
Search++:
More Control than a Simple Search Interface without the Complexity and Confusion of

Advanced Search

Alessandro Simone Agnello
Haim Levkowitz

Department of Computer Science
University of Massachusetts

Lowell, Massachusetts
01854-2874

alessandro_agnello@student.uml.edu
haim@cs.uml.edu

Abstract—On-line search engines are a key component of all
on-line activity and have evolved through the years. Despite
search engine advances, users today may need to execute multiple
searches prior to reaching their desired search results. However,
executing multiple searches in an effort to do so can be time con-
suming and may not lead to the best results. Leveraging complex
search interfaces, including Boolean filters, can exacerbate the
problem if the interface is too confusing and unfamiliar to the
user. To help overcome these issues, we introduce Search++, a
new search interface that reduces the steps for a common user to
reach their desired search results, through the use of latest Web
technologies and advanced visualizations.

Keywords–Search Interface; User Decision Pattern; Priority
Sorting; Web Visualization.

I. INTRODUCTION

Numerous studies have attempted to characterize the cogni-
tive process of searching for information and model the related
series of steps. A common theme amongst the models is a step
or steps, where an individual will evaluate results of a search
and use the information for a subsequent search to reach,
or get closer to, the desired search results. These steps are
referred to in many ways amongst the models: “Refinement”
[1], “Formulation” [2], and “Query reformulation tactics” [3]
to name a few. These models are applicable to searching for
information on-line. They have been used to formulate new
techniques for on-line search engine interfaces.

Search engine interfaces have evolved throughout the years
starting with the first on-line search engine “Archie”, which
included many Boolean filter options [4], to today's popular
search engines, which include a single input box, button,
and complex back-end algorithms to return results. Simplified
search interfaces are preferred by common users as advanced
search engines can be overwhelming to them. Despite ad-
vancements users find themselves executing multiple searches
prior to honing in on the desired search results. This effort is
time consuming and can lead users to feel discouraged and
frustrated [2].

It has been found that a technique that includes summarized
hierarchical display of data related to the search results along
with the search results themselves can be effective at quickly
reaching the final desired search results. However, success
depends on how well the summarized data aligns with the

Figure 1. Subset of a result shown, when a user typed in Fitbit as a search
term.

search terms [5]. Site-specific search engines, such as Amazon,
include Boolean filters with search results. However, the filters
are pre-arranged based on the category (e.g., price filter may
have a range from lowest to highest priced item within the
result set). Furthermore, Boolean filters omit search results,
which may further delay a user from honing in on the desired
search results. Users have been known to enter broad search
terms at first in an effort not to exclude search results that
may help them further define the desired search results [6].
This suggests that a user's awareness of all available data helps
her/him reach the desired search results.

To help accommodate users, refining their search and to
alleviate their struggling using advanced interfaces, we intro-
duce a new technique, Search++. Search++ bridges the gap
between the familiar but simplistic standard search interface
and the complex advanced search interface. Search++ utilizes
an expandable data source plugin utility that allows users to
search for attributes of single or multiple source result sets.
Search++ allows the user to rank these attributes, including
their sub-attributes. The ranking informs Search++ what the
user is more interested in (e.g., the user has a higher interest
in the price of an item than in its weight). Colors are used to
help depict which attributes have the largest number of sub-
attributes. Search++ associates a base light green color with

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

the attribute with the highest frequency of sub-attributes. Light
green was chosen to show contrast against the background
and green creates a relaxing effect for people [7]. We felt
that attributes with the highest frequency of sub-attributes,
shows the most likely sorted set for the common user. These
attributes are most common throughout the returned result
set. Attributes are darkened in color proportional to their
decrease of sub-attribute frequency. (E.g., Features: 20 sub-
attributes, Price: 10 sub-attributes, thus Features is light green,
and Price is darker). This allows the user to quickly visualize
the attributes with greatest sub-attribute frequency. In Figure
1, we provide an example result set of Search++. Upon initial
data retrieval or user interaction our query processing modules
will be triggered. These modules retrieve, normalize, sort,
and visualize user's search input and interaction (discussed in
Section IV-B). The main contributions of Search++ are:

• A new search interface that provides more control
than the standard stripped down interface. Without
overwhelming the user with advanced search interface
components.

