
An Analysis Model for Generative User Interface Patterns

Stefan Wendler, Detlef Streitferdt

Software Systems / Process Informatics Department

Ilmenau University of Technology

Ilmenau, Germany

{stefan.wendler, detlef.streitferdt}@tu-ilmenau.de

Abstract — Graphical user interfaces (GUIs) are a crucial sub-

system of current business information systems. They provide

access for users to application kernel services in

correspondence to business processes. As the processes and

services change dynamically in our days, there is a strong need

to adapt GUIs quickly to the changes. To enable both efficiency

and usability during the adaptation, ongoing research has

suggested to resort to model-based development processes,

which employ patterns and their instantiation for specific GUI

contexts. Those patterns are based on human computer

interaction patterns and need to be formalized for their

automated processing by generator tools. However, current

research is still at the edge to express the concepts for such

generative user interface patterns. The state of the art is not

able to cover crucial factors of those patterns and misses a

standardized format. Continuing our previous work on

requirements for user interface patterns and their aspects, the

aim of this paper is the development of an analysis model,

which is able to express those needs in more detail using a

semi-formal notation. With this step, a detailed description of

generative user interface patterns is achieved, which can be the

basis for the verification of current approaches of model- and

pattern-based GUI development or even a deeper analysis.

Keywords — user interface patterns; model-based user

interface development; HCI patterns; graphical user interface.

I. INTRODUCTION

A. Motivation

Domain. Business information systems of our days are
being maintained to upkeep or raise their effectiveness in
supporting users carrying out operative tasks, which are
demanded by the business processes of the respective
company. Being a layer of a given business information
system, the graphical user interface (GUI) is part of a value
creation chain, as it enables the user to access functional,
data and application flow related components of sub-systems
located lower in hierarchy. Accordingly, the GUI allows the
user to select and initiate functional behavior that processes
data relevant to active tasks. As result, value is being created,
which is meaningful to the sequence of the business process
within the value creation chain. Due to systems are
constantly matched closer to the set of tasks of the business
processes and thus users are facing an increase in task scope
and complexity, the need for well designed and adaptive
GUIs has emerged.

GUI requirements. In this context, a user interface
primarily is required to fulfill both the criteria of
functionality and usability. On the one hand, a GUI has to
reflect the current process definition and thus offer access to

the respective activities in order to provide effective support
for the user. On the other hand, for this support to be
efficient, the non-functional requirement of usability, which
embraces the suitability for the task and learning, as well as a
high degree of self descriptiveness [1], plays an important
role for testing and the acceptance for productive runs.

GUI adaptability. As business processes tend to change
over time, the functional requirements based on them, such
as use cases or task models, may change considerably, too.
With those changes taking place, new requirements, having a
significant impact on the GUI artifacts, are being introduced.
Consequently, this part of the system has to conform to a
high demand on adaptability besides the first release-specific
requirements. Especially standard software systems, which
offer a configurable core of functions to support business
models, like applied in E-Commerce, see a distinctive
demand for adaptive user interfaces [1]. Accordingly, a user
interface of a business information system has to be based on
a software architecture or development process, which
facilitates the transition to new visual designs, dialogs,
interaction designs and flows without causing significant
costs in manpower and time.

Current limitations. Nowadays, the above mentioned
requirements still cannot be accomplished fully by
automation and generative development processes. On the
one hand, available GUI-Generators can only cover certain
stereotype parts of the user interface and may not lead to the
desired quality in usability [1][3]. On the other hand, model-
based development processes, which are able to generate
more sophisticated user interfaces, also cannot support all
variations on interaction and visual designs the changing
business processes may demand for [4]. Finally, concepts
that combine increased reuse and automation in user
interface development and adaptation are being sought of.

User Interface Patterns. Together with other
researchers [1][3][10][11][12][22], we believe that certain
aspects of the GUI can be modeled independently in order to
be composed and instantiated to their varying application
contexts. As evolution and individualism in GUI
implementations generally induce high efforts, an approach
has to be followed, which enables a higher degree of reuse
and hence allows for more common basic parts to be shared
along components. For reuse, the basic layout of a dialog, its
positioning of child elements and navigation flow as well as
reoccurring user interface controls (UI-Controls) and their
data type processing are to be mentioned as candidates for
automated generation. In this context, the occurring
variability needs to be expressed by new artifacts in the
development process chain. The need for a systematic
description of reusable GUI artifacts arose and initially has

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

found its expression in human computer interaction (HCI)
[5][6][7] or, more recently, in user interface patterns (UIPs)
[8][9]. In this regard, UIPs describe the common aspects of a
GUI system in an abstract way and the developers concretize
them with the required parameter information suited for the
context of their instantiation.

UIP conception. The existing work about UIPs applied
in model-based development processes [10][11][12] has laid
down conceptual basics and milestones towards
experimental proofing. However, no dedicated pattern
definition for user interface development [14] has emerged
yet and so, the motivation of the PEICS 2010 workshop still
stands [15].

Factor model. To progress towards a more detailed and
complete UIP conception, we deeply elaborated
requirements with impacts to architecture, formalization and
configuration of UIPs in [4]. A process, which enables the
instantiation of UIPs and their compositions to form a GUI
of high usability and adaptability, altogether, needs such a
clear basis of requirements. However, the factors we have
modeled, reside on a descriptive level that is not favorable to
be directly translated to notations or formats for generative
UIPs.

B. Objectives

The impacts of our factor model in [4] have led us to the
strategy, to specify an analysis model for the UIP aspects and
their various impacts. This model serves as a medium to
close the gap between descriptive requirements of the factor
model and formal notations. With the analysis model, we are
detailing the requirements even more and progress towards a
semi-formal notation for their description. The model is
intended to capture all essential aspects, properties and
required parameters for context-specific application of UIPs.
With this contribution, a first version of the analysis model is
presented.

In this regard, we focus on the UIP representation and not
its mapping or deployment process, since other researchers
have advanced in that area, but still lack a proper UIP
representation. This representation is elaborated here along
with related work, criteria, examples and finally an analysis
model. The following questions shall be answered by our
model:

• What information is needed to describe a UIP as a
generative pattern applicable as a GUI architecture
design unit?

