kind of uncertainty,
whether environmental or internal. It is not just a quest
for achieving robust movement planning technologies in
uncertain environments but robust teleonomy for unreliable
systems in uncertain environments. Adaptation is a key issue
in autonomous robotics [10] to enable the coping with en-
vironmental changes and with internal faults. Architectures
enabling dynamic fault-tolerance is an important aspect of
the work presented in this paper.

Views

Model

Metamodel

ICe
Specification

ICe
Documentation

ICe
Design

ICe
Synthesis

ICe
Asset

Manager
ICe

Deployment

Autonomous
System

Model

Metamodel

Engine Engine

Asset Base

OAsys
Ontology

PatternPattern
Pattern

Component

Component
Component

Domain
OntologyDomain

OntologyDomain
Ontology

Requirements

Documentation

ICe
Operation ASys-Vision-02

Figure 1. The ASys model-centric systems engineering process. ICe stands
for Integrated Control Environment.

The mainstream direction of the ASys Programme comes

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

from a simple observation: there exists a class of compe-
tence that may maximize system autonomy: cognition. We
can observe it when technical systems do overcome the
unexpected beyond what was technically planned and built
into them at design time. It is the idiosyncratic competence
of McGyvers or what is shown in the Apollo XIII movie.
Systems can be more adaptive by making them exploit
design knowledge at run-time. The ASys strategy is simple:
build any-level autonomy systems by using cognitive control
loops to make systems that can engineer themselves. A
controller of maximal robustness will be able to redesign
itself while fielded.

We try to generalize and downsize engineer’s capabilities
to the level of atomic, resilient subsystems in all kinds of op-
erational conditions in technical systems [11]. Machines that
deeply know themselves —their structure, their functions,
their missions— will be the mission-level robust machines
we need for the future, according to our vision of self-aware
machines [12].

B. ASys Design Principles

This research into general artificial autonomy is driven
by some fundamental design principles that structure the
research and development of our technologies [13]. Three
of them are of special importance to the work described in
this paper:

• Model-based control: Cognition is the core compe-
tence to develop into robots; a cognitive control loop
is based on the exploitation of explicit models of the
system under control [14].

• Metacontrol: Teleological robustness —the stubborn
prosecution of mission goals— is achieved by means
of control loops handling disturbances. When these can
happen in the controller itself we need metacontrollers
deal with them [15].

• Break the run-time divide: There are design models
that engineers use to build a technical artifact and run-
time models that reflective systems may use during
their operation. Using the same models for both will
break the design/run-time divide and leverage the full
potential of model-driven development [16] at run-time.

These principles are further developed in section III,
where we explain how we have reified them in the three
patterns that are the core content of this paper. The final ob-
jective of this work is the provision of generalized adaptation
mechanisms by means of run-time reflection in advanced,
real-time cognitive architectures.

II. A PATTERN-BASED STRATEGY

The ASys strategy for building autonomous control sys-
tems is the exploitation of reusable assets over architectures
defined by means of design patterns [17] (see Figure 1). This

paper describes the construction and use of three patterns —
assets in the Asset Base— and their use in the synthesis of
an autonomous robot.

A. A Pattern-based Design Approach

A design pattern [18] is a reusable solution to a recurring
problem. Design patterns are usually not complete designs
for whole systems but descriptions of partial designs that
offer a solution template of problem solving strategies that
may be instantiated for concrete problems. In principle,
patterns capture best practices and anti-patterns capture
worst practices: things to do versus things to avoid when
designing or implementing specific applications [19].

The final objective of this work is the creation of a
generative pattern language to support the construction of
intelligent integrated controllers for autonomous systems.

B. A Pattern Schema

Below we briefly describe the different sections of the
pattern schema [20] that has been used in this paper:

• Name: The name of the pattern.
• Aliases: Patterns are usually not new; most of them

have been discovered and used elsewhere, esp. in the
controls domain.

• Example: A use case of the pattern; a possible applica-
tion of the pattern in a real situation.

