
Automating Cloud Application Management Using Management Idioms

Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart, Stuttgart, Germany
{breitenbuecher, lastname}@iaas.uni-stuttgart.de

Abstract—Patterns are a well-established concept to document
generic solutions for recurring problems in an abstract manner.
Especially in Information Technology (IT), many pattern lan-
guages exist that ease creating application architectures, designs,
and management processes. Their generic nature provides a
powerful means to describe knowledge in an abstract fashion
that can be reused and refined for concrete use cases. However,
the required manual refinement currently prevents applying the
concept of patterns efficiently in the domain of Cloud Application
Management as automation is one of the most important require-
ments in Cloud Computing. This paper presents an approach
that enables automating both (i) the refinement of management
patterns for individual use cases and (ii) the execution of the
refined solutions: we introduce Automated Management Idioms to
refine patterns automatically and extend an existing management
framework to generate executable management workflows based
on these refinements. We validate the presented approach by a
prototypical implementation to prove its technical feasibility and
evaluate its extensibility, standards compliance, and complexity.

Keywords—Application Management; Automation; Patterns; Id-
ioms; Cloud Computing

I. INTRODUCTION

Patterns are a well-established concept to document reusable
solution expertise for frequently recurring problems. In many
areas, they provide the basis for decision making processes,
design evaluations, and architectural issues. In the domain of
Cloud Computing, patterns are of vital importance to build,
manage, and optimize IT on various levels: Cloud Computing
Architecture and Management Patterns [1], Enterprise Inte-
gration Patterns [2], and Green IT Patterns [3] are a few
examples that provide helpful guides for realizing complex
Cloud applications, their management, and challenging non-
functional requirements. The concept of patterns enables IT
experts to document knowledge about proven solutions for
problems in a certain context in an abstract, structured, and
reusable fashion that supports systems architects, developers,
administrators, and operators in solving concrete problems.
The abstract nature of patterns enables generalizing the core
of problem and solution to a level of abstraction that makes
them applicable to various concrete instances of the general
problem—independently from individual manifestations. Thus,
many IT patterns are applicable to a big set of different settings,
technologies, system architectures, and designs. Applying
patterns to real problems requires, therefore, typically a manual
refinement of the described abstract high-level solution for
adapting it to the concrete use case. To guide this refinement
and ease pattern application, most pattern languages docu-
ment “implementations”, “known uses”, or “examples” for
the described pattern solution—as already done implicitly by
Alexander in his early publications on patterns [4].

However, in some areas, these benefits face difficulties
that decrease the efficiency of using patterns immensely. In
the domain of Cloud Application Management, the immediate,
fast, and correct execution of management tasks is of vital
importance to achieve Cloud properties such as on-demand
self-service and elasticity [5][6]. Thus, management patterns,
e. g., to scale a Cloud application, cannot be applied manually
by human operators when a problem occurs because manual
executions are too slow and error prone [1][7]. Therefore,
to use patterns in Cloud Application Management, their
application must be automated [8]. A common way to automate
the execution of management patterns is creating executable
processes, e. g., workflows [9] or scripts, that implement a
refined pattern solution for a certain application [1]. To achieve
Cloud properties, this must be done in advance, i. e., before the
problem occurs, for being ready to run them immediately when
needed. However, these processes are tightly coupled to a single
application as the refinement of a management pattern depends
mainly on the technical details of the application, its structure,
and the concrete desired solution [10]. For example, the pattern
for scaling a Cloud application results in different processes
depending on the Cloud provider hosting the application: due
to the heterogeneous management APIs offered by different
Cloud providers, different operations have to be executed to
achieve the same conceptual effect [11]. Thus, individual pattern
refinement influences the resulting management processes
fundamentally. As a result, multiple individual processes have to
be implemented in advance to execute one management pattern
on different applications. However, if multiple patterns have to
be implemented for hundreds of applications in advance, this
is not efficient as the required effort is immense. In addition,
as Cloud application structures typically evolve over time, e. g.,
caused by scaling, a pattern may has to be implemented multiple
times for a single application. Ironically, if the implemented
processes are not used during the application’s lifetime, the
spent effort was laborious, costly, but completely unnecessary.

The result of the discussion above is that the gap between a
pattern’s abstract solution and its refined executable implemen-
tation for a certain use case currently prevents applying the con-
cept of patterns efficiently to the domain of Cloud Application
Management—due to the mandatory requirement of automation
and its difficult realization. Thus, we need a means to automate
the refinement of abstract patterns to concrete executable
solutions on demand. In this paper, we tackle these issues
by presenting an approach that enables applying management
patterns fully automatically to individual applications. We show
how the required refinement of a management pattern towards
a concrete use case can be automated by inserting an additional
layer of Automated Management Idioms, which provide a
fine grained refinement of a particular abstract management
pattern. These Automated Management Idioms are able to create

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

formal declarative descriptions of the management tasks to be
performed automatically for individual applications that are
used afterwards to generate the corresponding executable man-
agement processes using an existing management framework.
This enables automating the application of abstract patterns to
various concrete applications without human intervention, which
increases the efficiency of using patterns in Cloud Application
Management. Thereby, the presented approach (i) helps IT
experts to capture their management knowledge in an executable
fashion and (ii) enables automating existing management
patterns—both independently from individual applications. To
prove the relevance of our approach, we conduct a detailed
case study that illustrates the high complexity of applying an
abstract migration management pattern to a concrete use case.
We validate the approach through a prototype that extends
an existing management framework by the presented concept
and the implementation of real world migration use cases to
prove its technical feasibility. Furthermore, we evaluate the
concept in terms of automation, technical complexity, standards
compliance, separation of concerns, and extensibility.

The paper is structured as follows: in Section II, we describe
background information and a case study. In Section III, we
describe the management framework which is extended by our
approach presented in Section IV. In Section V, we evaluate the
approach and present related work in Section VI. We conclude
the paper and give an outlook on future work in Section VII.

II. BACKGROUND, MOTIVATION, AND REQUIREMENTS

In this section, we provide background information about
the domain of Cloud Application Management and analyze the
requirements to apply the concept of patterns. Afterwards, we
motivate the presented approach through a case study.