• What elements a formal language has to feature in
order to permit the full specification of such UIPs?

C. Structure of the Paper

The following section provides an overview of the
pattern type to be covered in this work. Additionally, we
summarize the outcomes of our previous work on the
examination of model-based development processes and
requirements related to UIPs. In Section III, the problem
statement is formulated. This is followed by our approach in
Section IV. The elaboration of the analysis model is
presented in Section V. The results of our work are reflected
in Section VI, before we conclude and suggest future work in
Section VII.

II. RELATED WORK

A. Human Computer Interaction Patterns and User

Interface Pattern Definition

To open the discussion of reusable GUI entities, aspects
of patterns related to GUI development are now introduced.
We approach the term “user interface pattern” (UIP), which
will drive the further elaboration of related work. For this
purpose, we ask what the origins for definitions of UIPs in
the context of UI generation are.

HCI pattern ambitions. The early stages of patterns for
user interfaces were determined by the goal to describe
reoccurring problems and feasible solutions for GUI design
offering high usability. Borchers [7] stated that human
computer interaction (HCI) experts had a hard time
communicating their feats in ensuring a good design of a
systems GUI to software engineers. Thus the idea was born
to express good usability via patterns as this was already a
good practice for software architecture design. In this regard,
Van Welie et al. [16] argued that patterns are more useful
than guidelines for GUI design. In addition, they suggested
the term pattern for user interface design along with criteria
how to assess the impact on usability of each pattern.

Research into HCI patterns went on and culminated into
pattern languages such as the one created by Tidwell [17].
Prior to this development, Mahemof and Johnston [5]
outlined a hierarchy of patterns, what already implicated that
there are complex relationships inside HCI pattern
languages.

No unified pattern notation. Some years later,
Hennipman et al. [18] claimed that available HCI pattern
approaches could be improved as there are still obstacles for
their efficient usage. Their analysis of relevant sources
reveals major issues such as the missing guidelines how to
formulate new HCI patterns, integrate them in tools and how
to apply them. The request for a standard pattern
specification template already was formulated by [16] and
[7]. In this regard, Borchers mentions early sources adopting
the pattern notion by Christopher Alexander. Thus, Fincher
finally introduced PLML [19] in [20]. However, the issue of
a missing standardized pattern format still persists [15],
which eventually is detailed by Engel et al. [21]. Therein,
they analyze the shortcomings of current HCI pattern
catalogs and the intended standard notation of PLML.

UIP definition. Vanderdonckt and Simarro [22] separate
two main representations of patterns based on the intended
usage. Descriptive patterns serve a problem description and
solution specification purpose. In contrast, generative
patterns feature a machine readable format as they are to be
processed by tools and in particular GUI generators.

B. Formal Languages for GUI Specification

Now, we ask if there are languages available that permit
the formal specification of GUIs or even UIPs.

In our previous work [1][8], we already went into the
possibilities to express UIPs with the means of mature GUI
specification languages UIML [23] and UsiXML [25]. As
these languages are focused on platform-independent full-
fledged GUI specification and intended to be machine
processed, some of their elements may be candidates to be

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

included in a sophisticated UIP definition model. Both
languages feature common elements to define the visual
layout, interactive behavior, and content of a certain GUI
part. For pattern-specific application UIML and UsiXML
differ in their capabilities: UIML incorporates elements for
template definition and a peer section, which decouples
structures or UI-Controls within the layout from their
technical counterparts. In contrast, UsiXML is based on a
more complex approach, which defines a metamodel
consisting of a model hierarchy and methodology [26]. The
abstract and concrete user interface model may be of
relevance for our objective.

C. Influence Factor Model for User Interface Patterns

Continuing on previous work, we progressed towards an
elaborate influence factor model for UIPs, which is depicted
in Figure 1. Motivated by missing standards and competing
UIP notations inside modeling frameworks, this model was
intended to establish an independent requirements view on
the formalization and instantiation of generative UIPs: We
took our examples and architecture experiments [1], as well
as criteria, aspects and variability concerns [8], and refined
them. The requirements stand close to the profile of current
approaches in research. For details, [4] can be consulted.

The UIP definition to be sought after has to introduce a
pattern conception, which is backed by a limited set of types,
roles, relationships and collaborations among GUI related
specifications and components. Because of the complex
nature of both GUI architectures and specifications, a
restriction and specialization of the entities to be involved in
the development environments for pattern-based GUIs have
to be set. Along with this restraint, the GUI specific kind of
pattern still needs to be abstract in order to enable vast
customization and instantiation to differing contexts. The
major share of the patterns vigor has to be sourced from the
similarity in structural (view aspect) and behavioral
(interaction and control aspect) definition of new GUI
entities.
req Influence factors

UIP
definition

View
aspect

Interaction
aspect

Hierarchical control flow
for UIP compositionsControl

aspect

Data-binding

Configuration of UIP
context at design-time

Reusability
of UIPs

Variability
of UIP
instances

Structural
composition
ability

Acceptance of
data types Adaptability of view

structure

Behavioral
composition
ability

Visual element structure
definition

Visual element
structure states

definition

Intercommunication
events definition

Style definition

Layout definition

Encapsulation of UIP
artifacts

Dialog action-binding

Configuration of UIP
context at run-time

Configuration of
UIP instances

Presentation
action-binding

View
definition

View variability
parameters Enumeration of

elements

Ordering of elements

Naming of elements

Layout placement of
elements

Style customization of
elements

Adaption of presentation control
in correspondence to actual visual
structure

Legend

Influence
factor

Impact

dependent
factor

inflicts
impact

nested
factor

operationalized
factor

Figure 1. Influence factor model for generative UIPs described in [4]

In other words, the pattern definition introduces certain
quality aspects in GUI design, which can be altered
quantitatively, when they are respectively complemented
with necessary structure, layout and style details (view
variability parameters) as well as combined with each other
(behavioral and structural composition abilities). This
commonality ensures that no longer specialized solutions or
manually refined structures, which cannot be covered by
mere UIP instantiation, are applied in the same GUI system
architecture.