• Context: Contextual information regarding the potential
application of the pattern.

• Problem: The problem that the pattern tries to solve.
• Solution: The form of the solution that the pattern

provides.
• Structure: An architectural description of the pattern

using roles and relations between roles.
• Dynamics: How system activity happens as sequences

of role activations.
• Related patterns: Other patterns related with this, by

structure, by way of use or because they are applied at
the same time to a system.

• References: Bibliographic references for the pattern.

III. THREE PATTERNS

The focus of this paper are three design patterns that reify
some of the ASys principles for the design of autonomous
systems (see Table I). These patterns have been integrated
in the OM Reference Architecture for the development of
robust controllers for autonomous robots (see Section IV).
Two of the sections are almost identical for the three pat-
terns; they share a common context and are closely related:

Context Development of robust control architectures for
autonomous systems; in the current drive toward increased
complexity and interconnection and with a need of aug-
mented dependability. The design strategy of these systems
has to address not only the problem of the uncertainty of
the environment, but also of the uncertainty arising from

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

TABLE I. THREE ASYS DESIGN PATTERNS

Acronym Name Content
ECL Epistemic

Control Loop
To exploit world knowledge in the perfor-
mance of situated action.

MC MetaControl A controller that has another controller as
control domain.

DMR Deep Model
Reflection To use the system engineering model as

self-representation.

the system itself because of faults or unforeseen, emergent
behaviors resulting from the interplay of their components,
or their connection with other systems [21]. More traditional
approaches such as fault-tolerant control based on redun-
dancy are too expensive and not efficient. The universality of
the problem demands a general approach rather than specific
solutions for certain applications that are difficult to transfer
to other domains.
Related patterns These three patterns can be said to
constitute a micro Pattern Language, sharing a common
context of application and being conceived so as to apply
them jointly for the development of control architectures for
autonomous robots.

The next three sections describe the three patterns using
the schema presented in section II-B.

A. The Epistemic Control Loop Pattern

Name Epistemic Control Loop (ECL).
Aliases RCS node, PEIS loop, OODA loop.
Example The navigation control system of an autonomous
mobile robot.
Problem Sometimes controllers are required to implement
a closed-loop strategy using an explicit model of the plant
—the controlled system, e.g. the mobile robot—, with the
possibility to also incorporate feed-forward action or pre-
dictive control, by providing design scalability to seamlessly
incorporate different algorithms in the same control process.
Solution The Epistemic Control Loop pattern defines a
loop that exploits world knowledge —i.e. a model of the
plant— in the performance of situated action (see Figure 2).
This loop is a variant of Feedback loop pattern in classical
control [17], but in which the sensory input is used to
update an explicit representation of the plant, i.e. the Model,
through a Perception process. This model contains both
the instantaneous state of the plant and more permanent
general knowledge about it. It is the explicitness of this
last static knowledge what differentiates the ECL from other
control patterns. In these other cases, the static knowledge
—i.e. the plant model—, which is application-dependent, is
assumed static, being embedded into the controller together
with the control algorithm, so it is not possible to change
or incorporate an element to the control schema without
entirely re-implementing it. With an explicit model bearing
all the information used in the different elements of the

Cyber

Physical

Plant

Perception

Think

Evaluation

Actuators

Control

Goal

Sensors

Model

Figure 2. The Epistemic Control Loop Pattern structure. Thin arrows show
structural connections between roles, with the arrow head indicating the
direction of the data-flow, whereas thicker dashed arrows show the basic
flow of information that leads to action generation.