A. Automating Patterns for Cloud Application Management

In this section, we discuss why the concept of patterns
and their automation are of vital importance in the domain
of Cloud Application Management to optimize management
and to reduce the number of errors and downtimes. Due
to the steadily increasing use of IT in enterprises, accurate
operation and management are of crucial importance to align
business and IT. As a consequence, requirements such as
high-availability, elasticity, and cheap operation of IT arise
increasingly. Therefore, more and more enterprises outsource
their IT to external providers to achieve these properties
reliably and to automate IT management—both enabled by
Cloud Computing [12]. However, the fast growing number
of proprietary, mostly heterogeneous, Cloud services offered
by different providers leads to a high complexity of creating
composite Cloud applications and executing management tasks
as the (i) offered services, (ii) non-functional capabilities, and
(iii) application programming interfaces (APIs) of different
Cloud providers differ significantly from each other. As a result,
the actual structure of an application, the involved types of
Cloud services (e. g., platform services), and the management
technologies to be used mainly depend on the providers and
are hardly interoperable with each other due to proprietary
characteristics. This results in completely different management
processes for different Cloud providers implementing the same
conceptual management task. As a consequence, the conceptual
solution implemented in such processes gets obfuscated by

technical details and proprietary idiosyncrasies. It is nearly
impossible to reuse and adapt the implemented knowledge
efficiently for other applications and providers as the required
effort to analyze and transfer the conceptual solution to other use
cases is much too high. This results in continually reinventing
the wheel for problems that were already solved multiple times—
but not documented in a way that enables reusing the conceptual
knowledge. A solution for these issues are management patterns,
which provide a well-established means to document conceptual
solutions for frequently recurring problems in a structured,
reusable, and tailorable way [13]. Therefore, a lot of architec-
tural and management knowledge for Cloud applications and
their integration was captured in the past years using patterns,
e. g., Enterprise Integration Patterns [2] and Cloud Computing
Architecture and Management Patterns [1]. A management
pattern typically documents the general characteristics of a
certain (i) problem, (ii) its context, and (iii) the solution in an
abstract way without getting lost in technical realization details.
Thereby, they help applying proven conceptual management
expertise to individual applications, which typically requires
a manual refinement of the pattern’s abstract solution for the
concrete use case. However, this manual refinement leads to
two challenges that are tackled in this paper to enable applying
the concept of management patterns efficiently in the domain
of Cloud Application Management: (i) technical complexity
and (ii) automation of refinement and solution execution.

1) Technical Complexity of Refinement: The technical layer
of IT management and operation becomes a more and more
difficult challenge as each new technology and its management
issues increase the degree of complexity—especially if different
heterogeneous technologies are integrated in complex sys-
tems [10]. Thus, the required refinement of a pattern’s abstract
solution to fine grained technical management operations as
well as their correct parametrization and execution are complex
tasks that require technical expert management knowledge.

2) Automation of Refinement and Solution Execution: In
Cloud Computing, application management must be automated
as the manual execution of management tasks is too slow and
error-prone since human operator errors account for the largest
fraction of failures in distributed systems [7][14]. Thus, the
refinement of a pattern’s abstract solution to a certain use case
and the execution of the refined solution must be automated.

B. Case Study and Motivating Scenario

In this section, we present a case study that is used
as motivating scenario throughout the paper to explain the
approach and to illustrate the high complexity of applying
abstract management patterns to concrete use cases. Due to
the important issue of vendor lock-in in Cloud Computing, we
choose a migration pattern to show the difficulties of refinement
and the opportunities enabled by our approach. We explain the
important details of the pattern and apply it to the use case
of migrating a Java-based application to the Amazon Cloud.
The selected pattern is called “Stateless Component Swapping
Pattern” [15] and originates from the Cloud Computing pattern
language developed by Fehling et al. [1][13][15]. The question
answered by this pattern is “How can stateless application
components that must not experience downtime be migrated?”.
Its intent is extracting stateless application components from
one environment and deploying them into another while they are

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Decommission
Component

Configure
Load Balancing

Provision
Component

Recreate
Application Stack

Extract
Component

Stateless Component Swapping Process Origin
Environment

Target
Environment

application
files

application
files

stack
config

Figure 1. Abstract Stateless Component Swapping Process (adapted from [15]).

active in both environments during the migration. Afterwards,
the old components are decommissioned. The context observed
by this pattern is that, in many business cases, the downtime
of an application is unacceptable, e. g., for customer-facing
services. A stateless application shall, therefore, be migrated
transparently to the accessing human users or applications. Here,
“stateless” means that the application does not handle internal
session state: the state is provided with each request or kept in
provider-supplied storage. Figure 1 depicts the pattern’s solution
as Business Process Model and Notation (BPMN) [16] diagram:
the component to be migrated is first extracted from the origin
environment while the required application stack is provisioned
concurrently in the target environment. Then, the component is
deployed on this stack in the target environment while the old
component is still active. Finally, after the new component is
provisioned, the reference to the migrated component is updated
(load balancing) and the old component is decommissioned.

This pattern shall be applied to the following concrete use
case. A stateless Webservice implemented in Java, packaged as
Web Archive (WAR), is currently hosted on the local physical IT
infrastructure of an enterprise. Therefore, a Tomcat 7 Servlet
Container is employed that runs this WAR. The Tomcat is
deployed on an Ubuntu Linux operating system that is hosted
on a physical server. The Webservice is publicly reachable under
a domain, which is registered at the domain provider “United
Domains”. This service shall be migrated to Amazon’s public
Cloud to relieve the enterprise’s physical servers. Therefore,
Amazon’s public Cloud offering “Elastic Compute Cloud (EC2)”
is selected as target environment. On EC2, a virtual machine
with the same Ubuntu operating system and Tomcat version
shall be provisioned to run the Webservice in the Cloud.

Provider: uniteddomains
Name: myservice.org
Account: myUser
Password: myPassword

(hostedOn)

(Domain)

File: serviceimpl.war
URL: 92.68.1.1:8080/service

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

SSHCredentials: ….