D. Model-Based Development Processes involving User

Interface Patterns

The enhancement of model-based development by
generative UIPs already found strong reception. In reference
[4], we presented an overview and assessment of the
approaches of Zhao et al. [1], PIM [27], UsiPXML [10],
PaMGIS [11] and Seissler et al. [12]. For a summary, Table I
TABLE Icompares the above described approaches.

TABLE I. COMPARISON OF APPROACHES FOR MODEL-BASED

DEVELOPMENT EMPLOYING UIPS

Approach
Zhao et al. UsiPXML PaMGIS Seissler et al.

Pattern

types

Task

patterns

based on

[28], set of

window

and dialog

navigation

types

Task,

dialog,

layout and

presentation

Task and

presentation

patterns, fine

grained

hierarchy

based on

Task, dialog

and

presentation

patterns

UIP

formal-

ization

notation

Unknown Enhanced

UsiXML

Unknown,

XML based,

<automation>

tag and DTD

Embedded

UIML

supplemented

by parameter

and XSLT

enhancements

UIP

config-

uration

At design At design At design At design and

run-time

Process

output

Target

code

UsiXML,

M6C

Target code Augmented

UIML to be

interpreted

Not all of the factors’ impacts were supported or inspired

by the approaches. A summary of realized (arrow in a box)
or inspired (single arrow) impacts is given by Figure 2.

Figure 2. Impacts covered by examined approaches

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Since our valuation revealed that there were many open
issues associated with the different approaches, we only
considered the full and no partly or probable realization of an
impact. Notably is that the view aspect was realized by the
most recent approaches. In contrast, the interaction aspect
was only considered for Data-binding. Moreover, the control
aspect was not realized by any approach, but inspired by
PIM. Lastly, the Configuration of UIP instances was
restricted to design-time only, but already inspired by
Seissler et al. in reference [13].

III. PROBLEM STATEMENT

A. UIP Definition

Descriptive UIPs. From our observations concerning
descriptive UIPs, we learned that they are well-understood as
specification elements and supported by the HCI community.
Nevertheless, the research into descriptive HCI patterns has
not yet converged towards a standardization for the structure
and organization of UIPs [15][21].

Generative UIPs. Generative UIPs may be classified as
software patterns and as those they need a formal notation,
and thus, are seldom encountered.

From our point of view, the past work on HCI patterns is
concentrated on the descriptive form. As there is no unified
approach in specification and usage of descriptive HCI
patterns, they can hardly be used to source and abstract
common elements of a generative representation. First and
foremost, descriptive UIP sources may be a useful resource
to assemble dialogs that may act as representative examples
for a certain system or domain. On that basis, requirements
or criteria for UIP formalization can be inductively obtained.
Partly, we revert to this approach and sketch some example
UIP instances in Section IV.B.

As a consequence, there is a large gap concerning the
detailed definition of generative UIPs. Thus, a format for
UIPs has to be found that is at least able to express most
impacts of view and interaction aspect. Filling the gap with
their own UIP concepts and notations, the model-based
approaches of Section II.D are converging concerning the
view aspect, but failed to convey all UIP impacts.

B. Formal GUI Languages and model-based Development

Enhancements. As there is still no dedicated language
for UIP formalization, developers have to revert to existing
GUI specification languages like UIML or UsiXML, which
will be referred as XML languages in the following. As a
result, two factions among the model-based approaches
arose, one using UsiXML and the other applying UIML.
Both languages need enhancements to express UIP related
variability. Accordingly, the approaches incorporated their
own parameter and configuration concepts. In sum, they all
failed to publish enhancements that empower the
specification languages regarding the interaction and control
aspects. Currently, the notations are restricted to the view
aspect mostly.

Generation of XML specifications. The XML
languages have been developed to offer a platform-
independent specification of GUI systems. In this context,
they have been based on a metamodel that is somewhat
similar to common universal object-oriented programming

languages, which cannot handle aspects or traits and thus are
incapable of expressing patterns in their abstract form. The
XML languages clearly fail in the fulfillment of the
reusability, variability and composition ability criteria [8].

However, applying the XML languages for their original
purpose, apart from pattern definition, may play out their
strengths. Accordingly, developers could use them for
concrete GUI definition and final rendering to the desired
platform. To integrate UIPs in this procedure, a generation of
XML language code could be a possible solution to
overcome the inabilities as proposed in [1]. This idea was
already followed either by generation of UsiXML [10] or the
interpretation of UIML [12]. The XML code would hold the
already instantiated UIPs or the required information for
rendering. The benefit would be the possibility to use
existing tools for the XML languages. In addition, a more
important merit would exist in obtaining a concrete user
interface level (CUI) specification [26], and thus, the ability
to be independent from platform specifics.

In any case, a new language or extensions for the XML
languages are to be sought after. Whether UIPs are being
defined concretely in XML or the latter is generated, the
XML languages will be a fundamental part of this solution.
Consequently, the new language must facilitate the
expression of UIP instances in rich XML language
specifications. For that purpose, a unified UIP-model has to
be established, which truly holds all information for the
definition of generative UIPs and parameters for their
transformation to UIP instances or instance compositions
forming a concrete GUI model.

IV. OUR APPROACH

A. Strategy

As mentioned in the objectives, the impacts in reference
[4] resulted in the strategy to develop an analysis model,
which is aimed at further detailing the UIP aspects. We
develop a structural model that is biased towards an
implementation of a dedicated UIP language.

Motivation of an analysis model. Some requirements
such as interaction and control aspects are cross-cutting
concerns and are really hard to achieve for pattern
formalization. Thus, more planning and rationale is required
before we can consider the development of a dedicated
language. We follow the way of traditional modeling of
requirements and ease their transformation to design with an
analysis model. The model is intended to express the domain
terms and concepts with a structure.

With a structural and more detailed model, the tracing of
the influence factor impacts to potential solutions is better
possible than with the pure influence factor model presented
by Figure 1. In the factor model, there exist no separated
entities that are modeled with their attributes and
relationships to reflect a possible solution approach.