control, the ECL design allows for changing the algorithm
of any element of the control, or incorporating a new one,
without modifying the rest.
Structure The ECL pattern proposes an structural sep-
aration of controller roles. The Perception process in ECL
consists of the processing of the available input form the
Sensors to update the estimation of the plant state con-
tained in the Model. The Evaluation process evaluates the
estimated state in relation with the current Goal of the
loop —a generalization of the error signal of classical
feedback control. The Control is responsible for generating
proper action by using the evaluation result, the information
about possible actions contained in the Model, and action-
generation knowledge, for example planning methods. The
action is then sent to the Actuators that execute it. The Think
process include additional reasoning activities operating on
the Model, e.g. to improve the state estimation, together with
any operations that involve the manipulation of knowledge,
such as consolidation or prediction. All application specific
knowledge is contained in the Model. It is accessed and
manipulated by the rest of the processes through standard
interfaces. This can be implemented using the Database
Management System pattern, for example.
Dynamics The ECL defines a cyclic operation in which
each cycle follows the perceive-reason-act sequence, al-
though the Model serves as a decoupling element that pre-
vents the blocking of the operation caused by a failure in any
of the steps. The Perception process in ECL corresponds to
the first step and may include other reasoning operations as
described previously. The Evaluation process then generates
value from the current estimated state in the Model. In the

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

last phase of the loop the Controller produces the most
appropriate action based on the information available.
Related Patterns The ECL pattern is rooted on well
established control patterns: feedback [17], model-based
predictive control [22] or model-based control [23].
References The RCS (Real-time Control System) node
[24] defines similar functions that are required in a real-time
intelligent control unit. The PEIS (Physically Embedded In-
telligent System) loop [25] also considers the aggregation of
distributed control components with different functionalities.
Boyd’s OODA Loop (Observe, Orient, Decide, and Act)
[26] is a concept originally applied to the combat operations
process, often at the strategic level in both the military oper-
ations. It is now also often applied to understand commercial
operations and learning processes.

B. The MetaControl Pattern

Name MetaControl (MC).
Aliases Meta Architecture (HUMANOBS project).
Problem The MetaControl pattern addresses the problem
of designing a control system that is self-aware, i.e. it
understands its mission, in the sense of detecting when its
behavior diverges from its specification; it understands itself,
meaning that it can reason about how its own state realizes a
certain functional design in order to fulfill its mission; and it
can reconfigure itself when required to maintain its behavior
convergent towards its mission fulfillment.
Solution MC proposes a separation of the control system
into two subsystems (see Figure 3): the Domain Subsystem,
which consists of the traditional control subsystem respon-
sible for sensing and acting on the plant so as to achieve the
domain goal given to the system —e.g. move the mobile
robot to a certain location, grab a certain object with a
robotic hand. . . —; and the Metacontrol Subsystem, which is
a control system whose plant is in turn the Domain Subsys-
tem, and whose goal is the system’s mission requirements.
Structure The two subsystems in which the control
system is to be divided operate in different domains. The
Domain Subsystem operates in the application domain, and
could be patterned after any arbitrary control architecture,
for example the navigation architecture proposed in [27]
for a mobile robot. The pattern imposes the following
requirements on the Domain Subsystem: i) its implemen-
tation has to provide a monitoring infrastructure, providing
data at run-time about the processes and elements realizing
the domain control, ii) some redundancy, not necessarily
physical but more interestingly analytical, in the sense of
having alternative designs to realize some functions [28], and
iii) the implementation platform shall include mechanisms
for reconfiguration to exploit that redundancy.
References The separation of the domain control and the
meta-control is at the core of AERA, the architecture for
autonomous agents developed in the HUMANOBS project

Control
System

Plant

Domain
Subsystem

application goal

Metacontrol
Subsystem

requirements

reconfiguration

actionsensing

monitoring

Figure 3. The structure proposed by the MetaControl Pattern.

(Humanoids the Learn Socio-Communicative Skills by Im-
itation, www.humanobs.org). The issue of metacontrol is
also discussed related to reconfiguration of control systems
in [29], and in supervisory control in fault-tolerant systems
[28].

