
SPEM: A Software Pattern Evaluation Method

J. Kabbedijk, R. van Donselaar, S. Jansen
Department of Information and Computing Sciences

Utrecht University, The Netherlands
{J.Kabbedijk, R.VanDonselaar, Slinger.Jansen}@uu.nl

Abstract—Software architecture makes extensive use of many
software patterns. The decision on which pattern to select is
complex and architects struggle to make well-advised choices.
Decisions are often solely made on the experience of one architect,
lacking quantitative results to support the decision outcome.
There is a need for a more structured evaluation of patterns,
supporting adequate decision making. This paper proposes a
Software Pattern Evaluation Method (SPEM), that enables the
quantification of different pattern attributes by using structured
focus groups. The method is formed using a design science
approach in which an initial method was created using expert
interviews, which was later refined using several evaluation
sessions. SPEM helps software producing companies in struc-
turing their decision making and selecting the most appropriate
patterns. Also, SPEM helps in enriching pattern documentation
by providing a way to add quantitative information to pattern
descriptions.

Keywords—architectural patterns. quality attributes. software
architecture. decision making. pattern evaluation.

I. INTRODUCTION

Modern software architecture heavily relies on the use of
many different software patterns, often used complementary to
each other in order to solve complex architectural problems.
Software architecture provides guidelines and tools for high
level system design in which architects select best fitting pat-
terns to be used within the software product [1]. Many different
patterns and tactics exist, leading to a complicated trade-off
analysis between different solutions and causing the evaluation
and selection of the appropriate software patterns to be a
complex task [2]. This complexity means architects need to
have in-depth understanding of the project characteristics and
requirements combined with extensive experience in software
development.

The information needed for appropriate pattern selection
is seldom available to all architects in a centralized or stan-
dardized way. Architectural decisions are frequently made
based on experience and personal assessment of one person,
instead of using the knowledge of many [3]. Allowing software
architects to use all information efficiently saves time when
selecting fitting software patterns and leads to better and more
adequate decision making. For this to be possible, a method
has to be created enabling the evaluation and documentation
of crucial attributes of a software pattern [4]. This structured
evaluation will allow architects and decision makers to com-
pare different solutions and select the best matching pattern.
Patterns, however, are a high-level solution that can be used
different scenarios, making it impossible to use one specific
implementation of the pattern to evaluate the entire pattern.
Because specific implementations are unusable, the relevant

pattern attributes can not be directly measured in a quantitative
way.

Pattern evaluation adds retrospect and the knowledge of
many experts to existing pattern documentation. This study
also relates to software architecture as it solves a problem
found in the software pattern selection process. Software
pattern evaluation helps when performing pattern oriented
software architecture in cases where alternative patterns to
solve the same problem and only a single pattern can be
selected. This is an important factor to take into account,
because it means that rather than selecting individual patterns,
an architect will want to select an architectural style, and
thus select a large set of patterns that fit this style. This area
of software architecture has developed, which resulted in a
large amount of documented patterns and allows for comparing
architectural styles [5].

Although it seems that comparing individual patterns is
less relevant for software architecture, an architectural style is
selected at the early stages of software design and cannot easily
be changed after the development has started. This creates a
problem because while the software is being developed, the
requirements for the project or the environment will change.
Therefore it is necessary to extend the architecture or at
times alter the existing architecture. At this point it becomes
relevant to compare individual patterns in order to select the
pattern that fits the project requirements. This is an ongoing
process that happens throughout software development and
relies on the experience of software architects and developers.
Current documentation of software patterns is lacking a way to
compare them with each other. But, if multiple patterns tackle
the same problem, how does an architect decide which one
to use? This is tacit knowledge of experienced architects and
developers, leading to the following problem statement:“There
is no formal way to express the quality of one pattern over
another”.

This paper presents the Software Pattern Evaluation
Method (SPEM). Using SPEM, software producing companies
are supported in pattern selection decision making and are able
to quantitatively compare different patterns. SPEM enables
them to get an overview of specific pattern characteristics in a
timely manner. Also, SPEM can be used to generate a publicly
available pattern related body of knowledge, helping research
and practitioners in architectural research and decision making.
This paper first gives an overview of research related to pattern
comparison in Section II. The design science approach used
in the research is described in Section III, after which SPEM
is presented in Section IV. The pattern evolution, including
the initial method creation (Section V-A) and method evalu-
ation (Section V-B), showing the changes during the method

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

creation process can be found in Section V. To conclude, the
applications of SPEM are discussed (Section VI), followed by
a conclusion (Section VII).