Assessment of recent approaches. Although we pointed
out the factor support and issues we could so far discover as
result of our assessment of other available approaches in
reference [4], we also concluded that more details on
examples and the applied notation have to be revealed in
order to refine the assessment. By developing an analysis
model, we seek to overcome the lack of detail and rationale

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

on the design of notations suitable for UIPs. The notation to
be used for modeling is the UML 2.0 class model.

Why do we propose a semi-formal model? For a
technical architecture design or a generative process for
formal UIPs to be verified, a wide range of requirements
emerging from the initial criteria have to be taken into
account, which cannot comprehensively modeled on a
formal basis. In contrast to other researchers directly pushing
towards a formalization of UIPs, we think this intermediate
step is necessary and helpful. In our opinion, a semi-formal
model is more useful to the developer than a formal model in
first place, hence the mental conception about full scale
generative UIPs has to be inspired first. The understanding of
these complex patterns, their aspects and element
relationships is the primary goal that should not be hindered
by formal media, which cannot be imagined easily. A semi-
formal model enables a better understanding than a grammar,
since it may visualize concepts, their structure and relations
depending on the chosen notation.

In sum, the model has to satisfy the information needs of
the developers first, before they can think of how to employ
the available formalization options or even GUI XML
languages to express the requirements residing inside the
model. Primarily, the model has to capture requirements in
way that is easily understandable for human-beings.

Why do we apply the UML 2.0 class model? The UML
class model lies in between the descriptive nature of the
factor impacts and a formal notation. In this regard, a class
model is already inclined towards a formal implementation.
This is the case for class models serving as a design model
for object oriented programming languages. In analogy, our
analysis model may lead to a design for new language
elements for the definition of generative UIPs. The language
to be sought after also should rely on a structural paradigm,
since the GUI implementations form a structure as well.

Moreover, a class model already proved useful for the
expression of design patterns. The paradigm employed
allows us to model abstract data types, their common
attributes as well as their cardinalities and relationships. As
the model entities all reside on an abstract level and do not
describe already instantiated objects, the class model proves
to be suitable for our task. More precisely, the UIP concepts
can be modeled from a point of view where the abstraction
and instantiation are separated. The class model forces the
developer to express his solutions by abstractions that
concentrate the commonalities of later instantiated objects.
As we seek to express UIPs that feature reusable GUI
solution aspects, a class model may provide a proper
notation.

With the class model, we will be probing the modeling of
required information for UIPs. Currently, developing a
particular language or focussing on a certain architecture
experiment seems to be too specific. In contrast, we
investigate how the information of UIPs and their
configuration can be established in general. To sort out
possible options, trace factor impacts on more detailed
granularity and map them to the final solution, the analysis
class model may prove as a valuable asset. Finally, we may
draft a coupling between a UIP, its configuration and GUI
architecture or at least mandatory prerequisites.

B. User Interface Pattern Examples

By reason that we do not want to claim being able to
establish a UIP analysis model applicable for each domain,
we stick to business information systems as mentioned in the
introduction. More precisely, as stated in Section III.A, we
rely on common dialogs for E-Commerce applications as a
basis. In fact, we subsequently derive the analysis model by
focusing both on the factor model in Figure 1 and the
following example dialogs.

Simple search. For an easy example, we start with a
dialog that has the “Search Box” [28] pattern instantiated.
The simple search illustrated in Figure 3 is mainly composed
by a single panel (ContentPanel), which defines a
GridBagLayout as seen in the upper part of Figure 3. The
UI-Controls are fixed and aligned in respective fashion. For
variability, only the concrete object data types need to be
bound to the combobox and textfield. In fact, this kind of
UIP is mainly invariant.

Advanced search. The next example shall be more
complicated and thus, demand for every aspect described
within the factor model. We decided for an “Advanced
Search” [28] pattern, which alters its visuals and interaction
options depending on user input.

Our example, depicted in Figure 4, mainly consists of
two panels for layout definition as shown on the upper half.
The panel RootPanel defines a GridBagLayout consisting of
three cells (grey borders). Located in the center of this
container, the SearchCriteriaPanel defines a layout of
several rows each containing on cell (solid black borders).
Additionally, the latter may grow or shrink in height to
accommodate or discard search criteria lines to fit inside the
container. Lastly, the SearchCriterionPanel (dashed borders)
defines a layout appropriate for individual search criterions.

The usage of this dialog is as follows: Firstly, the user
selects an object to be searched from the “Type of Object”
combobox. Secondly, he chooses an attribute from the
combobox inside the SearchCriteriaPanel. Accordingly, the
UIP dynamically has to instantiate new sub-UIPs, which
resemble the single search criteria rows. For each datatype, a
pre-defined UIP, which is similar in shape to the
SearchCriterionPanel, is assumed to be available. In the
example, the datatypes String, price, and week are
considered. With the buttons on the right hand side, the user
may add or drop new search criteria rows and so the view
aspect will change.

The variability is limited to the object types and their
attributes to be searched with this UIP. Controller related
aspects have to be adapted based on the UIP definition.

Figure 3. Simple search UIP example layout and dialog

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Figure 4. Advanced search UIP example layout and dialog

V. THE ANALYSIS MODEL

In this section, we develop the proposed analysis model.
At first, we review each UIP aspect and its associated
impacts in order to elaborate the decisions in design of the
new model. Afterwards we present the structure of the model
and finally apply the model to both examples introduced in
Section IV.B. The terms in italics refer to respective analysis
model elements.

A. Analysis Model Bias

On principle, there are two options on how to bias the
model. Firstly, the model could be biased towards the
software architecture and thus employ proven design patterns
in its structures. This option would be rather suitable for
generators and the further automated processing of the
model, but it would be tedious to translate it back to the UIP
requirements for the developers. In addition, the formal
XML GUI languages (Section II.B) were not designed to
accommodate architectural knowledge.