C. The Deep Model Reflection Pattern

Name Deep Model Reflection (DMR).
Problem This pattern addresses the problem of how to
use the engineering model of a control system as a self-
representation, so the system can exploit it at run-time to
adapt its configuration in order to maintain its operation
converging to its goal.
Solution Develop a metamodel capable of explicitly
capturing both i) the static engineering knowledge about
the system’s architecture and functional design, and ii) the
instantaneous state of realization of that design. This Func-
tional Metamodel has to be machine readable to be usable
by a model-based controller. A mapping from the languages
used to design the system to this metamodel is necessary, in
order to generate the run-tim model of the system from the
engineering model of it. Automatic generation is possible if
both conform to a formal metamodel, and a transformation
between both metamodels exists (Figure 4).
References Metamodeling is a core topic in the domain
of software modeling [30]. Functional modeling has been
addressed in many disciplines, for example in the control of
industrial processes [31].

System
Engineering

Run-time
System

Engineering
Model

Run-time
Model

Design Language
(DL)

Functional Metamodel
(FM)

conforms to conforms to

transformation
DL2FM

Figure 4. The roles involved in the Deep Model Reflection Pattern.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

ASys Design
Principles

Design Patterns

ECL

MC

DMR

OM Architecture

OM Metacontroller

Function & Structure
Metamodel

transformation
DL2FM

Engineering
Model

application
control
architecture

Platform

OM MetaInterface

OMJava

Function & Structure
Metamodel

Metacontroller

MetaInterface

OM Architectural FrameworkASys Vision Application Development

Plant

Control System

Metacontrol
Subsystem

Run-time
Model

Domain Subsystem

Figure 5. The methodological path followed in the development of the OM Architecture, with the core assets for ASys resulting from it.

IV. THE OM ARCHITECTURE

The three patterns presented provide partial solutions to
the problem of designing robust control architectures for
autonomous systems. They can be used in the construction of
more complete architectures, as is the case of the Operative
Mind (OM) reference architecture, a complete and general
solution, synthesized by integrating the three patterns and
realizing them in reusable software.

The conceptual and methodological path to OM is de-
picted in Figure 5. From left to right: a principled approach
to robust cognition and self-awareness is captured as a set
of design patterns; they are applied to synthesize the OM
Architecture and build an application independent imple-
mentation as a Java package; it is then used, together with
platform specific available assets, to implement the control
architecture of a mobile robot.

A. OM Architectural Assets

OM offers a set of interrelated engineering assets for the
development of specific control architectures (see Fig. 6):

1) MetaInterface: The application of the MetaControl
pattern to our reference architecture has resulted in an
interface that specifies the contract between the Domain and
Metacontrol Subsystems’ implementations.

2) Metacontroller: The Metacontroller is a refinement
of the MetaControl pattern that specifies the design of the
Metacontrol Subsystem by application of the ECL pattern.
It defines an structure of two nested ECL loops: Compo-
nentsECL realizes a servo-control loop of the configuration
of the Domain Subsystem, to which it is connected for
sensing and acting through the MetaInterface. The Com-
ponentsECL goal is to keep a certain desired configuration,
given by the action of the outer loop, the FunctionalECL,
whose sensory input is the current configuration as estimated
by the ComponentsECL and its goal is the system specifi-
cation. The FunctionalECL evaluates the observed config-
uration by determining how well it realizes the functions
designed to address the application requirements —i.e. the

mission—, which is the goal of the FunctionalECL loop,
and acts by producing a reconfiguration when necessary.
For their operation, both ECL loops rely on a shared model
which captures the engineering knowledge about the domain
subsystem.

3) Function & Structure Metamodel: To design the
knowledge that the OM Metacontroller exploits for control
purposes —i.e. its Model— we have applied the DMR
pattern. This pattern prescribes the explicit use of design-
time models. For that purpose we have used an ontological
approach to modeling [32]: we have compiled all the nec-
essary concepts required for the explicit representation of
the structural and the functional aspects of a system, to later
formalize it in the Function & Structure Metamodel. The
metamodel contains elements to account for the two referred
aspects of an autonomous system:

Structure elements: concepts to represent the configu-
ration of the system in terms of components and their
connections.

Functional elements: concepts that capture the teleology
of the system, in the sense of Lind [31] of representing
the roles the designer intended for the components of
the system to achieve the objectives of the system. These
representations constitute design solutions for the required
functionality.