(Ubuntu12.04)

IP-Address: 92.68.1.1
…

(Server)

(hostedOn)

(hostedOn)

(refersTo) (refersTo)

(hostedOn)

File: serviceimpl.war
URL: 54.73.142.190:8080/service

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

IP-Address: 54.73.142.190
SSHCredentials: …

(Ubuntu12.04VM)

Account: MyAccount
Password: fw9aa2fr

(AmazonEC2)

(hostedOn)

(hostedOn)

Figure 2. Use case for applying the Stateless Component Swapping Pattern.

Figure 2 shows the technical details of this migration. On the
left, the current Enterprise Topology Graph (ETG) [17] of the
application is shown. An ETG is a formal model that captures
the current state of an application in the form of a topology,
which describes all components and relations including their
types, configuration, and runtime information. ETGs of running
applications can be discovered fully automatically using the
“ETG Discovery Framework” [18]. We use the visual notation
Vino4TOSCA [19] to render ETGs graphically: components
are depicted as rounded rectangles containing their runtime
properties below, relationships as arrows. Element types are
enclosed by parentheses. On the right, the goal of the migration
is shown: all components and relationships drawn with dotted
lines belong to the goal state, i. e., the refined pattern solution.

To refine the pattern’s abstract solution process shown in
Figure 1 to this use case, the following tasks have to be
performed: (i) the WAR to be migrated must be extracted
from the origin environment, (ii) a virtual machine (VM) must
be provisioned on EC2, (iii) a Tomcat 7 Servlet Container must
be installed on this VM, (iv) the WAR must be deployed on
the Tomcat, (v) the domain must be updated, and (vi) the old
WAR must be decommissioned. The technical complexity of
this migration is quite high as four different heterogeneous
management APIs and technologies have to be combined and
one workaround is required to achieve these goals: the extraction
of the WAR deployed on the local Tomcat is not supported by
Tomcat’s management API [20]. Thus, a workaround is needed
that extracts the WAR file directly from the underlying Ubuntu
operating system. However, this is technically not trivial: an
SSH connection to the operating system must be established, the
respective directory must be found in which Tomcat stores the

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Management
Workflow

Management
Planlet Library

Plan
Generator

Desired Application
State Model

x

Figure 3. Management Planlet Framework Overview (adapted from [8]).

deployed WAR files, and the correct WAR must be transferred
from the remote host to a local host using protocols such
as Secure Copy (SCP). To provision a new virtual machine,
EC2’s HTTP-based management API [21] has to be invoked.
However, an important security detail has to be considered
here: per default, a virtual machine on EC2 is not accessible
from the internet. Amazon employs so-called “Security Groups”
to define firewall rules for accessing virtual machines. Thus,
as the Webservice should be accessible from the internet, a
Security Group must be defined to allow access. To install
Tomcat 7, script-centric configuration management technologies
such as Chef can be used. To deploy the WAR on Tomcat,
Tomcat’s HTTP-based management API has to be invoked. The
domain can be updated using the management API of United
Domains [22]. However, to avoid downtime, the old WAR
must not be decommissioned until the Domain Name System
(DNS) servers were updated with the new URL. Therefore, a
DNS Propagation Checker must be employed. To summarize,
the required technical knowledge to refine and implement the
pattern’s abstract solution for this concrete use case is immense.
In addition, automating this process and orchestrating several
management APIs that provide neither a uniform interface nor
compatible data formats is complex, time-consuming, and costly
as the process must be created by experts to avoid errors [10].
As a consequence, (i) handling the technical complexity and
(ii) automating this process are difficult challenges.

III. EMPLOYED MANAGEMENT FRAMEWORK

The approach we present in this paper tackles these issues
by extending the “Management Planlet Framework” [8][10][23].
This framework enables describing management tasks to be
performed in an abstract and declarative manner using Desired
Application State Models, which can be transformed fully
automatically into executable workflows by a Plan Generator
through orchestrating Management Planlets. In this section, we
explain the framework briefly to provide all required informa-
tion to understand the presented approach. The concept of the
management framework is shown in Figure 3. The Desired
Application State Model (DASM) on the left declaratively
describes management tasks that have to be performed on
nodes and relations of an application. It consists of (i) the
application’s ETG, which describes the current structure and
runtime information of the application in the form of properties,
and (ii) Management Annotations, which are declared on nodes
and relations to specify the management tasks to be executed

Provider: uniteddomains
Name: myservice.org
Account: myUser
Password: myPassword

(hostedOn)

(Domain)

File: serviceimpl.war
URL: 92.68.1.1:8080/service

(StatelessWAR)

HTTP-Port : 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

SSHCredentials: ….

(Ubuntu12.04)

IP-Address: 92.68.1.1
…

(Server)

(hostedOn)

(hostedOn)

(refersTo) (refersTo)

= Create-Annotation

= Destroy-Annotation

= SetSecurityGroup-Annotation

= ExtractApplication-Annotation

(hostedOn)

File: $extractedWAR
URL:

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

IP-Address:
SSHCredentials: ….

(Ubuntu12.04VM)

Account: MyAccount
Password: fw9aa2fr

(AmazonEC2)

(hostedOn)

(hostedOn)

Figure 4. DASM describing the management tasks of the refined pattern.

on the associated element, e. g., to create, update, or destroy
the corresponding node or relation. A Management Annotation
(depicted as coloured circle) defines only the abstract semantics
of the task, e. g., that a node should be created, but not its
technical realization. Thus, in contrast to executable imperative
management descriptions such as management workflows that
define all technical details, a DASM describes the management
tasks to be performed only declaratively, i. e., only the what
is described, but not the how. As a consequence, DASMs are
not executable and are, therefore, transformed into executable
Management Workflows by the framework’s Plan Generator.

Figure 4 shows a DASM that realizes the motivating
scenario of Section II-B. The DASM describes the required
additional nodes and relations as well as Management Annota-
tions that declare the tasks to be performed: the green Create-
Annotations with the star inside declare that the corresponding
node or relation shall be created while the red circles with the
“X” inside represent Destroy-Annotations, which declare that the
associated element shall be destroyed. The magenta coloured
ExtractApplication-Annotation is used to extract the application
files of the WAR node, the blue coloured SetSecurityGroup-
Annotation configures the Security Group to allow accessing
the node from the internet. This DASM specifies the tasks
described by the abstract solution of the Stateless Component
Swapping Pattern refined to the concrete use case of migrating a
Java Webservice to EC2. As Management Annotations describe
tasks only declaratively, the model contains no technical details
about management APIs, data formats, or the control flow.

63Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Create Ubuntu 12.04 VM on Amazon EC2 Planlet

(AmazonEC2)

Account: *

Password: *

(Ubuntu12.04VM)

(hostedOn)

Annotated Topology Fragment Workflow

P

SSHCredentials: *

 IP-Address: *

Figure 5. Management Planlet that creates an Ubuntu VM on Amazon EC2.

The framework’s Plan Generator interprets DASMs and gener-
ates the corresponding executable workflows automatically. This
is done by orchestrating so-called Management Planlets, which
are workflows executing Management Annotations on nodes
and relations such as deploying a WAR on Tomcat or updating a
domain with a new URL. Planlets are developed by technology
experts and provide the low-level imperative management
logic to execute the declarative Management Annotations used
in DASMs. Thus, they are reusable management building
blocks implementing the how of the declaratively described
abstract management tasks in DASMs. Management Planlets
express their functionality through an Annotated Topology
Fragment, which describes (i) the Planlet’s effects in the form
of Management Annotations it executes on elements and (ii)
preconditions that must be fulfilled to execute the Planlet.
The Plan Generator orchestrates suitable Planlets to process
all Management Annotations in the DASM. The order of
Management Planlets is determined based on their preconditions
and effects: all preconditions of a Planlet must be fulfilled by
the DASM itself or by another Planlet that is executed before.

Figure 5 shows a Planlet that creates a new Ubuntu 12.04
virtual machine on Amazon EC2. The Annotated Topology Frag-
ment exposes the Planlet’s functionality by a Create-Annotation
attached to the node of type “Ubuntu12.04VM” which has a
“hostedOn” relation to a node of type “AmazonEC2”. The
Planlet’s preconditions are expressed by all properties that have
no Create-Annotation attached: the desired “SSHCredentials”
of the VM node as well as “Account” and “Password” of the
Amazon EC2 node must exist to execute the Planlet, which
takes this information to create the new VM (we omit other
properties to simplify). The Planlet’s effects on elements are
expressed by Create-Annotations on their properties, i. e., the
Create-Annotation on the “IP-Address” of the VM node means
that the Planlet sets this property. The existence of this property
and the “SSHCredentials” are typical preconditions of Planlets
that install software on virtual machines. Thus, Planlets can be
ordered based on such properties. The strength of Management
Planlets is hiding the technical complexity completely [8]:
the Plan Generator orchestrates Planlets based only on their
Topology Fragments and the abstract Management Annotations
declared in the DASM, i. e., without considering technical
details implemented by the Planlet’s workflow. This provides
an abstraction layer to integrate management technologies.

IV. AUTOMATED REFINEMENT OF MANAGEMENT
PATTERNS TO EXECUTABLE MANAGEMENT WORKFLOWS

In the previous section, we explained how DASMs can
be used to describe management tasks in an abstract manner
and how they are transformed automatically into executable
workflows by the Management Planlet Framework. Thereby, the
framework provides a powerful basis for automating patterns
and handling the technical complexity of pattern refinement.

Stateless Component Swapping SAMP

Transformation Topology Fragment

(StatelessApplication)

(RuntimeEnvironment)

(hostedOn)

 Textual Description
ABC

Figure 6. Stateless Component Swapping SAMP.

In a former work [8], we presented an approach to generate
DASMs automatically by applying management patterns to
ETGs of running applications. However, as patterns should not
capture use case-specific information, the approach provides
only a semi-automated means and requires a manual refinement
of the resulting DASM. Consequently, we call these patterns
Semi-Automated Management Patterns (SAMP). In this paper,
we extend the concept of SAMPs. Therefore, we introduce
them briefly to provide required information. The input of a
SAMP is the current Enterprise Topology Graph (ETG) of the
application to which the pattern shall be applied, its output is
a DASM that declaratively describes the pattern’s solution
in the form of Management Annotations to be performed.
A SAMP consists of three parts, as shown in Figure 6:
(i) Topology Fragment, (ii) Transformation, and (iii) textual
description. The Topology Fragment is a small topology that
defines the pattern’s context, i. e., it is used to determine if a
pattern is applicable to a certain ETG. Therefore, it describes
the nodes and relations that must match elements in the
ETG to apply the pattern to these matching elements. For
example, the Stateless Component Swapping SAMP shown
in Figure 6 is applicable to ETGs that contain a component of
type “StatelessApplication” that is hosted on a component of
type “RuntimeEnvironment”. As the type “StatelessWAR” is
a subtype of “StatelessApplication” and “Tomcat7” a subtype
of “RuntimeEnvironment”, the shown SAMP is applicable to
the motivating scenario (cf. Figure 2). The second part is a
Transformation that implements the pattern’s solution logic,
i. e., how to transform the input ETG to the output DASM that
describes the tasks to be performed. However, SAMPs provide
only a semi-automated means as the resulting DASM requires
further manual refinement—similar to the required refinement
of normal patterns for concrete use cases. Figure 7 shows
the DASM resulting from applying the Stateless Component
Swapping SAMP to the ETG described in the motivating
scenario. As the pattern’s transformation can not be aware of
the desired refinement for this use case, it is only able to apply
the abstract solution: (i) the stateless application is extracted,

64Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Provider: uniteddomains
Name: myservice.org
Account: myUser
Password: myPassword

(hostedOn)

(Domain)

File: serviceimpl.war
URL: 92.68.1.1:8080/service

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

SSHCredentials: ….

(Ubuntu12.04)

IP-Address: 92.68.1.1
…

(Server)

(hostedOn)

(hostedOn)

(refersTo) (refersTo)

(hostedOn)

File: $extractedWAR
URL:

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

SSHCredentials: ….

(Ubuntu12.04)

IP-Address:
…

(Server)

(hostedOn)

(hostedOn)

= Create-Annotation

= Destroy-Annotation

= ExtractApplication-Annotation

Figure 7. DASM after applying the Stateless Component Swapping SAMP.