• User defined and controlled relevance ranking.
• A framework that aggregates multiple Web

Server/Client technologies.
• An interactive and visual interface that lets the user

control the process and view results.

To help evaluate the capabilities of Search++, we con-
structed a case study using Amazon Web Services (AWS) [8].
We asked a group of ten individuals who described themselves
as “non-technical” to search for six unique products they are
seeking to purchase; three searches using Amazon's search
interface and three using Search++. Section VI describes this
in further detail.

In Section II, we discuss the past and present implementa-
tions of search interfaces. Section III define the components of
Search++. Section IV describes how the various components
work among each other and user interaction. Section V define
the processing modules upon initial load and user interaction
results. Section VI shows our case study using AWS as our
data repository. Section VII recaps our findings of Search++.

II. RELATED WORK

The goal of any search engine is to find information that
matches or is relevant to some criteria [9]. In the early days
of on-line computing, it was common to have complex input
criteria that may not be readable/understandable to today's
common user.

Complex interfaces are only usable by a few very tech-
nically savvy users who are able to negotiate the interface's
complexity to their needs. They often cause confusion and
frustration for the common user. Various approaches, such as
WISE-Integrator [10], try to bridge this gap by giving the user
more fields to fill out (e.g., price range, author name, etc.), but
this assumes the user knows more about what they are looking
for, which is often not the case. Common e-commerce based
search engines [11] have filter-down mechanisms to help users
identify some of their needs (e.g., price, brand, etc.). However,
the user cannot explicitly state what is their highest relevance.
These filtering mechanisms intentions are to remove entries
rather than resort them. Complex, advanced search engine

interfaces [12] [13] are not designed for the common user.
They show powerful results, but they lack in ease of control
and instant understanding/intentions of use.

Our Search++ approach is designed to support a common
(i.e., not particularly technical) user, offering a little more
control than just an input field, without overwhelming the
user with a tremendous amount of additional fields that may
or may not be coherent. We define a dynamic attribute as a
parent level descriptor of a given item. A dynamic attribute
instance may have child attributes. Child attributes are child
level descriptors of a single dynamic attribute. It is possible
that a child attribute may also be a dynamic attribute and have
child attributes. Our case study (Section VI) does not show
any child attributes also being a dynamic attribute. Dynamic
attribute instances are obtained from the search result set
and grouped in a way that shows only distinct results. Our
case study (Section VI) demonstrates various forms of this
scenario. We color code each attribute to show frequency of
sub-attributes (discussed more in Section V-D). Additionally,
the user can sort these attributes based on her/his priorities.
Upon resorting attributes, Search++ will display results based
upon their attribute ranking.

In Section VI, we demonstrate an application of Search++
on data exploration of e-commerce products. We explore the
usage of ranking of dynamic and child attributes along with
color scheme. We demonstrate the usefulness of Search++, and
display the value of ranked attribute and sub-attribute results.

III. COMPONENTS
The current fundamental set of Search++ components

includes three base views (Dynamic Table, Input Box, and
Dynamic Attributes), Session State Management, Data Source
Plugins, and four Query Processing Modules (Frequency Based
Priorities, Resorting Priority, Selection, and Color Code). Ad-
ditional libraries provide data organization and presentation.
We now describe each component in more detail.

A. Dynamic Table
Search++'s dynamic table provides a spreadsheet-like view

of the data. Each table may have up to i rows and j columns.
A user may select n row(s) to view the dynamic and child
attributes related to the selection. Upon selecting a row, it will
be highlighted. The dynamic and child attributes related to
selected row(s) will be displayed. Upon deselection of the
row(s), the entire list of dynamic and child attributes are
displayed. This technique provides an on-demand multiview
linked visualization that helps the user learn what dynamic
and child attributes make up the related dynamic table entries.
Figure 2 show the various states of a dynamic table.

B. Input Box
Search++'s input box is the initial visualization and first

point of interaction for the user. This component is common
in most search interfaces.