II. RELATED WORK

Software Patterns — As software development was ma-
turing in the 1980s, the need arose to share common solutions
to recurring problems. This process started out by developers
communicating to their colleagues how they solved a recurring
development issue. The communication was informal and there
were no clear rules for documentation. In later years, software
patterns have become an essential part of software development
as a way to capture and communicate knowledge. Software
patterns are solutions to a recurring problem in a particular
context [6], [7]. When properly documented these solutions
are a valuable asset for communication with and among
practitioners [8]. Usage of software patterns allows for time
and cost reduction in software development projects, making
them an important tool for software design and development.
Although software patterns started out as a way to communi-
cate solutions among developers, they have become a crucial
part of software architecture [9] as well. A pattern selected
by a developer, however, does not take into account the entire
architecture and how it combines with existing patterns. This
problem is solved by selecting patterns at the architectural
level.

Architecture Evaluation — Evaluation is commonly used
in software architecture in order to increase quality and
decrease cost [10]. Many evaluation methods for software
architecture have been developed and compared in recent
years [11]. The evaluation should be performed as early as
possible in order to prevent large scale changes in later stages
of development. Software architecture evaluation is linked to
the development requirements and desired quality attributes.
Therefore, it is not a general evaluation of software archi-
tecture, nor an evaluation of a specific implementation. The
evaluation should be an indication of whether the proposed
architecture is a good fit for the project. Pattern comparison
and evaluation has been done before [12] in a quantitative
manner, but has focussed on the implementation of different
patterns and lacks the evaluation of the idea the pattern
describes.

III. RESEARCH APPROACH

This section presents the research questions answered in
this paper and the design science approach used to construct
SPEM. The main research question (MRQ) answered in this
paper is:

MRQ: How can software patterns be evaluated
in a manner that is objective and allows for com-
parison?

The aim of this study is to aid software architects in the
decision making process of selecting software patterns. This
can only be useful when the evaluation method yields objective
results. Since a software pattern can not be objectively mea-
sured in any way, the opinions of multiple software architects
are used in the form of scores. A quantitative study also
allows for easy comparison between alternative patterns. For

the purpose of answering this research question, multiple sub-
questions are constructed:

SQ1: Which attributes are relevant in pattern
evaluation?

Rationale: Patterns can possess many attributes that give
important information on usefulness and quality. For example,
how the pattern effects performance or maintainability can both
be attributes of a pattern.

Attributes are used in software architecture to evaluate
the quality of certain aspects of the architecture. We apply
the same principles for evaluation of software patterns. The
first step is to create a list of attributes by looking at related
literature. This list is then reduced by performing expert
interviews. This tells us which of the listed attributes are
important to software architects when evaluating a pattern.
A validation of the reduced list of attributes is performed by
interviewing a second expert. The result of these interviews
is a validated list of attributes relevant in the software pattern
evaluation process.

SQ2: How can attributes relevant in pattern
evaluation be quantified in a manner that allows for
comparison?

Rationale: Typical documentation on software patterns
is qualitative in nature. Although this might be suited for
documentation on patterns it does not allow for comparison.
For this reason, the different attributes relevant for pattern
evaluation need to be quantified. A structured method of
quantification that is used for evaluations would allow for
patterns to be compared on attribute level.

Conduct expert
interviews

Evaluate method

Improvements

No improvements

Initial method

Improved method

Is basis for

SPEM methodBuild SPEM method

Is finalized in

Fig. 1. Design Science Research Method

To answer this question we first look at comparable
methods of quantification within the domain of software
engineering. From these methods the specific characteristics
are deduced. An example of these characteristics can be the

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

ability to assign a negative value to an attribute. A method for
quantification is constructed based on the list of characteristics.
The method is evaluated by using it in a focus group session
after which is can be incrementally improved.

A design science approach is used, which is depicted in
Figure 1. An initial method is created based on an earlier
exploratory study [13], extended by expert interviews. The
method is evaluated in multiple cycles in which the method
was put to practice in a real-world setting. Three subsequent
sessions are organized in which both professional software
architects and software architecture students used the method.
Information system master students can be used as test subjects
instead of professional software developers [14]. All sessions
were recorded and an evaluation form is filled in by all par-
ticipants after each session. A revised method was constructed
after each session, based on the feedback, which is used as
input for the next session. After three sessions no significant
changes were needed any more, leading to the creation of the
final method (i.e. SPEM).