The metamodel has been specified in UML, and a Plat-
form Specific Model (PSM) has been implemented in Java.

B. Use of OM in an autonomous mobile robot

This section describes the application of the OM Refer-
ence Archiecture to develop the control architecture of a
mobile robot capable of robustly perform standard naviga-
tion tasks.

1) The patrol robot testbed: A patrolling mobile robot
testbed has been used to validate the OM Architecture.
This application was selected because it involved hetero-
geneous components, both hardware and software, and had
a sufficient level of complexity to prove for generality.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Metacontroller : Metacontrol Subsystem

Running control application : Domain Subsystem : Plant

requirements : Goal

: Plant
ComponentsECL
: Controller

FunctionalECL
: Controller

Model

P C

T

E

P C

T E

Engineering
Model

MetaInterface

: reconfiguration
: monitoring

: acting
desired configuration
: Goal

: sensing
configuration
: estimated state

Function &
Structure

Metamodel :
Functional
Metamodel

conforms to

Figure 6. The interplay of the main elements of the OM Architecture Model
in the operation of a metacontroller. Functional and Components loops are
patterned after the ECL (hence including Perception, Think, Evaluate and
Control activities around a Model). The roles that each element plays are
written in italics after colon marks.

The basic use case consists of the robot (a Piooner 2AT8
platform instrumented with a SICK LMS200 laser sensor,
a Kinect and a compass) navigating through an indoor
office environment to sequentially visit a number of given
waypoints. The environment has no dynamic obstacles and
an initial map is provided. Some runtime deviations from
it are possible, e.g. chairs may have moved, in order to
provide for realistic levels of uncertainty. Two scenarios
were envisaged to test the benefits of the application of the
OM Architecture in terms of robustness and autonomy: i) a
temporary failure of the laser driver, ii) a permanent fault
in the laser sensor. In both cases the system should be able
to detect it and reconfigure its organization to adapt to the
current state of affairs, in order to maintain the mission.

2) Platform development: The platform selected to im-
plement the domain control system is ROS [4] for several
reasons: i) its middleware infrastructure provides with mech-
anisms for monitoring and reconfiguration as prescribed by
the MetaControl pattern, ii) its computation model of
nodes that publish and subscribe to message channels or
topics fits in a component-based architecture model, being
thus modelable with our Function & Structure Metamodel;
and iii) there are open source ROS implementations of
components for navigation of mobile robots available.

For the Domain Subsystem of the control architecture we
have used the ROS navigation stack [27], which we have
tuned for our Pioneer mobile platform, and complemented
with other available ROS packages for the robot Kinect
and Laser sensors, and additional ROS necessary for the
patrolling mission.

The metacontroller is implemented using the OMJava

package. It provides a domain independent and multiplat-
form implementation of the OM Architectural Model (see
Figure 5), including a complete implementation of the
Function & Structure Metamodel, the OM Metacontroller,
and a Java specification of the MetaInterface.

In order to integrate the OMJava implementation of the
Metacontroller with the ROS-based navigation control ar-
chitecture, an application-independent ROS implementation
of the MetaInterface has been developed as a set of ROS
nodes. These nodes, together with another one which wraps
the OMJava Metacontroller as a ROS node, constitute a PSM
of the OM Architecture for the ROS platform.

3) Application development and validation: So far we
have described the implementation of: i) a Java library which
provides an implementation of OM Metacontroller (OM-
Java), ii) a ROS PSM of the OM Architecture (OMrosjava),
which includes ready-to-deploy OM-based metacontrol as-
sets for any robot application implemented with ROS.

Thanks to the architectural model-based approach, to im-
plement the concrete testbed it is only necessary to generate
the application model according to the Function & Structure
Metamodel, in order to provide the Metacontroller with
explicit knowledge about the system: i) its mission —core
functionality required—, ii) its structure —its components
and their properties—, and iii) its functional design —
available design solutions that realize the core functionality
through certain configurations of its structure.

