
Generating Java EE 6 Application Layers and Components in JBoss Environment

Gábor Antal, Ádám Zoltán Végh, Vilmos Bilicki

Department of Software Engineering

University of Szeged

Szeged, Hungary

{antalg, azvegh, bilickiv}@inf.u-szeged.hu

Abstract—Nowadays, prototype-based development models are

very important in software development projects, because of

the tight deadlines and the need for fast development.

Prototypes can be very efficient in the analysis, validation and

clarification of the requirements during the development

iterations. Model-driven development and code generation are

frequently used techniques to support the fast development of

application prototypes. There are many recurring tasks in the

iterations of a prototype development process, which can be

performed much faster using high level models and the

automatic generation of application component

implementations. The goal of this paper is to review model-

driven development and code generation methods and tools,

which can be used to create Java Enterprise Edition 6

applications. Besides, this paper introduces a new code

generation tool, which uses the JBoss Forge framework for

generating application layers and components based on the

entities of the application.

Keywords- prototype development; model-driven engineering;

code generation.

I. INTRODUCTION

There are many software development projects at present
where it is very hard to collect all the requirements at the
beginning of the project. The customers can be uncertain or
they cannot visualize the requirements in detail and
precisely. Therefore, the classical waterfall development
model does not work in these projects. The requirements
specification and the system plan need more phases to
validate and clarify, which need active communication with
the customer. Therefore, prototype-based development
models can be useful in these cases [1]. Using these models
it is possible to show a functional application prototype to
the customer to validate and clarify the requirements. But
very fast prototype implementation is needed for effective
prototype-based development processes. For this purpose,
model-driven development and code generation methods are
used to speed up the implementation. However, it is
important to examine and use software design patterns to
ensure the maintainability of the application.

The goal of Model-Driven Development (MDD) [2] is to
simplify the system design process and increase development
productivity by reusing standard software models and design
patterns. The developer defines the components of the
system with their relations, the structures and relations of the
data to be managed, and the use cases and behaviors of the
system using high level models. Based on these high level

representations the model-driven development tools can
automatically produce lower level system models, and in the
end of the process they can generate implementations in
specific programming language. Transitions between the
different model levels and the generation of the
implementation from the models are performed by
predefined automatic transformations. The model-driven
development process supports the regeneration of the
implementation after modifying the system models.

A very important tool of model-driven development is
code generation, which is used in the implementation phase
[3]. The goal of code generation is to automatically create a
runnable implementation of the system in a specific
programming language based on the initial high level system
models. Using this technique the production of prototypes
can be accelerated significantly. The usage of different
design patterns can cause a lot of recurring manual
implementation tasks, which can be supported with code
generation effectively. The generated source code is
supported by expert knowledge, so the maintainability of the
code can be higher compared to the manual implementation.

However, the existing code generation solutions have
some main disadvantages and deficiencies, which make them
unable to use effectively for generating Java EE 6 [4]
applications. Our goal is to introduce a new code generation
toolkit, which eliminates these drawbacks and generates
application prototypes based on Java EE design patterns.

This paper provides insights on some methods, which can
be used for effective development of Java EE (Enterprise
Edition) 6 application prototypes. Section II examines some
related work in the area of code generation and shows the
disadvantages of the existing generator toolkits. Section III
presents the JBoss Forge [5] framework, which can generate
Java EE 6 application prototypes with its Forge Scaffold [6]
extension. Section IV describes some practical
methodologies for code generation using some tools from the
JBoss Forge framework. Section V introduces a Forge-based
code generation toolkit, which eliminates the defects of the
Forge Scaffold and provides more application components to
generate. Section VI presents a case study about the usage of
our generator toolkit in a telemedicine project. Section VII
concludes the paper and discusses some interesting problems
that are targeted to be further studied and improved in the
future.