IV. SPEM - SOFTWARE PATTERN EVALUATION METHOD

SPEM has been constructed to evaluate software patterns in
a manner which allows for comparison. There are two distinct
roles:

Evaluator — Leads the evaluation process by introducing con-
cepts and directing discussions. Is responsible for timekeeping,
collecting all deliverables and noting scores.

Participant — A software architect or developer who uses
his knowledge to assign scores to attributes, enters discussion,
shares arguments and tries to reach consensus.

The evaluation data is gathered during a focus group
session. These sessions vary in duration from one to two hours.
Four to twelve participants can partake in the evaluation, ex-
cluding the evaluator. The basis of the evaluation are attributes,
categorized in both quality attributes and pattern attributes.
Quality attributes are used to measure the impact the pattern
has on software quality and are based on ISO/IEC 25010 [15].
The following quality attributes (excluding sub-attributes) are
used in SPEM:

• Performance efficiency — Degree to which the software
product provides appropriate performance, relative to the
amount of resources used, under stated conditions.

• Compatibility — The ability of multiple software com-
ponents to exchange information or to perform their
required functions while sharing the same environment.

• Usability — Degree to which the software product can
be understood, learned, used and attractive to the user,
when used under specified conditions.

• Reliability — Degree to which the software product
can maintain a specified level of performance when used
under specified conditions.

• Security — The protection of system items from acci-
dental or malicious access, use, modification, destruction,
or disclosure.

• Maintainability — Degree to which the software product
can be modified. Modifications may include corrections,
improvements or adaptation of the software to changes in

environment, and in requirements and functional specifi-
cations.

• Portability — Degree to which the software product can
be transferred from one environment to another.

Assign scores

Create participant
profiles

Assign personal
scores

Assign group score

Write evaluation
summary

Consensus

No consensus

Participant profiles

Personal score list

Evaluation summary

Is included in

Is input for

[All attributes discussed]

[Next attribute]

Score table

Is included in

Fig. 2. SPEM: Software Pattern Evaluation Method

Pattern attributes are characteristics of the pattern itself,
used to measure its learnability or ease of implementation. The
goal of the evaluation is to assign a score to each attribute by
all participants. The score is a relative measure based on the
experience of the participant, ranging from −3 to +3. The
score is a generalization of the software pattern, not based on
a specific implementation. Experience using the pattern in a
variety of situations is expressed by the score. Therefore the
difference in experience among all participants is a key factor
in the evaluation, which is compensated in a group score.
A group score is assigned to each attribute (excluding sub-
attributes) and expresses a score after a round of discussion.
The discussion of each attribute allows the participants to share
their knowledge with each other. The goal of the discussion
is to reach consensus, meaning that after knowledge has
been shared between participants with different amounts of
experience, one score is assigned on which all participants
agree. The result is quantitative data in the form of scores
based on personal experience and the knowledge of a group,
visualized in an evaluation summary (see Figure 3).

SPEM consists of four activities and four deliverables,
as shown in Figure 2. The first activity focuses on creating
participant profiles [16]. These profiles are forms containing
fields for the participant’s name, job description and years of
experience. Additionally, there are input fields for the pattern
name and experience with the pattern. Provided with the
participant profile is a personal score list containing a list
of quality attributes, sub-attributes and pattern attributes. For

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Fig. 3. SPEM evaluation summary (observer pattern)

each item on this list there is a possibility to give a personal
score. The evaluator introduces the method to the participants
by explaining each deliverable and the focus group session
protocol. In the protocol, all activities and by who they are
performed are listed and described. Thereafter, the evaluator
asks the participants to fill out the participant profile.

In the second process, personal scores are assigned to an
attribute. During the evaluation the scores are recorded in the
personal score list. After the evaluation the personal scores are
entered in the score table. The score table contains rows with
all attributes used in the evaluation and columns containing all
personal scores, average scores, standard deviations and group
scores. The evaluator introduces an attribute by giving a short
description. The participants are then asked to assign a score
to the attribute and all corresponding sub-attributes.