Following we briefly describe how the application inde-
pendent OM processes we have developed exploit the afore-
mentioned knowledge in each of the scenarios envisaged:

Scenario 1: the Metacontroller detects the failure of
the laser driver and repairs the component it by re-launching
the software process. Only the ComponentsECL intervenes,
since the solution is achieved at the structure level.

Scenario 2: this time it is not possible to relaunch the
laser driver because the error is due to a permanent fault
in the laser device. the ComponentECL detects this and the
situation scales to the FunctionalECL loop. The functional
failure caused by the unavailability of the laser driver is
assessed, and an alternative configuration that fulfills the
functionality required to maintain the mission is generated.
This configuration makes use of the Kinect sensor instead
of the laser. The new configuration is commanded to the
ComponentsECL, which reconfigures the navigation systems
accordingly. In summary, the robot redesigns its control
architecture using available components.

V. FUTURE WORK

Our current pattern language contains only a small number
of patterns centered on core ASys issues. It is necessary to
complete it with more common, practical patterns to achieve
a full generative pattern language [33].

The current implementation of the ICe —the Integrated
Control Environment— is just a collection of engineering

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

resources atop the Rational Software Development Platform.
Our current effort is to use the Eclipse RCP to create a
specific IDE for the ASys engineering process. There is an
ongoing work in the automation of some of the transfor-
mation processes. For example, concerning the current im-
plementation of the OM Architecture Model, the automatic
transformation from the engineering design language to our
Function & Structure metamodel is still under development.
The MDD transformations necessary to complete the ICe
toolchain are still in early stages.

The Functions & Structure metamodel now only models
basic structural aspects of control systems. It is necessary
to incorporate behavioral aspects to our current metamodel
so the Metacontrol will be able to handle function-centric,
dynamical issues in the Domain Subsystem. It is necessary
to improve the metamodel by including the full ECL and
OASys [34] concepts to further specify functionality. An
specially important ongoing work is the self-closure of the
MC pattern: the application of the MetaControl pattern to
the Metacontrol Subsystem, so it becomes also part of the
Domain Subsystem it controls.

The ambition of ASys is of universality; and hence there
is a need for domain generalization, i.e. the extension
of theoretical concepts and technological assets to other
domains. Current efforts are centered around autonomous
robots and continuous process control systems [11], but
other technological domains are under consideration —e.g.
utilities, telecoms or maintenance systems. Even more, while
the patterns described in this paper are technological designs
for autonomous artifacts, their content may find strong
biological roots in animal cognition [35]. In this sense, the
ASys research programme may have impact not only in how
engineers build autonomous robots, but also in how cognitive
scientists understand the mind [36].

VI. CONCLUSIONS

This work shows a pattern-based approach to the con-
struction of sophisticated, self-aware control systems in
the domain of autonomous robots. The three patterns —
Epistemic Control Loop (ECL), MetaControl (MC), and
Deep Model Reflection (DMR)— offer valid reusable design
assets for the implementation of custom architectures for
autonomous systems.

The development of the testbed application demonstrated
the benefits of following a pattern-based approach in the
implementation of a resilient control architecture for a robot.

The patterns, as instantiated in the OM Architecture, were
easily applicable thanks to the availability of a domain
neutral implementation (OMjava). From it, the production of
the ROS platform-specific model was straightforward, and
only slightly hampered by the lack of a formal Platform
Definition Model for ROS. Considering strictly only the
development of the testbed application, the addition of our
reference architecture produced only a minor extra-effort

when compared with a standard development of the control
architecture for the mobile robot.

The three patterns offered solutions to very different prob-
lems both at design time and runtime, but as the OM Refer-
ence architecture and the OMjava realization demonstrate in
the testbed, they are easily integrable and can successfully
collaborate in generating better system architectures.