Secondly, the analysis model may be biased towards
requirements and thus acting as a traditional analysis model,
which captures and visualizes requirements. This option
would be rather easy for the developers to understand, but
would be costly to be translated to formal languages and
generators. However, the translation to the XML languages
is only a theoretical aspect, since generative UIPs cannot be
expressed by their facilities as discussed in Section III.B.
Eventually, we decided for the latter option.

B. General Rationale

Separation of definition and instances. A fundamental
decision was the separation of elements or features that may
be available in a UIP definition and the several element
instances that may appear in a particular UIP instance for a
certain context. In other words, we divided the UIP analysis
model into two parts. One part holds the definition and
reoccurring features (class names in black). The other part
allows the description of instance information (class names
in white).

 UIP configuration. Following this approach, the main
class UserInterfacePattern takes part in relationships that
mostly focus on definition purposes, but also is connected to
UIPConfiguration, which enables the description of
particular UIP instances of the respective kind. The
information used for pattern definition purposes will be
covered in the following sub-sections. The configuration of
UIP instances further branches into Defaults and
Parameters. Both classes resemble containers that hold the
UIControl instances, which are declared as
UIControlConfigurations, for a particular UIP instance.

The Defaults are intended to omit stereotype
configurations of default UIControl instances, which
commonly appear in most contexts and shall not be defined
redundantly. Concerning the example dialogs, the basic or
invariant UIControls needed for user understanding and
interaction like the labels, textfield and combobox of the
simple search should be defined as Defaults, as there is
hardly variability. This way, already established
configurations may partly be reused among individual UIP
instances. That means a UIP may contain pre-configured
elements and parameters to avoid repetition. Later on, this
facility will become useful for the dynamic adaptation of a
UIP instance at run-time.

Both UIPConfiguration and UIControlConfiguration are
primarily used for the “Configuration at design-time” impact
and thus contain the declarations a developer may define in
interaction with an “instantiation wizard” [10]. The
configuration of UserInterfacePatterns and UIControls has
to be separated, since both offer different sets of attributes,
and more important, impact the GUI on different levels of
abstraction or scope.

C. View Aspect Design

View definition. To begin with “View definition”, this
factor defines the UIControls or UserInterfacePatterns to be
generally contained in a UIP specification unit as visual
components. Both resemble a ViewStructureElement, which
has a unique ID as identifier inside the pattern used by
UIPConfiguration and UIControlConfiguration to reference
the respective element. UIControl is a classifier for the
various visual components or widgets a GUI framework may
possess as types.

A UIP is always composed of a ViewStructureElement
set and thus may build a varying hierarchical structure of
those graphical elements. However, ViewStructure only
holds each ViewStructureElement to be available to build
instances once. The resulting element structure of a
particular UIP instance is not described by ViewStructure.
Instead, this is the responsibility of the configuration classes.
The ViewStructure only defines what elements are generally
available for the particular UIP. Based on that decision, the
ViewStructureElements later may be exchanged without
altering the already defined configurations.

For each UIControl of the resulting ViewStructure, style
and general layout have to be defined. The style impact is not
detailed here, since we have not came to a result in this
regard and focused on the other impacts. For the sake of
uniform views and maintaining corporate design, style
information may be governed globally and locally by each

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

individual UIPConfiguration. In addition, there may be
constraints for each element, which determine its allowed
minimum and maximum occurrences.

Layout rationale. With respect to “Layout definition”
impact, we ask if there is a need for dedicated layout-patterns
or if the distinction between primitives (UIControl) and
composites (UserInterfacePattern) is adequate.

Referring to UsiPXML [11], layout patterns can be
defined separated from presentation patterns. How they are
integrated at various stages in the hierarchy, and more
important, how they can be handled dynamically at run-time,
remains an open issue, as there were no detailed examples
for pattern composition and specification code given.

In addition, it is arguable whether a layout is assigned
separately to a paralleled UIP composition or if each UIP
models layout partly but explicitly. Partly means that UIPs
need to define attributes for the number of rows and columns
of a grid, their relative width and height, as well as the
alignment. A visual impression of the abstract layout
definition expressed by UIPs is depicted in the upper parts of
Figure 3 and Figure 4. We decided to model this information
by UIPs, as for advanced search, the layout needs to be re-
configured dynamically with respect to SearchCriteriaPanel.
This panel may grow and shrink in row numbers.

Layout definition. Inspired by our examples, we treat
the layout container as a UIP, and thus, a layout pattern is
already merged inside. So, the above mentioned layout
definition parameters have to be associated to each ID of a
UIP-type class, since it is acting as a superior container.
Consequently, the advanced search dialog consists of three
UIPs designated as containers in Figure 4. Translated to GUI
frameworks, this implicates that each UIP will be treated as a
panel or even window frame with a certain LayoutManager
attached. We reason our approach with the fact that every
dialog at some stage needs layout containers and these are
eventually to be mapped to peers in the GUI framework. The
detailed parameters for layout, such as padding, orientation
and size policies, may be governed globally.

View variability parameters. To configure parameters
for an element of the ViewStructure, regardless of what type,
the respective ID of that element is used as a reference.

The UIControlConfigurations assigned to UIPs influence
the instantiated unit in a global way. So, for the view aspect
the general layout of the instances ViewStructure is declared
by LayoutManager, which decides on the actual grid, for
example. This way, the layout and orientation of UIP
instances may be altered, but have to be declared explicitly
for each UIPConfiguration.

 As the elements defined by a UIP are abstract, the
reference to the ID acts in analogy to the class concept for
object-orientation. In fact, the element occurrence is
determined by the number of respective configurations. For
the individual element instances, one or many
UIControlConfigurations can be declared to specify their
characteristics. More precisely, as view aspect parameters we
arranged for Name, Caption, and Order inside a layout grid
cell and Style of each element. Some of these parameters are
even optional. With LayoutPosition the position of the
element with respect to the declared LayoutManager can be
defined.

D. Interaction Aspect Design

In the factor model, the interaction aspect was not
separated between stereotype definitions and parameters, as
this was done for view aspect. Finally, the main classes,
which model the interaction aspect, resemble parameter
types. Since the factors apart from the view aspect ones
mostly resemble cross-cutting concerns, the resulting
interaction and control impacts refer to the static and
variable declaration of view impact elements as a basis. In
detail, the interaction related UIControlConfiguration
parameters comprise of DataType, PresentationEvent and
EventContext as an additional child of the latter.