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

II. RELATED WORK

During model-driven development processes the high
level system models are often created using Unified
Modeling Language (UML) [7], mostly based on class-,
sequence-, activity- and state diagrams. The programming
language of the implementation is mostly Java, C# or C++.
The GenCode toolkit [8] generates Java classes from UML
class diagrams, which include fields, getter and setter
methods, default constructors, but it can generate only stubs
for non-trivial methods. Other UML-based model-driven
development tools, e.g., Modelio [9], ObjectIF [10], IBM
Rational Rose [11] and Rhapsody [12], have the same
drawback. Some toolkits introduced in [13][14][15] papers
can generate non-trivial methods based on sequence- and
activity diagrams. However, these tools need these diagrams
for each non-trivial method and they cannot use generic
diagram templates for generating pattern-based applications.

Some MDD tools define their own modeling languages,
e.g., Acceleo [16] and ActifSource [17], but they do not have
any metamodels for Java EE code generation.

A part of the source code can be also a model. A great
example for this statement is the entity layer implementation
of an application, which defines the data structures managed
by the system. The entity implementations can be used to
generate Create-Read-Update-Delete (CRUD) user interfaces
for the application. Entity-based code generation tools are,
e.g., JBoss Forge, seam-gen [18], MyEclipse for Spring [19],
and OpenXava [20]. In the case of these toolkits, the
generated user interfaces are in some cases incomplete,
inaccurate, or difficult to use, e.g., inheritance, association
between entities.

III. THE JBOSS FORGE FRAMEWORK

One of the most important entity-based code generation
toolkits is the JBoss Forge framework, which is developed
by the JBoss Community. The main goal of this tool is to
manage the lifecycle and configuration of Maven projects
[21] and to support the automatic generation of some
application components with some simple commands. Forge
has a command line interface, which includes most of the
important Linux file manager commands. These commands
are extended to read and modify the structure of Java source
files. Besides, there are commands implemented for creating
and configuring projects, and creating Java Persistence
Application Programming Interface (JPA) entities. The
Forge commands can be run batched in a script to make the
use of the framework easier.

There are many available and downloadable plug-ins for
Forge, extending its functionality. It is also possible to
develop new plug-ins to support new code generation
capabilities. A very useful plug-in included by the
framework is Forge Scaffold, which can be used to generate
basic Java EE 6 prototypes with CRUD web user interfaces
based on the JPA entities of the application. The Scaffold
plug-in can be extended with several scaffold providers,
which can be used to specify the UI component library for
generating user interface layer, e.g., standard Java Server

Faces (JSF), RichFaces, Primefaces. Unfortunately, the
Forge Scaffold plug-in has some defects.

 If the entity layer contains inheritance between
entities, the user interfaces of the child class do not
contain the fields of the super class.

 If a field has a @ElementCollection annotation, the
edit page does not contain any component for
selecting/adding elements to the field.

 In case of associations between entities, the edit page
contains a dropdown menu for selecting/adding
elements with the return value of the toString()
method of the related entity instances. It is not
possible to select a field as label.

 List pages do not provide ordering and filtering by
multiple criterions.

 The generated code is difficult to maintain. The
business logic is generated into one Bean class per
entity. There is no separate Data Access Object
(DAO) layer.

IV. CODE GENERATION METHODOLOGIES

The Forge Scaffold plug-in uses the combination of two
main methodologies for generating source code: template-
based and procedural code generation. The tools for these
code generation methods are provided by the JBoss Forge
framework, so new code generator plug-ins can be developed
using these tools.

The concept of template-based code generation
methodology is to produce source code based on predefined
templates, which will be rendered depending on the
generation context. These templates consist of two types of
parts: static parts, which will be generated into every source
code instances; and dynamic parts, which will be replaced
depending on the different inputs of the generation process.
For supporting template-based code generation, JBoss
Community provides the Seam Render tool, which is also
used by Forge Scaffold plug-in [22]. The syntax of Seam
Render code templates is quite simple. The static code parts
should be specified the same way as they should appear in
the generated code instances. The dynamic code parts should
be indicated by expressions with named objects given in the
form @{indicatorExpr}. The template-based code generation
process consists of three phases:

1. Compiling the template: the specified template is
processed and the dynamic template parts are
collected with their object names and positions.