(ii) the stack is copied, and (iii) all incoming relations of the
application to be migrated are switched to the new deployment.
To refine this DASM for the motivating scenario, the “Server”
node type must be replaced by “AmazonEC2”, the operating
system must be a virtual machine of type “Ubuntu12.04VM”,
and a Management Annotation must be added to configure the
Security Group (cf. Figure 4). However, manual refinement
violates the two requirements analyzed in Section II-A as (i) the
technical complexity remains (e. g., operator has to be aware
of Security Groups) and (ii) human intervention is required,
which breaks the required full automation. Of course, Semi-
Automated Management Patterns could be created for concrete
use cases as also shown in Breitenbücher et al. [8]. However,
this violates the abstract nature of patterns and causes confusing
dependencies between patterns and use cases, which decreases
usability. In addition, with the increasing number of such use
case-specific management patterns, the conceptual part of the
abstract solution gets obfuscated. Therefore, we add an explicit
refinement layer to separate the different layers of abstraction.

A. Overview of the Approach

In this and the next section, we present the main contribution
of this paper. The approach enables applying patterns fully
automatically to concrete use cases and solves the two problems
analyzed in Section II-A: (i) handling the technical complexity
of refinement and (ii) automating refinement and solution exe-
cution. The goal is to automate the whole process of applying a
pattern selected by a human operator to a concrete use case. The
reason that Semi-Automated Management Patterns can not be

Refinement Layer

Management Pattern

Management Idiom 1 Management Idiom n

refines refines

…

… Use Case 1 Use Case n

considers considers

Figure 8. Additional refinement layer below management patterns.

applied fully automatically results from the generative nature of
patterns since they describe only the general core of solutions.
Consequently, they must be refined manually to individual use
cases. Therefore, we need a more specific means below patterns
to document concrete management problems and already refined
solutions. According to Buschmann et al. [24], who consider
design issues of software, so-called “idioms” represent low-
level patterns that deal with the implementation of particular
design issues in a certain programming language. They address
aspects of both design and implementation and provide, thus,
already refined pattern solutions. For example, an idiom may
describe concretely how to implement the abstract Model-View-
Controller Pattern (MVC) in Java. Thus, this concept solves a
similar kind of refinement problem in the domain of software
architecture and design. Therefore, we adapt this refinement
concept to the domain of Cloud Application Management.

We insert an additional refinement layer below management
patterns in the form of Application Management Idioms, which
are a tailored incarnation of a certain abstract management
pattern refined for a concrete problem, context, and solution
of a certain use case. Figure 8 shows the conceptual approach:
a management pattern is refined by one or more Management
Idioms that consider each a concrete use case of the pattern and
provide an already refined solution. Thus, instead of refining
an abstract management pattern manually to a certain use
case, the pattern to be applied can be refined automatically by
selecting the appropriate Management Idiom directly. Applying
this concept to our motivating scenario, the refinement of the
Stateless Component Swapping Pattern to our concrete use
case of migrating a stateless Java Webservice packaged as
WAR to Amazon EC2 (see Section II-B) can be captured by
a “Stateless WAR from Tomcat 7 to Amazon EC2 Swapping
Idiom”, which describes the refined problem, context, and
solution. Thus, instead of providing only the generic solution,
this idiom is able to describe the tasks in detail tailored to this
concrete context. Thereby, management tasks such as defining
the Security Group can be described while the link to the
conceptual solution captured by the actual pattern is preserved.

The additional refinement layer enables separating concerns:
on the management pattern layer, the generic abstract problem,
context, and solution are described to capture the conceptual
core. On the Management Idiom layer, a concrete refinement
is described that possibly obfuscates the conceptual solution
partially to tackle concrete issues of individual use cases. As a
consequence, the presented approach enables both (i) capturing
generic management knowledge and (ii) providing tailored

65Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

System System System System

Automatic
Workflow
Execution

Handling technical complexity of refinement

Automating refinement and solution execution

Automatic
Workflow

Generation

Automatic
Management Idiom

Application

Manual
Management Pattern
and Idiom Selection

Automatic ETG
Discovery

2 3 4 5 1

Figure 9. Process that describes how to apply a management pattern fully automatically to a running application using Automated Management Idioms.

refinements linking to the actual pattern. In the next section, we
extend the concept of Semi-Automated Management Patterns
by Automated Management Idioms following this concept.

B. Automated Management Idioms

To automate the new refinement layer, we introduce Auto-
mated Management Idioms (AMIs) in this section. Automated
Management Idioms refine Semi-Automated Management
Patterns through (i) providing a refined Topology Fragment
that formalizes the particular context to which the idiom is
applicable and (ii) implementing a more specific transformation
tailored to the refined context for transforming the input ETG
directly into an already refined DASM. Each AMI additionally
defines a Pattern Reference (PR) linking to its original pattern.

Stateless WAR from Tomcat 7 to
Amazon EC2 Swapping AMI

Transformation

 Textual Description
ABC

PR

Topology Fragment

(StatelessWAR)

(Tomcat7)

(hostedOn)

Figure 10. Stateless WAR from Tomcat 7 to Amazon EC2 Swapping AMI.

Figure 10 shows the AMI that refines the Stateless Com-
ponent Swapping SAMP for our motivating scenario. The
refinement of the context, to which this idiom is applicable, is
expressed by the refined Topology Fragment: while the pattern
is applicable to topologies that contain an abstract “StatelessAp-
plication” that is hosted on an abstract “RuntimeEnvironment”,
the shown idiom refines this fragment and is only applicable
to a node of type “StatelessWAR” that is hosted on a node
of type “Tomcat7”. The refinement of the Topology Fragment
restricts the idiom’s applicability and enables to implement
a transformation that considers exclusively this concrete use
case. Therefore, the idiom’s transformation differs from the
pattern’s transformation by adding more details to the output
DASM: it refines the “Server” node directly to “AmazonEC2”
and adds the required Management Annotation that configures
the Security Group accordingly in order to enable accessing
the migrated WAR from the internet. The operating system is
exchanged by “Ubtuntu12.04VM” while the “Tomcat7” and
“StatelessWAR” nodes are simply copied from the ETG of the

origin environment. Similar to the transformation of the pattern,
all incoming relations of the old WAR node are redirected to
the new WAR. Thus, the resulting DASM corresponds exactly
to the DASM shown in Figure 4, which would be created
manually by an expert to refine the pattern to this use case.
As a result, applying this Automated Management Idiom to
the motivating scenario’s ETG results in a completely refined
DASM which can be transformed directly into an executable
workflow by the Management Planlet Framework. Thus, no
further manual refinement is required to apply the pattern to
this use case. Nevertheless, the Management Planlet Framework
enables implementing this Automated Management Idiom on
a high level of abstraction due to Management Annotations.