Coupling points. For a UIP definition to be integrated in
a GUI architecture, there is the need to arrange for coupling
points. These points allow the integration of automated
generated code and manually defined UIP information.
Potentially, these can be comprised of the following:

• Standard events (control - “intercommunication
events definition”, “dialog action-binding”)

• Input and output data (interaction - “data binding”)

The latter point may resemble GUI architecture models

discovered in common MVC architectures. The mentioned
coupling points are either evaluated (events) or processed by
the dialog kernel or logic part of the dialog. It is not
necessary for that component to know where data changes
and events have originated from. So, these suggested
coupling points may be a good starting point. Accordingly,
events (PresentationEvents and OutputActions) and the
“GUI Data Model” have been included in the analysis
model.

Data-binding. The binding of a UIControl to certain data
is accomplished by a UIControlConfiguration parameter. So,
the DataType binds the elements to certain data structures.
As DomainDataTypes may significantly differ from the
types used by the GUI framework, the class GUIProjection
is rather associated as the configured DataType. For the
DataType, it can be configured if the data is to be displayed
only (input) or if the user may conduct changes (output),
which are finally applied to the GUI Model part. The
DataType parameter also may be associated to EventContext,
which configures the data to be submitted by a
PresentationEvent of the respective element.

Besides the distinction between input and output, Models
have to be provided as coupling points for both cases to
obtain data for display. The application kernel has to provide
a respective query to obtain Entity data and the GUI
architecture has implement a certain Model to enable the
presentation of the query with appropriate data types for
UIControls, e.g., data conversion to strings or string lists. In
this regard, aspects like the timing, refresh rate, lazy loading
are no concern of the UIP definition and have to be
implemented by the data sources or queries. The Model has
to rely on the data source and is not responsible of those
technical aspects. In contrast, the Model needs to provide the
navigation inside data structures and the structuring of data
for presentation purposes that may be altered from
application and data layer designs in order to offer a suitable
projection for human processing.

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Currently, we are unsure how UIPs specific Model
requirements are to be formalized. However, this information
is essential for the coupling. In addition, it will provide
useful for the checking of the validity of configuration and
view variability of the UIP instance. Concerning the
advanced search, there must be a Model available to provide
object types and their attributes as well as another Model to
accommodate the chosen search criteria as the dialog result.

Events rationale. For PresentationEvents, we
enumerated some typical events implemented in GUI
frameworks. To progress towards a unified solution for
generative UIPs, we think that a standardization of events,
PresentationEvent as well as OutputAction, and similar types
is necessary. The integrative and strict type definitions of the
GUI specification language UsiXML on CUI level [26] may
be a valuable resource for that approach. Otherwise, both
specification and tool processing would demand for niche
solutions that are hardly manageable with respect to versions
and dependencies. We wonder how UsiPXML [10] or the
UIML UIP definition by Seissler et al. [12] are defined as a
language to be integrated in tool environments, which are to
handle the generic concept of their variables and assignments
effectively. We have to wait for them to publish detailed
language definitions and code examples.

Presentation action-binding. To bind an element to a
certain PresentationEvent type, the desired event has to be
included in the appropriate UIControlConfiguration. This
event may be declared for various purposes concerning
visual structure states as described below.

Visual element structure states definition. The first
interaction aspect impact needs to be further detailed.
Depending on the actual structure of the UIP, states that
occur within the scope of the contained UIControls and
states, which alter the view of embedded UIPs have to be
covered. To trigger changes in state for both cases, only
UIControls can be specified as sender of respective events.

UIControl states. For changes in state, we consider the
activation or deactivation as well as hiding and unhiding of
single UIControls or sets of them. Those abstract events are
to be translated to technical representations and their detailed
implementation. For instance, a checkbox in a sub-form may
deactivate the delivery address (if it is equivalent to billing
address) or in another case, a collapsible panel may be
collapsed. In our model, the ViewStateAction is defined as an
abstract feature for a UIP. By the UIP specification, the
possible actions are defined and associated to affected
UIControlConfigurations and thus UIControl instances.
Finally, for these actions triggering PresentationEvents can
be associated.

Embedded UIP states. Since the possible states for
composite UIPs cannot be enumerated or state machines
finitely defined inside pattern specifications, we employ
information, which describes the results of the state change,
and thus, enables a generator to build appropriate state
machines or comparative implementations.

The ViewStructureAction is designed to handle the
change of visual states for UIPs. For the trigger, a respective
UIControlConfiguration is needed, which is aimed at a
certain ID to allocate the UIControl and the type of
PresentationEvent. We considered the addition, replacement,

or removal of UIP instances. This behavior is closely related
to the <restructure> tag of UIML [24] and may be refined
based on its semantics. However, for UIML these facilities
can only be applied with already instantiated UIPs.

DynamicStructures are used for the addition, removal or
replacement of UserInterfacePattern instances. They are
selected on the basis of defined Keys, which enumerate
certain DataTypes or EventContext data to assign pre-
configured UIPConfigurations to the triggered
ViewStructureAction. A UIPConfiguration may be used by
more than on Key, which models a certain context situation.
Concerning the advanced Search example, the Model
holding the object and attributes lists must return values that
match the specified keys. Each time a combobox is changed,
the presentation event handling routine must query the
Model for the selected objects attribute and its kind or type
of representation. The query result will be embedded in the
EventContext, which is matched to a Key value. So, the UIP
and its DynamicStructures are based on a canonical
representation of DomainDataTypes.

Moreover, the ViewStructureActions rely on pre-
configured elements, which may only allow for variability
concerning the DataType. They either rely on a self-
reference (removal, replace) or additionally are associated to
available elements of the ViewStructure (add, replace) via
DynamicStructures.