The pattern-based, model-centric approach to the con-
struction of autonomous controllers proposed by ASys
can offer possibilities —both for engineering and run-time
operation— that go well beyond current capabilities of intel-
ligent autonomous robots. In this direction, the application
of our OM Architecture, rooted on the three design patterns
described in the paper, has provided the robot with deep run-
time adaptivity based on a functional understanding, hence
demonstrating enhanced robust autonomy through cognitive
self-awareness.

Remember that the ASys programme seeks robust teleon-
omy for unreliable systems in uncertain environments. The
model-based, self-aware adaptivity approach supported by
these patterns departs from conventional robust control ap-
proaches, offering a more open-ended pathway for system
adaptation.

ACKNOWLEDGEMENTS

The authors would like to thank the European Commis-
sion for grant HUMANOBS (Humanoids the Learn Socio-
Communicative Skills by Imitation).

REFERENCES

[1] N. Nilsson, “A mobile automaton: An application of artificial
intelligence techniques,” AI Center, SRI International, 333
Ravenswood Ave, Menlo Park, CA 94025, Tech. Rep. 40,
Mar 1969, sRI Project 7494 IJCAI 1969.

[2] R. A. Brooks, “A robust layered control system for a mobile
robot,” IEEE Journal of Robotics and Automation, vol. 2,
no. 3, 1986, pp. 14–23.

[3] M. Lindstrom, A. Oreback, and H. I. Christensen, “Berra: a
research architecture for service robots,” in IEEE International
Conference on Robotics and Automation, 2000. Proceedings.
ICRA ’00., San Francisco, CA, USA, April 2000, pp. 3278–
3283 vol.4.

[4] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source
robot operating system,” in ICRA Workshop on Open Source
Software, 2009.

[5] M. Shaw and D. Garlan, Software Architecture. An Emerging
Discipline. Upper Saddle River, NJ: Prentice-Hall, 1996.

[6] W. Houkes and P. Vermaas, Technical Functions. On the Use
and Design of Artefacts. Springer, 2010.

[7] J. Miller and J. Mukerji, “MDA guide v1.0.1,” Object Man-
agement Group, Tech. Rep. omg/03-06-01, 2003.

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

[8] R. Sanz and M. Rodrı́guez, “The ASys Vision. Engineering
Any-X autonomous systems,” Universidad Politécnica de
Madrid - Autonomous Systems Laboratory, Technical Report
ASLAB-R-2007-001, 2007.

[9] W. Meeussen, E. Marder-Eppstein, K. Watts, and B. P.
Gerkey, “Long term autonomy in office environments,” in
ICRA 2011 Workshop on Long-term Autonomy, IEEE.
Shanghai, China: IEEE, 05/2011 2011.

[10] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and
M. Balabanovic, “A domain-specific software architecture for
adaptive intelligent systems,” Software Engineering, IEEE
Transactions on, vol. 21, no. 4, Apr 1995, pp. 288–301.

[11] M. Rodriguez and R. Sanz, “Development of integrated
functional-structural models,” in 10th International Sympo-
sium on Process Systems Engineers, Salvador, Brasil, August
16-20 2009, pp. 573–578.

[12] C. Hernández, I. López, and R. Sanz, “The operative mind: a
functional, computational and modelling approach to machine
consciousness,” International Journal of Machine Conscious-
ness, vol. 1, no. 1, June 2009, pp. 83–98.

[13] R. Sanz, I. López, M. Rodrı́guez, and C. Hernández, “Princi-
ples for consciousness in integrated cognitive control,” Neural
Networks, vol. 20, no. 9, 2007, pp. 938–946.

[14] R. C. Conant and W. R. Ashby, “Every good regulator of a
system must be a model of that system,” International Journal
of Systems Science, vol. 1, no. 2, 1970, pp. 89–97.

[15] C. Landauer and K. L. Bellman, “Meta-analysis and reflection
as system development strategies,” in Metainformatics. Inter-
national Symposium MIS 2003, ser. LNCS. Springer-Verlag,
2004, no. 3002, pp. 178–196.