In the next phase, a group score is assigned to an attribute
and noted in the score table. The group score is a score which
is produced by gaining consensus. This means all participants
partake in a discussion. The focus of the discussion is to
exchange arguments on the score of an attribute. If consensus
is reached among all participants, the resulting group score
is assigned and noted on the score table. If consensus is not
reached, the group score is not assigned and no score will be
noted in the score table. The evaluator initiates a discussion
on the current attribute by asking a single participant’s score
and motivation for the score. Other participants are free to
respond and exchange views, directed by the evaluator. If the
discussion ends or if no time is left, the evaluator asks the
participants if they have reached consensus. When consensus
is reached, the group score is recorded in the score table.

When all attributes have been evaluated, an evaluation sum-
mary is created. The evaluation summary is a combination of
all participant profiles and a filled out score table. Additionally
a new form is added containing the name of the evaluator, date
and threats to validity. This gives the evaluator the opportunity
to note any occurrences that are not expressed in the main
deliverables. This process is performed by the evaluator at the
end of the focus group session and concludes the evaluation.

V. METHOD EVOLUTION

This section discusses how the initial method evolved and
shows the explicit changes made to the method based on the

expert evaluation sessions.

A. Initial Method Construction

Expert interviews formed the basis of the initial version
of the SPEM method. Two software architects from different
companies cooperated to share their views on software pattern
evaluation. Understanding which attributes are relevant in pat-
tern evaluation and how they could be quantified was the goal
of the interview. During the interview a list of quality attributes
derived from ISO/IEC 9126 [17] and ISO/IEC 25010 [15] was
discussed, the latter being preferred by the interviewees. Al-
though both interviews had different results on the importance
of each individual attribute of the standard, none could be
excluded. Ease of learning and ease of implementation are
both attributes describing characteristics of software patterns.
Both these attributes should be included in software pattern
evaluation as they play an important part in software pattern
selection.

Scenarios are often used in software architecture evalu-
ation, but do not fit pattern evaluation. The fact that patterns
are evaluated without a specific implementation in mind makes
the use of scenarios irrelevant. A software architect should
interpret the results of pattern evaluation by relating it to their
own project. When attributes are quantified using a score, it
should be possible to assign a negative value. Patterns can
affect software quality in a negative way or have negative
characteristics, which a score should be able to express. The
range of the scores should be between a five and ten point
scale. At larger ranges it would be difficult for an architect to
assign an accurate score.

When multiple architects perform a pattern evaluation, they
are likely to have varying degrees of experience. Experience
is key in understanding software patterns and their effect
on software quality. It is important to assign a score to an
attribute which takes into account the varying degrees of
experience software architects have. This should be done using
discussion and consensus. In a discussion, those who have
more experience can share their knowledge with those who
have less experience. Together working towards consensus
can improve the level of knowledge of the participants and
consequently improve the score. Software pattern evaluation
should be performed with at least one architect who has

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

experience using the pattern which is being evaluated. This
restriction makes sure the evaluation yields a valuable result.

Based on these interview results a method was constructed
incorporating the following:

• All attributes and sub-attributes from ISO/IEC
25010 [15].

• Two additional attributes; ease of implementation and
ease of learning.

• Scoring ranging from −5 to +5.
• Discussion after each attribute.
• The goal of trying to reach consensus on each attribute.

B. Method Evaluation

Using a design science approach the initial method was
evaluated and improved several iterations. A total of three
focus group sessions were hosted to evaluate the method.
In these sessions the method was carried out by evaluating
a software pattern. Participants were asked to fill out an
evaluation form at the end of the focus group session. The
feedback gathered in the evaluation forms and experiences
from hosting the sessions were the basis for each new iteration
of the SPEM method.

During the first focus group session, four software archi-
tects participated, each having over nine years of experience
in software development. During this session the observer
pattern was evaluated using the initial version of SPEM. The
first attribute, functional suitability and corresponding sub-
attributes raised many questions. It was not possible to assign a
score, as the attribute demanded a specific context. Not having
a description for sub-attributes was confusing and diverted
discussions to the definitions of certain sub-attributes. Based
on the evaluation session, the following improvements were
incorporated in the method:

• Removal of attribute ‘Functional suitability’ — This
attribute, including its sub-attributes turned out to be
irrelevant based on the focus group session. Functional
suitability can only be assessed by looking at specific
implementations.

• Including a description for all sub-attributes — A de-
scription of each attribute, including all sub-attributes was
needed. This way different interpretations of attributes can
be precluded.

The second focus group session was performed with twelve
participating master students. The students have an information
systems background and were all enrolled in the Software
Architecture course, which prepared the students for the focus
group session. The Access Point pattern was evaluated and
participants were free to discuss attributes without any inter-
vention from the evaluator. This resulted in lengthy discussions
making the session take longer than anticipated. Discussions
should be halted by the evaluator after a certain period of time
based on the time that is available.