C. Fully Automated Pattern-based Management System

In this section, we explain the process of applying a manage-
ment pattern in the form of an Automated Management Idiom
automatically to a running application using the Management
Planlet Framework. This process provides the basis for a Fully
Automated Pattern-based Management System and consists
of the five steps shown in Figure 9. First, the ETG of the
application to be managed has to be discovered. This step
is automated by using the ETG Discovery Framework [18],
which gets an entry node of the application as input, e. g., the
URL pointing to a deployed Webservice, and discovers the
complete ETG of this application fully automatically including
all runtime properties. In the second step, the user selects the
pattern to be applied in the form of an Automated Management
Idiom. This is the only manual step of the whole process. In the
third step, the selected idiom is applied by the framework fully
automatically to the discovered ETG. Therefore, the idiom’s
transformation is executed on the ETG. The output of this
step is a Desired Application State Model that is based on
the discovered ETG but additionally contains all management
tasks to be executed in the form of Management Annotations.
This DASM is used in Step 4 by the Management Planlet
Framework to generate an executable management workflow, as
described in Section III. In the last step, the generated workflow
is executed using a workflow engine. The overall process fulfills
the two requirements analyzed in Section II-A: (i) handling
technical complexity and (ii) automating refinement and so-
lution execution. The technical complexity is hidden by the
framework’s declarative nature: management tasks are described
only as abstract Management Annotations. All implementation
details are inferred automatically by Management Planlets.
Thus, the user only selects the idiom to be applied, the technical
realization is invisible and automated. The second requirement
of automation is achieved through executable transformations
of idioms and the employed Management Planlet Framework.

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

D. Automatic Refinement Filtering and Pattern Configuration

To apply a pattern automatically using this system, the user
first triggers the automatic ETG discovery of the application to
be managed, searches the Semi-Automated Management Pattern
(SAMP) to be applied, and selects the desired refinement in
the form of an Automated Management Idiom. Based on their
Topology Fragments, non-applicable Automated Management
Idioms are filtered automatically by the system. For example,
if the Stateless Component Swapping SAMP is refined by
two different Automated Management Idioms—one is able to
migrate a PHP application hosted on an Apache HTTP Server to
Amazon EC2, the other is the described WAR migration idiom
shown in Figure 10—the system offers only the idioms whose
Topology Fragments match the elements in the ETG. Thus, in
case of our motivating scenario, only the idiom for migrating
the WAR application is offered as exclusively its Topology
Fragment matches the ETG. Based on this matchmaking, the
system is able to offer only applicable management patterns
and refinements in the form of Automated Management Idioms.
Therefore, we call this concept Automatic Refinement Filtering.

If multiple idioms of a selected SAMP match the ETG
after filtering, e. g., one idiom migrates the WAR application
to Amazon EC2, another to Microsoft’s public Cloud “Azure”,
the user is able to configure the refinement of the pattern by
a simple manual idiom selection while its actual application
and execution are automated completely. Therefore, we call
this concept Configurable Automated Pattern Refinement. The
combination of these two concepts automates the refinement in
two dimensions: first, Automatic Refinement Filtering preselects
applicable refinements automatically, which relieves the user
from finding applicable idioms. Second, the remaining filtered
idioms can be applied directly without human intervention.
Thus, the only manual step in this process is selecting the
pattern and the desired configuration in the form of an idiom.

V. VALIDATION AND EVALUATION

In this section, we validate the presented approach by a (i)
prototypical implementation and evaluate the concept in terms
of (ii) standards compliance, (iii) automation, (iv) technical
complexity, (v) separation of concerns, and (vi) extensibility.

A. Prototype

To validate the technical feasibility of the approach, we
extended the Java prototype presented in our former work [8]
by Automated Management Idioms. The system’s architecture
is shown in Figure 11. The Web-based user interface is
implemented in HTML5 using Java Servlets. Therefore, the
prototype runs on a Tomcat 7 Servlet Container. The UI calls
the Application Management API to apply a pattern to a running
application. Therefore, it discovers the application’s ETG by
integrating the ETG Discovery Framework [18] and employs
a Pattern and Idiom Manager to select the pattern / idiom
to be applied. The manager is connected to a local library
which stores deployable SAMPs and AMIs in the form of Java-
based Webservices and implements a matchmaking facility to
analyze which patterns / idioms are applicable to a certain
ETG. To add new patterns or idioms to the system, the library
provides an interface to register additional implementations.
After selection, the discovered ETG and the SAMP / AMI to

User Interface

Pattern and
Idiom Manager

Pattern and
Idiom Applier

ETG Discovery
Framework

Application Management API

Plan
Generator

Workflow
Engine

Pattern & Idiom
Library

Planlet
Library

TOSCA
Importer

Figure 11. Fully Automated Pattern-based Management System Architecture.

be applied are passed to the Pattern and Idiom Applier, which
executes the pattern’s / idiom’s transformation on the ETG
and passes the resulting DASM to the Plan Generator. The
generator is connected to a local Management Planlet Library
that contains all available Planlets, which are implemented
using the standardized Business Process Execution Language
(BPEL) [25]. It generates the corresponding management
workflow also in BPEL, which is deployed and executed
afterwards on the employed workflow engine “WSO2 Business
Process Server 2.0”. We implemented several Semi-Automated
Management Patterns and corresponding refinements in the
form of Automated Management Idioms, e. g., for migration
scenarios similar to the one used in this paper.

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [26] is an OASIS standard to describe
Cloud applications and their management in a portable way.
Therefore, it provides a specification to model application
topologies that can be linked with management workflows.
As our approach is based on the same concepts, our prototype
supports importing and deploying TOSCA-based applications,
which can be managed afterwards using the presented approach.