2. Defining the rendering context: every object names
in indicator expressions are mapped to a Java object
(mostly a String) for replacing every occurrence of
the proper object name with the value of the object.

3. Rendering the template with the given context.
This method can be efficiently used in cases when the

source code to generate contains small dynamic parts, which
can be rendered by simple replacements, e.g., DAO classes,
Beans for business logic. But, there can also be cases when
the source code to generate contains “highly dynamic” parts,
which can be rendered using very complex replacements
(e.g., user interfaces) or when a given existing source code

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

file must be modified in a later phase of the generation
process. In these cases the procedural code generation
methodology can be useful.

The procedural code generation aims the production of
code elements using libraries for parsing and representing the
elements of the specified language. For generating Java
source code procedurally, Forge provides the Forge Java
Parser library, which can parse Java source code to its own
high level representation, create new code elements (classes,
interfaces, fields, methods, etc.) or modify existing elements
in the source code [23]. For generating XHTML (eXtensible
Hypertext Markup Language) elements of the web user
interface, the Metawidget framework can be useful, which
contains the high level representation of standard XHTML
tags, and JSF components [24]. Using these tools, new
generator components can be developed to produce highly
dynamic code parts and extend existing source code with
new elements.

V. FORGE-BASED CODE GENERATION TOOLKIT

For eliminating the defects of Forge Scaffold and
extending its functionality with the generation of other
application components, we aimed the development of a new
code generation toolkit based on the JBoss Forge framework.
We analyzed some of our software development projects to
find application layers and components, which contain a
large amount of repetitive work that can be replaced with
code generation methods to accelerate the development
process. We found nine general areas that can be effectively
supported with code generation. We examined these areas
and their design patterns, collected the knowledge and
experience we have in relation to the development of these
components and implemented a code generation toolkit for
supporting the effective production of them. In the following
subsections we discuss these areas in detail.

A. Entity and Validation Management

The entity generator of the Forge framework is a very
useful tool but it has some defects:

 It is not possible to generate inheritance between
entities.

 It cannot generate enum types with specific values.

 It is not possible to generate custom constructors,
hashCode, equals and toString methods based on
specific fields.

We implemented these capabilities to extend the
functionality of the entity generator. Besides, Forge cannot
generate validation annotations to the entity fields, so we
extended our toolkit with the possibility to add annotations
of Bean Validation API (Application Programming
Interface) to the entities. The generated entities use the
Composite Entity design pattern to implement associations
between the entities.

B. DAO Layer

The DAO layer of the application is responsible for the
operations, which can be made on the entities of the system:
inserting, updating, deleting, querying. Using JPA-based
EntityManagers it is easy to generalize the DAO layer based

on the Data Access Object design pattern. We created a
generic DAO superclass for providing simple EntityManager
operations and the entity-dependent DAO child classes
extend this superclass to provide queries and entity-specific
operations. Therefore, only the child classes should be
generated depending on the entity based on a DAO template.
We used Hibernate as JPA provider in our generator toolkit.

C. Business Logic Layer

The business logic layer of an application is responsible
for establishing connection between the user interface and
the entities (using the DAO layer), and managing complex
business processes and transactions. There are two main
components in general, which are used by CRUD user
interfaces:

 Data Models: provides the listing of specific type of
entities with paging, ordering and filtering. They use
the Session Façade and Value List Handler design
patterns.

 Entity Action Beans: provides editing, viewing and
deleting of a selected entity instance. They use the
Session Façade design pattern.

These business logic components are also easy to
generalize using generic superclasses. Only the entity-
specific Data Models and Entity Action Beans should be
generated depending on the entity based on code templates.
We used Contexts and Dependency Injection (CDI) for
context management and dependency injection, and
Enterprise JavaBeans (EJB) 3 for transaction management in
our generator toolkit.