[16] L. Balmelli, D. Brown, M. Cantor, and M. Mott, “Model-
driven systems development,” IBM Systems journal, vol. 45,
no. 3, 2006, pp. 569–585.

[17] R. Sanz and J. Zalewski, “Pattern-based control systems
engineering,” IEEE Control Systems Magazine, vol. 23, no. 3,
June 2003, pp. 43–60.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, ser.
Addison-Wesley Professional Computing Series. New York,
NY: Addison-Wesley Publishing Company, 1995.

[19] J.-M. Perronne, L. Thiry, and B. Thirion, “Architectural
concepts and design patterns for behavior modeling and
integration,” Math. Comput. Simul., vol. 70, no. 5-6, Feb.
2006, pp. 314–329.

[20] R. Sanz, A. Yela, and R. Chinchilla, “A pattern schema for
complex controllers,” Emerging Technologies and Factory
Automation, 2003. Proceedings. ETFA ’03. IEEE Conference,
vol. 2, Sept. 2003, pp. 101–105 vol.2, .

[21] N. G. Leveson, Engineering a Safer World Engineering a
Safer World: Systems Thinking Applied to Safety. The MIT
Press, 2012.

[22] A. Pike, M. Grimble, A. O. M.A. Johnson, and S. Shakoor,
The Control Handbook. CRC Press, 1996, ch. Predictive
Control, pp. 805–814.

[23] P. M. van den Hof, C. Scherer, and P. S. Heuberger, Model-
Based Control: Bridging Rigorous Theory and Advanced
Technology. Springer, 2009.

[24] J. S. Albus and A. J. Barbera, “RCS: A cognitive architec-
ture for intelligent multi-agent systems,” Annual Reviews in
Control, vol. 29, no. 1, 2005, pp. 87–99.

[25] A. Saffiotti, M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh,
J. Rashid, B. Seo, and Y. Cho, “The PEIS-ecology project:
vision and results,” in Proc of the IEEE/RSJ Int Conf on
Intelligent Robots and Systems (IROS), Nice, France, 2008,
pp. 2329–2335.

[26] F. P. Osinga, Science, Strategy and War: The Strategic Theory
of John Boyd. Routledge, 2007.

[27] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and
K. Konolige, “The office marathon: Robust navigation in
an indoor office environment,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on, may 2010,
pp. 300 –307.

[28] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki,
Diagnosis and Fault-Tolerant Control. Springer-Verlag Berlin,
2006.

[29] J. L. de la Mata and M. Rodrı́guez, “Accident prevention
by control system reconfiguration,” Computers & Chemical
Engineering, vol. 34, no. 5, 2010, pp. 846 – 855.

[30] T. Kühne, “Matters of (meta-)modeling,” Software and Sys-
tem Modeling, vol. 5, no. 4, July 2006, pp. 369–385.

[31] M. Lind, “Modeling goals and functions of complex industrial
plants,” Applied Artificial Intelligence, vol. 8, 1994, pp. 259–
283.

[32] J. Bermejo-Alonso, R. Sanz, M. Rodrı́guez, and
C. Hernández, “An ontological framework for autonomous
systems modelling,” International Journal on Advances in
Intelligent Systems, vol. 3, no. 3, 2010, pp. 211–225.

[33] D. Brugali and K. Sycara, “Frameworks and pattern lan-
guages,” ACM Computing Surveys, March 2000.

[34] J. Bermejo-Alonso, “OASys: An ontology for autonomous
systems,” Ph.D. dissertation, Departamento de Automática,
Universidad Politécnica de Madrid, 2010.

[35] C. Hernández, R. Sanz, J. Gómez-Ramirez, L. S. Smith,
A. Hussain, A. Chella, and I. Aleksander, Eds., From Brains
to Systems. Brain-Inspired Cognitive Systems 2010. Springer,
2011.

[36] R. Sanz, “Machines among us: Minds and the engineering of
control systems,” APA Newsletters - Newsletter on Philoso-
phy and Computers, vol. 10, no. 1, 2010, pp. 12–17.

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