B. Standards Compliance and Interoperability

Standards are a means to enable reusability, interoperability,
and maintainability of software and hardware, which leads to
higher productivity and helps aligning the enterprise’s IT to its
business. However, most available management approaches are
based on non-standardized APIs or domain-specific languages
(DSLs) which makes it difficult to provide and transfer the
required knowledge. The presented approach tackles this issue
by supporting two existing standards: (i) TOSCA is used
to import standardized application descriptions that can be
managed using SAMPs and AMIs while the (ii) BPEL standard
is used to implement and execute the generated Management
Workflows. In addition, Management Planlets and the generated
workflows are implemented in BPEL, which is a standard
to describe executable workflows. Thus, they are portable
across standard-compliant BPEL engines. In addition, Planlets
allow integrating different kinds of management technologies
seamlessly [8][10]. As a result, the presented approach is
agnostic to individual management technologies and Cloud
providers, which supports interoperability and eases integration.

C. Automation

In Cloud Application Management, automation is of vital
importance. Workflow technology enables automating the execu-

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

tion of management tasks and provides powerful features such
as automated recoverability and compensation [9]. However,
if these processes that implement a refined solution of the
respective management pattern have to be created manually,
it is not efficient and, in addition, error-prone. The presented
approach automates the creation of workflows that implement
a pattern’s refined solution through the introduced Automated
Management Idiom layer and the employed framework. Thus,
only the choice when to trigger a management pattern is left
to the human operator. This automation decreases the risk
of human errors, which account for the largest fraction of
failures and system downtimes in distributed systems [7][14].
In addition, the required technical knowledge to understand the
different management technologies is not required at all as the
whole process of determining the tasks to be performed and
orchestrating the required technologies is fully automated.

D. Technical Complexity

Manually handling the technical complexity of pattern
refinement for composite Cloud applications is a major issue
due to heterogeneous and proprietary management technologies
(cf. Section II). The presented approach tackles this issue
by automating the whole refinement process from a pattern’s
abstract solution to the final executable workflow on two
layers: (i) automating refinement by Automated Management
Idioms and (ii) automated workflow generation using the
Management Planlet Framework. The automated refinement
removes the two manual tasks to specify concrete node and
relationship types for abstract types and to add refinement-
specific Management Annotations (cf. Figure 4 and Figure 7).
Hence, the formerly required technical expertise on proprietary
management idiosyncrasies such as Security Groups is no longer
a mandatory prerequisite. Secondly, the orchestration of the
different management technologies is completely handled by
the Plan Generator that transforms the refined DASM fully
automatically into an executable Management Workflow. Thus,
this removes all manual steps and the only task that is left
to the human user is choosing the AMI to be applied. This
eliminates potential sources of errors on the technical layer [1].

E. Separation of Concerns

The presented approach separates concerns through splitting
the process of selecting, creating, and automating a pattern, its
refinement, and execution. Our approach enables IT experts to
capture generic management knowledge in patterns that can be
refined through Automated Management Idioms developed
by specialists of certain areas. Thus, pattern creators and
AMI developers are separate roles that are responsible for
different kinds of knowledge: SAMP creators capture generic
management knowledge, AMI creators refine this through
implementing concrete technology-specific management knowl-
edge. In addition, experts of low-level API orchestration that
understand the different management technologies are able to
automate their knowledge through implementing Management
Planlets. Thus, even AMI creators do not have to deal with
complex technology-specific details such as API invocations
or parametrization: they only implement their knowledge
declaratively, i. e., without defining the final API calls etc. This
enables separating different responsibilities and concerns as
well as a seamless integration of different kinds of knowledge.

F. Extensibility

The presented approach is extensible on multiple layers as it
provides an explicit integration framework for patterns, idioms,
and Planlets through using libraries. New Semi-Automated
Management Patterns and Automated Management Idioms can
be created based on a uniform Java interface and integrated into
the system seamlessly by a simple registration at the library. All
patterns and idioms in the library are considered automatically
when an application shall be managed by comparing their
Topology Fragments with the application’s ETG. To extend
the system in terms of management technologies, Planlets can
be implemented for new node types, relationship types, or
Management Annotations and stored in the Planlet Library.
The framework’s Plan Generator integrates new Management
Planlets without further manual effort when processing DASMs.

VI. RELATED WORK

Several works focus on automating application management
in terms of application provisioning and deployment. Eilam et
al. [27], Arnold et al. [28], and Lu et al. [29] consider pattern-
based approaches to automate the deployment of applications.
However, their model-based patterns are completely different
from the abstract kind of patterns we consider in this paper. In
their works, patterns are topology models which are used to as-
sociate or derive the corresponding logic required to deploy the
combination of nodes and relations described by the topology,
similarly to the Annotated Topology Fragments of Management
Planlets. Mietzner [30] presents an approach for generating
provisioning workflows by orchestrating “Component Flows”,
which implement a uniform interface to provision a certain
component. However, these works focus only on provisioning
and deployment and do not support management.

Fehling et al. [1][15] present Cloud Application Manage-
ment Patterns that consider typical management problems,
e. g., the “Stateless Component Swapping Pattern”, which
was automated in this paper. They propose to attach abstract
processes to management patterns that describe the high-level
steps of the solution. However, these abstract processes are not
executable until they are refined manually for individual use
cases. Their management patterns also define requirements in
the form of architectural patterns that must be implemented
by the application. These dependencies result in a uniform
pattern catalog that interrelates abstract management patterns
with architectural patterns. In addition, they propose to annotate
reusable “Implementation Artifacts” to patterns that may assist
applying the pattern, e. g., software artifacts or management
processes. Their work is conceptually equal to our approach
in terms of using processes to automate pattern application.
However, most of the refinement must be done manually, which
leads to the drawbacks discussed in Section I: management
processes must be created in advance to be executable when
needed. In addition, changing application structures caused by
other pattern applications, for example, migration patterns, lead
to outdated processes that possibly result in reimplementation.
In Falkenthal et al. [31], we show how reusable solution
implementations, e. g., Management Workflows, can be linked
with patterns. However, also this approach requires at least
one manual implementation of the concrete solution which
is typically tightly coupled to a certain application structure.