However, this mechanism only makes sense for
UserInterfacePatterns, which are specified by Defaults and
always represented by default IDs present inside the
ViewStructure of a UIP definition. In this way, the
DynamicStructures will only affect default or invariant
UserInterfacePatterns inside the given ViewStructure, hence
it is not desirable to replace entire sets of UIP instances
defined on behalf of the developer for a specific context.
Thus, manually defined UIPs portions have to be separated
from DynamicStructures.

Based on the considerations for DynamicStructures, we
decided to associate DataType with GUIProjection rather
than with DomainDataType. A reference to
DomainDataTypes would have meant to define a Key and
appropriate UIPConfigurations for each DomainDataType.
Each change of types would have cascaded to each UIP
relying on DynamicStructures. We believe that
GUIProjections may be more stable than DomainDataTypes
and even be shared among DomainDataTypes.

E. Control Aspect Design

Dialog action-binding. So far, we have not progressed to
feasible results for most control aspects. Only the binding of
UIControls to application actions has been included. Via the
global OutputAction parameter declaration of a UIP, one can
define what events of that kind are raised by the
UIControlConfigurations. These can be bound to a certain
UIControl only by a link with the PresentationEvent.

F. Structure View on the Analysis Model

The resulting analysis model is illustrated by Figure 5.
The classes shaded in medium grey are related to the “view
definition” factor. Configuration related classes are shaded in
dark grey and feature a white caption. Most interaction
aspect impacts are supported by the classes shaded in white.

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

class UIP analysis model

GUI Data Model

UserInterfacePattern

ViewStructureElement

- ID: String

PresentationEvent
OutputAction

UIControl

ViewStructureAction

Style
DataType

- isReadOnly: boolean

ConfirmationEvent

CancelEvent

BackEvent

ApplyEvent

InProgressEvent

DataChangedEvent

ActivatedEvent

DeactivatedEvent

AddView

RemoveView

ReplaceView

MoveOverEvent

MoveOutEvent

DragDropEvent

DragOverEvent

LayoutManager

EventContext

Key

DynamicStructures

ViewStateAction

ActivateAction

DeactivateAction

ElementConstraints

- maxOccurence: int

- minOccurence: int

Order

UIPConfiguration

Caption

LayoutPosition

GridBagLayout::

Column

GridBagLayout::

Row

GridBagLayout

FlowLayout

CommonParameters

Name

- generated: boolean

UIControlConfiguration

Model

Entity DomainDataType

GUIProjection

HideAction

UnhideAction

AlterView

ViewStructure

Defaults

Parameters

1

1..*

0..1

1

1

element

reference

1

1 0..*

0..1

+Trigger

1

1..*1

0..1

1

1

1

#UIPInstanceLayout1

1

1..*

1

0..1

1

+ViewStructureActions 1

Dynamic view

adaptation

0..*

0..1

10..1

UIControl

instance

data-binding

1
11

1

event

parameter-binding

0..1

1..*

1

+InstanceName

1

1

1..*

1

+Trigger 1

0..1

0..*

presentation

action-binding

1

+Trigger 1

0..1

+OutputActions 0..*

1

1..*

UIControl

instances

1

+TargetElements 1..*

1

1

1

1..*

UIControl default

instances

1

1

event instance

name binding

0..1

1..*

mapping to the

corresponding

pre-configured

UIP

+pre-configured

UIP
1

+DynamicViews

1..*

selection

criteria
1

1

choice of view

structures

1

+ViewStateActions

0..*

1

1

1

+UIP

Instances
1..*

1

1

1

1

0..1

1

0..1

1..*

1

0..1

1

Figure 5. User interface pattern analysis model

VI. RESULTS AND DISCUSSION

Achievements. With the elaboration of our analysis
model, we detailed most factor impacts of our previous work
on requirements for generative UIP representations [14][4].
Accordingly, we proposed fine-grained structures, which are
in closer proximity to real applicable pattern notations than
pure requirements can be.

Judgment. The current state of the analysis model is
quite imperfect. However, with this initial iteration we
achieved a better understanding of the information needed to
express UIPs and their instances. A more vivid impression
on requirements, which we have modeled explicitly and are
implicitly supported by current approaches employing UIPs
for model-based development [4], has been gathered.
Furthermore, the model already may be used to verify the
capabilities of notations for generative UIPs.

The potential notation, generator tool-chain and
especially the generated architecture, which may be derived
in the future from the analysis model, most likely will be
somewhat complex, but since they are solely intended for
automated processing without manual interference, this is a
trade-off for a step further to implement generative UIPs.

Again, we would like to invite other researchers to
contribute either critical judgments or improvements for the
presented analysis model or its requirements basis.

Unsolved control impacts. Currently, our model only
supports ViewStructures, which consist of UIPs always being
in close cooperation. Nested UIPs are not yet intended to be
reused outside the specification or their super-ordinate UIP.
Being aware of this barrier, we may need to define facilities
such as pattern interfaces, as this was proposed by both
UsiPXML [10] and Seissler et al. [12]. In this regard, the
OutputAction may be refined to accommodate the events
required for UIP inter-communication. Eventually, the
UIPConfiguration may be supplemented by certain input
types. In the end, the first three control aspect impacts
remain unsolved for now.

Open issues. We are aware that our model needs further
elaboration and especially verification. Further issues to be
solved persist in the classification and delimitation of UIP
specification units. The relationships among UIPs discussed
by Engel, Herdin and Märtin [21] may be considered, too.

VII. CONCLUSION AND FUTURE WORK

By resuming our previous work on requirements towards
a definition for generative UIPs, we drafted an analysis

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

model for UIPs. Together with our factor model, it may be
taken into consideration for the verification of other
approaches mentioned and not mentioned here. With the
progression towards an improved version of our analysis
model, a more general applicable model-based UIP
development process may be established in the future.

Future work. For future work, we see a refining and
correcting iteration for the analysis model with regard to
simplicity and completeness according to all impacts. In
detail, we have to assess the mandatory and optional
parameters on the basis of our listed examples. Furthermore,
we will concentrate on the unsolved control aspect issues.