Assigning scores to sub-attributes and discussing them was
time consuming. Sub-attributes needed a less prominent role
in the method. It was not always possible for participants to
assign a score to an attribute. Therefore it should be possible to
have an explicit option stating that no score is assigned, instead

of leaving it empty which might imply a neutral score. The
introduction of the pattern was unclear, leading to discussion
and debate. How scores should be assigned and what they
represent raised questions during the session. The evaluator
should focus more on explaining the meaning of scores and
the difference between quality attributes and pattern attributes.

Based on the second evaluation session, the following
improvements were incorporated in the method:

• Sub-attributes removed — Because discussion on sub-
attributes took too long, they were removed from the
method.

• Added an option to give an attribute no score — An
explicit way was added for participants to indicate they
do not want to give a score to a certain attribute.

• More focus on pattern introduction — The pattern
needs to be thoroughly explained to prevent discussions.

• More focus on explaining what the scores represent
— Scores represent the impact the evaluated pattern has
on software quality or characteristics of the pattern itself.
This distinction needs to be clear in order to properly
assign scores.

• Stronger role of the evaluator — The evaluator needs to
direct the discussions. Apart from initiating discussions,
they should also be halted. Time keeping is the responsi-
bility of the evaluator.

The third focus group session was performed with different
students from the same group as the second focus group
session. Although sub-attributes did not receive a score, they
were referred to in discussions to better understand an attribute.
Therefore it is important to include the sub-attributes in the
method. Discussions for each sub-attribute would increase the
time to complete an evaluation substantially. A personal score
should be assigned to a sub-attribute while discussions and
consequently group scores, should be left out.

Based on the third evaluation session, the following im-
provements were incorporated in the method:

• Sub-attributes added — Can help the understanding of
attributes and provide more detail to the data.

• Sub-attribute discussions removed — Gives the sub-
attributes a less prominent role in the method and focusses
more on attributes.

• Descriptions for each attribute / sub-attribute added
to participant profile — Allows the participants to read
descriptions of attributes independent of the evaluator.

After the three sessions, the final method (i.e. SPEM) was
created.

VI. SPEM IMPLEMENTATION

SPEM is created to evaluate software patterns in general,
without a specific implementation in mind. This enables the
option for comparison of software patterns, because each
pattern has been evaluated as an abstract solution. It prevents
unbalanced comparison between patterns based on different
implementations. There is a trade-off between easy to compare
generic evaluation and implementation specific evaluation. An
implementation specific evaluation provides more accurate

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

data, but it can only be compared to evaluated patterns based
on the same implementation. A generic evaluation might not be
as accurate, but ensures all evaluated patterns can be compared.
SPEM can be used for implementation specific evaluation
with few adjustments. It requires the evaluator to explain
that the scores should be assigned with an implementation
in mind. There needs to be an input field describing the
implementation on the score table. With these adjustments an
evaluation session would be identical to SPEM and allows for
use of all processes and deliverables used in SPEM.

This study provides knowledge on software pattern evalu-
ation by introducing a method to evaluate software patterns.
The data SPEM evaluations provide further expands the body
of knowledge on patterns. It adds retrospect to the existing
software pattern documentation and provides insight on the
impact patterns have on software quality. A collection of
SPEM evaluation results provides valuable knowledge on
the understanding of software patterns and software quality.
A knowledge base would enable the disclosure of SPEM
evaluation results and would allow results to be combined and
compared. From an industrial perspective, a SPEM knowledge
base would enable software architects to share their knowledge
on software patterns. It would make knowledge available to aid
in software pattern selection, leading to better decision making
and overall software quality. It is through sharing knowledge
that software pattern selection can reach a higher level of
maturity, allowing for a structured way of comparing software
patterns.

SPEM uses discussion and consensus to obtain quantitative
evaluation data. This method of quantification was introduced
to cope with different experience levels among participants.
It has imposed a constraint on the method of data gathering
used in SPEM. As discussions require interaction between
participants, all participants need to be able to communicate
with each other at the same time. Therefore SPEM is used
in focus group sessions, limiting the number of participants.
A trade-off exists between a more accurate score based on
consensus with a small number of participants and a less
accurate, but more reliable score with a large number of
participants.