C. Dynamic Attributes
Search++'s dynamic attributes are created from data asso-

ciated with each of the search results. A dynamic attribute
may have n child attribute(s) (e.g., “Feature” being a dynamic
attribute having child attributes of: “16 Megapixels”, “5x

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Figure 2. User has clicked on a single dynamic table entry. Only the
associated dynamic and child attributes are displayed.

Figure 3. User has expanded dynamic attribute “Feature” and associated
child attributes are now displayed.

optical zoom”, “20x digital zoom”, etc.). Figure 3 shows
various child attributes.

Search++'s interface allows users to sort dynamic and child
attributes according to their priority. Upon sorting, our query
processing modules will be engaged (discussed in Section
III-F). The dynamic attributes are color coded by their fre-
quency of child attributes (discussed in Section V-D). This
allows the user to learn how common an attribute is. Dynamic
and child attributes may be hidden when the user is interacting
with the dynamic table row(s). This technique allows users to
view the dynamic and child attributes related only to their
selection.

D. Session State Management
There are three common techniques to store session state:

client, server, database [14]. Search++ utilizes server based
session state. Each user has one session, which are not shared
between users. Sessions allow the server to automatically
garbage collect un-utilized data [15]. Session state manage-
ment in Search++ allows the system to retain critical infor-
mation that was normalized and processed upon the initial
and subsequent execution of the search. This information is
referenced upon UI interaction within the same result set. This
technique eliminates the need for re-access to the data source.

E. Data Source Plugins

We define a data source plugin as a utility to retrieve
and normalize external data requests. Traditional and pure
plugin architectures [16] were examined. We chose traditional
plugin architecture as it allowed us to retrieve data with
less complexity compared than pure. Search++'s data source
plugins allows for various API's to be called and normalized
to a single result set. This technique allows Search++ to
add and configure plugins without impacting the downstream
processes. In Section VI, we demonstrate the usefulness of this
technique.

F. Query Processing Modules

Search++ has four primary query processing modules
(frequency based priority, resorting priority, selection, and
color coding). Each module is responsible for a single task
(e.g., retrieve data, organize data). This technique allows other
modules to be added or removed during run-time without
affecting the entire system. Each module is discussed in detail
in Section V.

G. Implementation

Search++ is implemented using commonly-used libraries
(Microsoft MVC5, Angular-JS, Bootstrap and jQuery-Sortable
[17], [18], [19], [20]) for user interactions, design of each
component, session management and algorithm runtime. The
combination of these technologies is common and has been
shown to provide the necessary performance capability when
used in conjunction.

IV. UI, INTERACTION, AND WORKFLOW
Search++'s interface displays a single view. This view

allows a user to search for criteria and rank attributes according
to their priority. Search++'s query processing modules will
leverage the attribute priority to obtain a list of prioritized
search results. In this section, we describe the workflow that
a user needs to carry out in Search++ to accomplish a goal.

A. Initial Search

Upon initial search, Search++ retrieves data to render the
visualization. Upon retrieval of data from our data source
plugins (Section III-E) Search++'s query processing modules
will engage to normalize the data set for visualization. The
result set includes dynamic attributes and tables. The dynamic
attributes are presented in the default sort order in accordance
to the dynamic and child attribute frequency (described in
Section V-A). The dynamic table will include the sorted search
results based upon the dynamic and child attribute priority
(described in Section V-C).

The following is the exchange that takes place between
client and server for initial data acquisition.

• Client : HTTP GET request for data
• Server : Receives request

◦ Queries data within plugin architecture
◦ Performs normalization and engages algo-

rithms
• Client : Receives Data

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

B. Manipulating Data
Manipulating details within a data set to further derive

insight is important. Search++ allows for manipulations within
dynamic and child attributes, dynamic table, or re-searching for
criteria. Upon any of these manipulations our dynamic table
will update (discussed in Section IV-B2). In the following sub-
sections we will discuss each manipulation and the reactions
that occur.

1) Dynamic and Child Attributes: A user can manipulate
dynamic and child attributes. A dynamic attribute can be
reordered amongst other dynamic attributes. A child attribute
can be reordered among other child attributes within the
particular dynamic attribute. A user can reorder a dynamic or
child attribute by selecting and dragging the attribute above or
below other attributes. Upon reordering our query processing
module is engaged and the dynamic table is updated. Figure
4 demonstrates the result of a user reordering.