D. CRUD User Interfaces

The CRUD user interfaces provide simple listing,
creating, editing, viewing and deleting capabilities for the
application user. Simple UI components (text fields, labels,
dropdown menus, etc.) can be inserted using JSF 2
components. Complex UI components (list items, fields with
labels, complex selector components, etc.) can be efficiently
generalized using JSF 2 composite components, which can
simplify the generation of complex user interfaces. These
components use the Composite View design pattern. We also
eliminated the defects of Forge Scaffold in our user interface
generator. The generation of user interface components is
performed by procedural code generation and the result is
inserted into predefined XHTML page templates.

An example list user interface generated by our toolkit is
shown on Figure 1. The layout and content of list items are
generated using the structure of the entity classes.

Figure 1. List user interface generated by our toolkit

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

E. Authentication, Authorization, Auditing

The system needs authentication and authorization
modules to provide appropriate data security. Users need to
be authenticated before using the system and it is very
important to check the permissions of the actual user before
data access or modification. These modules can be the same
in most of the applications. We use the PicketLink [25]
security and identity management framework in our
generated security module, which provides a general entity
layer pattern and JPA-based solutions for identity and role
management. In our security module, we also implemented
PicketLink-based registration, password change and
password reminder components, which can be automatically
generated for the given application.

The logging of the operations made by application users
is also a very important data security aspect, which is called
data auditing. Our code generation toolkit can produce an
auditing module for the application, which is capable to log
every data operations with the name of the performer user
and the actual timestamp. The auditing module uses
Hibernate Envers [26] in a combination with our auditing
solutions.

F. REST Interfaces

Mobile client applications often connect with a server
application for data querying or uploading. Therefore, both
the client and the server application need interfaces to
communicate with each other. The most frequently used
methodology of client-server communication is the
Representational State Transfer (REST) architecture. For
transferring data between the client and the server, the
JavaScript Object Notation (JSON) and eXtensible Markup
Language (XML) formats are often used. Our toolkit can
generate common source files for REST-based
communication (both for client and server) and REST
service stubs for server application based on DAO methods.
Data objects transferred between server and clients are
implemented using the Data Transfer Object (DTO) design
pattern. The generated service implementation includes DTO
classes based on entities and converters between entities and
DTO classes. Our solution uses the RESTEasy library for
REST implementation and Jackson library for JSON
implementation.

G. Data Visualization on Charts

In server applications there can be a lot of numerical data
(e.g., measurement data, quantities), which should be
visualized on charts to analyze their changes. Our toolkit is
capable to generate chart visualization user interfaces for
specified numerical data over the changes of a specified
entity field (e.g., measurement date). A generated example
chart user interface is shown on Figure 2. We use the Flot
[27] JavaScript-based library for visualizing charts, FlotJF
[28] library for representing Flot objects in Java, and
RESTEasy for the REST services, which provides data for
charts.

Figure 2. Chart user interface generated by our toolkit

H. Demo Data Generators

During the development the system needs a lot of demo
data for testing. Demo data can also make presentation of the
application to the customer easier. Therefore, demo data
generator components are needed in the system, which can
be very time-consuming to implement in case of large
domain models. Our toolkit can generate demo data
generators for the selected entities in the application. The
constraints of entity fields are also taken into consideration
during the generation. It is also possible to configure the
number of entities to be generated before the production of
data generators.

I. Dashboards

Many applications may need special, customizable user
interfaces, which can show only the most important
information for users, with simple and clear visualization
elements. Our code generator toolkit can produce dashboard
user interfaces with customizable layout (tiles, which can be
moved or hidden) and content (charts, gauges, switches,
status indicators, etc.). A generated example dashboard is
shown on Figure 3. The dashboard is created using Gridster
jQuery-based library [29].

Figure 3. Dashboard user interface generated by our toolkit

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

VI. CASE STUDY: DEVELOPMENT OF A TELEMEDICINE

APPLICATION

We used our code generation toolkit successfully in a
telemedicine project where we had to develop a data
collector application for supporting the long distance
monitoring of patients after heart surgery. The task of server
application was the collection, storage, and the visualization
of the incoming data from different sensors, e.g., weight
scales, ECG sensors, blood pressure monitors.