VII. CONCLUSION

SPEM is an objective software pattern evaluation method
which can be used to compare patterns. It is used to eval-
uate relevant attributes of patterns based on the experience
of software architects. SPEM provides quantitative data on
attributes in the form of scores. The data can be interpreted
and visualized to allow for software pattern comparison. This
answers the main research question (MRQ).

The question “Which attributes are relevant in pattern
evaluation?” (SQ1) is answered with a list of attributes, con-
sisting of quality attributes and pattern attributes. The quality
attributes are based on ISO/IEC 25010 and modified for pattern
evaluation, resulting in the following set of attributes: a) Per-
formance efficiency, b) Compatibility, c) Usability, d) Re-
liability, e) Security, f) Maintainability, and g) Portability.
These attributes can be quantified in a manner that allows for
comparison (SQ2) by rating the different attributes by experts
in a focus group setting. It requires that personal scores ranging

from -3 to +3 are assigned to all attributes and sub-attributes. A
group score is assigned to all attributes after a discussion and
reaching consensus. All scores are noted in the score table.
A future step is to perform SPEM sessions to gather data
and produce results allowing for software pattern comparisons.
Gathering the output of evaluation sessions and adding them to
the knowledge base can help to further validate the method and
produces valuable knowledge for both academic and industrial
purposes.

ACKNOWLEDGMENT

The authors would like to thank Leo van Houwelingen from
Exact Software and Raimond Brookman from Info Support
for their valuable input. We also want to thank the architect
team from Info Support for their cooperation. This research is
funded by the NWO ‘Product-as-a-Service’ project.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2/E. Pearson Education India, 1998.

[2] A. Jansen, J. Van Der Ven, P. Avgeriou, and D. K. Hammer, “Tool sup-
port for architectural decisions,” in The Working IEEE/IFIP Conference
on Software Architecture (WICSA’07). IEEE, 2007, pp. 4–4.

[3] M. A. Babar and I. Gorton, “A tool for managing software architecture
knowledge,” in Proceedings of ICSE Workshop on Sharing and Reusing
Architectural Knowledge (SHARK). IEEE, 2007, pp. 11–17.

[4] J. Tyree and A. Akerman, “Architecture decisions: Demystifying archi-
tecture,” Software, IEEE, vol. 22, no. 2, pp. 19–27, 2005.

[5] G. Booch, “On creating a handbook of software architecture,” in Pro-
ceedings of the Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), vol. 16, no. 20, 2005, pp. 8–8.

[6] F. Buschmann, Pattern oriented software architecture: a system of
patterns. Ashish Raut, 1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995.

[8] K. Beck, R. Crocker, G. Meszaros, J. Vlissides, J. O. Coplien, L. Do-
minick, and F. Paulisch, “Industrial experience with design patterns,”
in Proceedings of the 18th international conference on Software engi-
neering. IEEE Computer Society, 1996, pp. 103–114.

[9] F. Buschmann, K. Henney, and D. C. Schmidt, “Past, present, and future
trends in software patterns,” IEEE Software, vol. 24, no. 4, pp. 31–37,
2007.

[10] G. Abowd, L. Bass, P. Clements, R. Kazman, and L. Northrop, “Rec-
ommended best industrial practice for software architecture evaluation,”
DTIC Document, Tech. Rep., 1997.

[11] M. A. Babar, L. Zhu, and R. Jeffery, “A framework for classifying and
comparing software architecture evaluation methods,” in Proc. of the
Australian Software Engineering Conference. IEEE, 2004, pp. 309–
318.

[12] M. Hills, P. Klint, T. Van Der Storm, and J. Vinju, “A case of visitor
versus interpreter pattern,” in Objects, Models, Components, Patterns.
Springer, 2011, pp. 228–243.

[13] J. Kabbedijk, M. Galster, and S. Jansen, “Focus group report: Evaluating
the consequences of applying architectural patterns,” in Proc. of the
European conference on Pattern Languages of Programs (EuroPLoP),
2012.

[14] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjectsa
comparative study of students and professionals in lead-time impact
assessment,” Emp. Softw. Engineering, vol. 5, no. 3, pp. 201–214, 2000.

[15] ISO/IEC, ISO/IEC 25010. Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models, 2010.

[16] R. Donselaar and J. Kabbedijk, [Accessed: 2014-04-08]. [Online].
Available: http://www.staff.science.uu.nl/ kabbe101/PATTERNS2014

[17] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality, 2001.

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