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Fehling et al. [32] also present a step-by-step pattern identifi-
cation process supported by a pattern authoring toolkit. This
authoring toolkit can be combined with our approach to create
patterns and idioms that can be automated afterwards. Thus,
the work of Fehling et al. provides the basis for creating AMIs
out of patterns captured in natural text following this process.

Reiners et al. [33] present an iterative pattern evolution
process for developing patterns. They aim for documenting
and developing application design knowledge from the very
beginning and continuously developing findings further. Non-
validated ideas are documented already in an early stage and
have to pass different phases until they become approved
design patterns. This process can be transferred to the domain
of Cloud Application Management Patterns. Our approach
supports this iterative pattern evolution process as it helps to
apply captured knowledge easily and quickly to new use cases.
Thus, it provides a complementary framework to our approach
that enables validating and capturing knowledge.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the concept of Automated
Management Idioms that enables automating the refinement
and execution of a pattern’s abstract solution automatically
to a certain use case by generating executable management
workflows. We showed that the approach enables (i) applying
the concept of patterns efficiently in the domain of Cloud
Application Management through automation, (ii) abstracting
the technical complexity of refinement, and (iii) reducing human
intervention. The approach enables operators to apply various
management patterns fully automatically to individual use
cases without the need for detailed technical expertise. The
prototypical validation, which extends the Management Planlet
Framework, proves the concept’s technical feasibility. In future
work, we plan to investigate how Automated Management
Idioms can be triggered automatically based on occurring events
and how multiple patterns can be applied together.

ACKNOWLEDGMENT

This work was partially funded by the BMWi project
CloudCycle (01MD11023).

REFERENCES

[1] C. Fehling, F. Leymann, J. Rütschlin, and D. Schumm, “Pattern-based
development and management of cloud applications.” Future Internet,
vol. 4, no. 1, March 2012, pp. 110–141.

[2] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[3] A. Nowak et al., “Pattern-driven Green Adaptation of Process-based
Applications and their Runtime Infrastructure,” Computing, February
2012, pp. 463–487.

[4] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

[5] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
Tech. Rep., July 2009.

[6] M. Armbrust et al., “A view of cloud computing,” Communications of
the ACM, vol. 53, April 2010, pp. 50–58.

[7] A. B. Brown and D. A. Patterson, “To err is human,” in EASY, July
2001, p. 5.

[8] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Pattern-based
runtime management of composite cloud applications,” in CLOSER.
SciTePress, May 2013, pp. 475–482.

[9] F. Leymann and D. Roller, Production workflow: concepts and techniques.
Prentice Hall PTR, 2000.

[10] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger,
“Integrated cloud application provisioning: Interconnecting service-centric
and script-centric management technologies,” in CoopIS. Springer,
September 2013, pp. 130–148.

[11] S. Leonhardt, “A generic artifact-driven approach for provisioning, con-
figuring, and managing infrastructure resources in the cloud,” Diploma
thesis, University of Stuttgart, Germany, November 2013.

[12] F. Leymann, “Cloud Computing: The Next Revolution in IT,” in Proc.
52th Photogrammetric Week, September 2009, pp. 3–12.

[13] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, January 2014.

[14] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in USITS. USENIX
Association, June 2003, pp. 1–16.

[15] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S. Verclas,
“Service Migration Patterns - Decision Support and Best Practices
for the Migration of Existing Service-based Applications to Cloud
Environments,” in SOCA. IEEE, December 2013, pp. 9–16.

[16] OMG, Business Process Model and Notation (BPMN), Version 2.0,
Object Management Group Std., Rev. 2.0, January 2011.

[17] T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm, “For-
malizing the Cloud through Enterprise Topology Graphs,” in CLOUD.
IEEE, June 2012, pp. 742–749.

[18] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “Automated
Discovery and Maintenance of Enterprise Topology Graphs,” in SOCA.
IEEE, December 2013, pp. 126–134.

[19] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and D. Schumm,
“Vino4TOSCA: A visual notation for application topologies based on
TOSCA,” in CoopIS. Springer, September 2012, pp. 416–424.

[20] Apache Software Foundation. Apache Tomcat 7 API. [Online].
Available: http://tomcat.apache.org/tomcat-7.0-doc/

[21] Amazon Web Services. Elastic Compute Cloud API Reference. [Online].
Available: http://docs.aws.amazon.com/AWSEC2/latest/APIReference

[22] United Domains. Reselling API. [Online]. Available: http://www.
ud-reselling.com/api

[23] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-Aware Provisioning of Cloud Applications,” in SECURWARE.
Xpert Publishing Services, August 2013, pp. 86–95.

[24] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
Wiley, 1996.

[25] OASIS, Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, OASIS, April 2007.

[26] OASIS, Topology and Orchestration Specification for Cloud Applications
Version 1.0, May 2013.

[27] T. Eilam, M. Elder, A. Konstantinou, and E. Snible, “Pattern-based
composite application deployment,” in IM. IEEE, May 2011, pp.
217–224.

[28] W. Arnold, T. Eilam, M. Kalantar, A. V. Konstantinou, and A. A. Totok,
“Pattern based soa deployment,” in ICSOC. Springer, September 2007,
pp. 1–12.

[29] H. Lu, M. Shtern, B. Simmons, M. Smit, and M. Litoiu, “Pattern-based
deployment service for next generation clouds,” in SERVICES. IEEE,
June 2013, pp. 464–471.

[30] R. Mietzner, “A method and implementation to define and provision
variable composite applications, and its usage in cloud computing,”
Dissertation, University of Stuttgart, Germany, August 2010.

[31] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F. Leymann,
“From Pattern Languages to Solution Implementations,” in PATTERNS.
Xpert Publishing Services, May 2014.

[32] C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rütschlin, and
D. Schumm, “Capturing cloud computing knowledge and experience in
patterns,” in CLOUD. IEEE, June 2012, pp. 726–733.

[33] R. Reiners, “A pattern evolution process - from ideas to patterns.” in
Informatiktage. GI, September 2012, pp. 115–118.

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