When planning the mentioned application we analysed
the components to be developed and the results showed that
a significant part of the development can be supported with
code generating methods. Relying on this, the prototype
development of the patient monitoring system with our code
generating tool was started. The following components of the
application were generated:

 DAO (Data Access Object) and business level layer.

 Listing, editing, visualizing user interfaces.

 Charts for the visualization of ECG measurements
and for the representation of the temporal changes of
blood pressure and weight.

 Data uploading REST service stubs on the server
side and REST client stubs in the mobile client
application.

Above this, only the refinement of user interfaces and the
implementation of REST interfaces were required.
Furthermore, for integrating sensors, Android mobile
prototypes were developed, whose task was to receive and
process the data sent by a single channel ECG sensor, a
blood pressure monitor, and a weight scale.

We measured the time requirements at this application
with our productivity measurement plug-in for Eclipse IDE,
and compared them with the time needed by developing this
application manually [30][31]. The measurement results can
be examined in Table I. tm means the manual implementation
time (in person days), and tcg means the implementation time
with code generation support (in person days). The
application layers needed about 80% less time in average to
implement with code generation support, compared to the
manual development.

TABLE I. COMPARISON OF DEVELOPMENT TIME IN MANUAL- AND

CODE GENERATION SUPPORTED DEVELOPMENT

Layer tm tcg tcg/tm (%)

Total

time

spent (%)

Domain model 0.1 0.02 20 5

DAO layer 3 1 33 10

CRUD user

interfaces
10 0.2 2 50

Authentication,
authorization,

auditing

20 0.2 1 15

Data
visualization

3 1 33 10

System

integration

interfaces

3 1 33 10

VII. CONCLUSION AND FUTURE WORK

This paper reviewed model-driven development and code
generation methods and tools for producing Java EE 6
applications, and introduced a code generation toolkit based
on the JBoss Forge framework, which can generate many
application components based on Java EE design patterns to
accelerate the prototype development process. We also used
this toolkit in the development of a telemedicine application
and measured the efficiency of the code generation
supported development compared to the manual
development. The measurement results show that the
development process with code generation needed
significantly less time than the manual development.

In the future, we would like to continue the development
of our generator toolkit and extend its functionality. We
identified the following goals, which we would like to reach
in the further development of the toolkit.

 Now, the generator works based on Forge 1.4.3. We
would like to upgrade our toolkit to Forge 2.

 During the test phase of the development, unit tests
provide the correctness of small, low level system
units. The development of correctly functioning
system units can be more effective with
implementing unit tests for given units. We would
like to extend our toolkit with the capability to
generate unit tests for selected classes.

 An entity-based code generator toolkit can be easier
to use if it can process UML class diagrams, which
contain the entities of the application. These UML
diagrams should be extended with some additional
properties, such as JPA and Bean Validation
annotations for entity classes and fields. Using these
diagrams the Java implementation of entities can be
automatically generated. We would like to develop
an extension for our code generator toolkit to process
extended UML class diagrams of entities as the input
of application prototype generation.

 The main goal of our toolkit is to generate web-
based server application components. In the future
we would like to identify some areas in Android
mobile application development, which can be
supported with code generation and implement a
generator toolkit for Android applications.

 Many entity fields can have special meanings that
imply special criterions during the demo data
generation and special validation processes. For
example, an entity field with String type can be a
first name of a person, an address or a country name.
This semantic aspect should be taken into
consideration during the data generation and
validation of values in entity fields. Our goal is to
provide an opportunity to add semantic annotations
to entity fields, which are related to ontology
definitions of special data structures, and to generate
special data generators and validators for the
annotated fields.

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

ACKNOWLEDGMENT

The publication is supported by the European Union and
co-funded by the European Social Fund.