REFERENCES

[1] X. Zhao, Y. Zou, J. Hawkins, and B. Madapusi, “A Business-
Process-Driven Approach for Generating E-commerce User
Interfaces,” Proc. 10th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 07),
2007, Springer LNCS 4735, pp. 256-270.

[2] S. Wendler, D. Ammon, T. Kikova, and I. Philippow,
“Development of Graphical User Interfaces based on User
Interface Patterns,” Proc. 4th International Conferences on
Pervasive Patterns and Applications (PATTERNS 12), July
2012, Xpert Publishing Services, pp. 57-66.

[3] G. Meixner, “Past, Present, and Future of Model-Based User
Interface Development,” in i-com, 10(3), November 2011, pp.
2-11.

[4] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt “A
Factor Model capturing requirements for generative User
Interface Patterns,” Proc. 5th International Conferences on
Pervasive Patterns and Applications (PATTERNS 13), May
27 - June 1 2013, Xpert Publishing Services, in press.

[5] M. J. Mahemoff, L. J. Johnston, “Pattern Languages for
Usability: An Investigation of Alternative Approaches,” Proc.
3rd Asian Pacific Computer and Human Interaction (APCHI
98), 1998, IEEE Computer Society, pp. 25-31.

[6] A. Dearden and J. Finlay, “Pattern Languages in HCI; A
critical Review,” Human-Computer Interaction, 21(1), pp. 49-
102.

[7] J. Borchers, “A Pattern Approach to Interaction Design,”
Proc. Conference on Designing Interactive Systems (DIS 00),
August 17-19 2000, ACM Press, pp. 369-378.

[8] D. Ammon, S. Wendler, T. Kikova, and I. Philippow,
“Specification of Formalized Software Patterns for the
Development of User Interfaces,” Proc. 7th International
Conference on Software Engineering Advances (ICSEA 12),
Nov. 2012, Xpert Publishing Services, pp. 296-303.

[9] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
Support for an Evolutionary Design Process using Patterns,”
Proc. Workshop: Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[10] F. Radeke and P. Forbrig, “Patterns in Task-based Modeling
of User Interfaces,” Proc. 6th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Nov. 2007, Springer LNCS 4849, pp. 184-197.

[11] J. Engel and C. Märtin, “PaMGIS: A Framework for Pattern-
Based Modeling and Generation of Interactive Systems,”
Proc. 13th International Conference on Human-Computer
Interaction (HCII 09), July 2009, Springer LNCS 5610, pp.
826-835.

[12] M. Seissler, K. Breiner, and G. Meixner, “Towards Pattern-
Driven Engineering of Run-Time Adaptive User Interfaces
for Smart Production Environments,” Proc. 14th International
Conference on Human-Computer Interaction (HCII 11), July
2011, Springer LNCS 6761, pp. 299-308.

[13] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient Generation of Ambient Intelligent User

Interfaces,” Proc. 15th International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Sept. 2011, Springer LNCS
6884, pp. 136-145.

[14] S. Wendler, I. Philippow, “Requirements for a Definition of
generative User Interface Patterns,” Proc. 15th International
Conference on Human-Computer Interaction (HCII 13), July
2013, in press.

[15] K. Breiner, M. Seissler, G. Meixner, P. Forbrig, A. Seffah,
and K. Klöckner, “PEICS: Towards HCI Patterns into
Engineering of Interactive Systems,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 1-3.

[16] M. van Welie, G. C. van der Veer, A. Eliëns, “Patterns as
Tools for User Interface Design,” C. Farenc, and J.
Vanderdonckt (Eds.), “Tools for Working ith Guidelines,”
2000, Springer, London, pp. 313-324.

[17] J. Tidwell, “Designing Interfaces. Patterns for Effective
Interaction Design,” 2005, O’Reilly.

[18] E. Hennipman, E. Oppelaar, and G. Veer, “Pattern Languages
as Tool for Discount Usability Engineering,” Proc. 15th
International Workshop Interactive Systems. Design,
Specification, and Verification (DSV-IS 08), 16-18 July 2008,
Springer LNCS 5136, pp. 108-120.

[19] S. Fincher, “PLML: Pattern Language Markup Language,”
http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html
24.03.2013

[20] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J.
Thomas, and P. J. Molina, “Perspectives on HCI Patterns:
Concepts and Tools (Introducing PLML),” Extended
Abstracts of the 2003 Conference on Human Factors in
Computing Systems (CHI 2003), ACM, 2003, pp. 1044-1045.

[21] J. Engel, C. Herdin, and C. Märtin, “Exploiting HCI Pattern
Collections for User Interface Generation,” Proc. 4th
International Conferences on Pervasive Patterns and
Applications (PATTERNS 12), July 2012, Xpert Publishing
Services, pp. 36-44.

[22] J. Vanderdonckt and F. M. Simarro, “Generative pattern-
based Design of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 12-19.

[23] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An Appliance-
Independent XML User Interface Language,” Computer
Networks, 31(11-16), Proceedings of WWW8, 17 May 1999,
pp. 1695-1708.

[24] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml 12.04.2013.

[25] J. Vanderdonckt, Q. Limbourg, B. Michotte, L. Bouillon, D.
Trevisan, and M. Florins, “UsiXML: a User Interface
Description Language for Specifying multimodal User
Interfaces,” Proc. W3C Workshop on Multimodal Interaction
(WMI 04), 19-20 July 2004.

[26] J. Vanderdonckt, “A MDA-Compliant Environment for
Developing User Interfaces of Information Systems,” O.
Pastor, J. F. e Cunha (Eds.): Proc. 17th International
Conference on Advanced Information Systems Engineering
(CAiSE 2005), 2005, Springer LNCS 3520, pp. 16-31.

[27] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM Tool:
Support for Pattern-driven and Model-based UI
development,” Proc. 5th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
06), Oct. 2006, Springer LNCS 4385, pp. 82-96.

[28] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com 27.04.2013.

[29] C. Märtin and A. Roski, “Structurally Supported Design of
HCI Pattern Languages,” Proc. 12th International Conference
on Human-Computer Interaction (HCII 07), July 2007,
Springer LNCS 4550, pp. 1159-1167.

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