Project title: “Telemedicine-focused research activities
on the field of Mathematics, Informatics and Medical
sciences”

Project number: TÁMOP-4.2.2.A-11/1/KONV-2012-
0073

REFERENCES

[1] M. F. Smith, Software prototyping: adoption, practice, and
management. McGraw-Hill, 1991.

[2] B. Sami, Model-Driven Software Development. Springer, 2005.

[3] J. Herrington, Code Generation in Action. Manning Publications Co.,
2003.

[4] http://docs.oracle.com/javaee/, [retrieved: 2014.04.11].

[5] http://forge.jboss.org/, [retrieved: 2014.04.11].

[6] http://forge.jboss.org/docs/important_plugins/ui-scaffolding.html,
[retrieved: 2014.04.11].

[7] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Guide, Second Edition, Addison-Wesley
Professional, 2004.

[8] A. G. Parada, E. Siegert, and L. B. de Brisolara, “GenCode: A tool
for generation of Java code from UML class models”, 26th South
Symposium on Microelectronics (SIM 2011), Novo Hamburgo,
Brazil, pp. 173-176.

[9] http://www.modeliosoft.com/, [retrieved: 2014.04.11].

[10] http://www.microtool.de/objectif/en/, [retrieved: 2014.04.11].

[11] http://www-03.ibm.com/software/products/us/en/ratirosefami/,
[retrieved: 2014.04.11].

[12] http://www-03.ibm.com/software/products/us/en/ratirhapfami/,
[retrieved: 2014.04.11].

[13] A. G. Parada, E. Siegert, and L. B. de Brisolara, “Generating Java
code from UML Class and Sequence Diagrams”, Computing System
Engineering (SBESC), 2011 Brazilian Symposium, Florianopolis,
Brazil, pp. 99-101.

[14] M. Usman and A. Nadeem, “Automatic Generation of Java Code
from UML Diagrams using UJECTOR”, in International Journal of
Software Engineering and Its Applications vol. 3, no. 2, 2009, pp. 21-
38.

[15] E. B. Oma, B. Brahim, and G. Taoufiq, “Automatic code generation
by model transformation from sequence diagram of system’s internal
behavior”, in International Journal of Computer and Information
Technology, vol. 1, issue 2, 2012, pp. 129-146.

[16] http://www.eclipse.org/acceleo/, [retrieved: 2014.04.11].

[17] http://www.actifsource.com/, [retrieved: 2014.04.11].

[18] http://docs.jboss.org/seam/2.3.1.Final/reference/html/gettingstarted.ht
ml, [retrieved: 2014.04.11].

[19] http://www.myeclipseide.com/me4s/, [retrieved: 2014.04.11].

[20] http://openxava.org/home, [retrieved: 2014.04.11].

[21] http://maven.apache.org/, [retrieved: 2014.04.11].

[22] https://github.com/seam/render, [retrieved: 2014.04.11].

[23] https://github.com/forge/java-parser, [retrieved: 2014.04.11].

[24] http://metawidget.org/, [retrieved: 2014.04.11].

[25] http://picketlink.org/, [retrieved: 2014.04.11].

[26] http://envers.jboss.org/, [retrieved: 2014.04.11].

[27] http://www.flotcharts.org/, [retrieved: 2014.04.11].

[28] https://github.com/dunse/FlotJF, [retrieved: 2014.04.11].

[29] http://gridster.net/, [retrieved: 2014.04.11].

[30] G. Kakuja-Toth, A. Z. Vegh, A. Beszedes, and T. Gyimothy, “Adding
process metrics to enhance modification complexity prediction”,

Proceedings of the 2011 IEEE 19th International Conference on
Program Comprehension (ICPC 2011). Kingston (ON), pp. 201-204.

[31] G. Kakuja-Toth, A. Z. Vegh, A. Beszedes, L. Schrettner, T. Gergely,
and T. Gyimothy, “Adjusting effort estimation using micro-
productivity profiles”, 12th Symposium on Programming Languages
and Software Tools. SPLST'11. Tallinn, Estonia, 5-7 October 2011,
pp. 207-218.

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