2) Dynamic Table: Search++ has a simplistic view for the
user to quickly understand what is available. The dynamic table
entries may be reordered depending on the user's interaction. If
the user changes their search criteria the dynamic table entries
will be replaced. To help users understand what dynamic
and child attributes are associated with a particular row in
the dynamic table, Search++ allows the user to select n
row(s). Upon selection of a given row, Search++ displays the
dynamic and child attributes related to the selection. If a user
deselects all rows previously selected, the dynamic and child
attributes related to the entire result set will reappear. Figure
2 demonstrates this action. This creates a multiview linked
visualization that helps the user learn what attributes comprise
a particular set of entries.

3) New Search: On a new search, Search++ will reinitialize
all data to the begin state. Search++'s visualization will update
the result set to a similar format of all previous searches.
This consistency allows users to be more effective conducting
searches as the components become familiar to the user.

V. QUERY PROCESSING MODULES
Search++ has four query processing modules that work

together to provide a normalized result set. We will discuss
each module in further detail below.

A. Frequency Based Priority
The frequency based priority module is run when the user

conducts a new search. The input to this algorithm is the output
dynamic and child attributes from the originating data source.
The output is a sorted occurrence list of dynamic and child
attributes (i.e., attributes that are most common are earlier in
the list and tail down to least). Table I shows an example
input and output. This algorithm sorts dynamic attributes in
descending order according to the dynamic attributes with the
greatest number of distinct child attributes. This allows the user
to quickly ascertain the attributes with the greatest amount of
variation.

B. Resorting Priority
Resorting dynamic and child attributes allows the user

to identify search results that most closely align with their
ranked ordered priorities. This technique is preferable to that
of complex interfaces that filter criteria as result sets are not
removed but reordered.

TABLE I. THE FOLLOWING TABLE SHOWS AN EXAMPLE INPUT AND
EXPECTED OUTPUT FROM THE FREQUENCY BASED PRIORITY

ALGORITHM.

Input Output
Fragile (5) Feature (30)
Weight (10) Weight (10)
Feature (30) Warranty (8)
Warranty (8) Fragile (5)

Figure 4. User has prioritized “ListPrice” and “Brand” above “Feature”.

Upon sort of dynamic or child attributes, the Web client
will notify the server of change. Search++ has an optimal
approach of sending this data, by sending only the unique
identifiers of the new order, rather than the organized full
data set. With the use of session state management (discussed
in Section III-D) we are allowed to quickly manipulate the
resorting and allow our selection algorithm to engage.

C. Selection
Search engines typically provide results in a table. Com-

mon users have grown accustomed to such an interface.
Search++ additionally displays the results as such referred to
as a dynamic table (described in Section IV-B2). The selection
algorithm is designed to create entries in a table manner. The
priority sort order of dynamic and child attributes define the
sort order of the dynamic table entries. The selection algorithm
maps the dynamic and child attributes to the data source entries
to provide the dynamic table.

The selection algorithm first identifies the search results
with parent and child attribute pair ranked highest in the
priority. These search results are designated to be first on the
list in the dynamic table. The selection algorithm will then
identify search results that were not used in the first iteration
and contain the parent and child attribute pair ranked second
in priority. These search results are designated to be second
on the list of the dynamic table. This process is repeated until
all search results have been identified and designated to be
included in the dynamic table. This algorithm will be triggered
upon new search creation or user interaction of dynamic or
child attributes.

D. Color Code
We color code dynamic attributes with the highest fre-

quency in light green and darken the color of each subsequent

36Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

dynamic attribute with lower frequency than the previous. We
felt that attributes with the highest frequency of sub-attributes,
shows the most likely sorted set for the common user. If two
or more dynamic attributes have the same number of child
attributes, their color will be identical. We only color these
dynamic and child attributes once, upon initial data retrieval.

Each dynamic attribute following the base attribute is
shaded using the following calculation: previous dynamic
attribute color + (((current dynamic attribute child count -
previous dynamic attribute child count) / previous dynamic
attribute child count) * base light color).

VI. CASE STUDY
To demonstrate Search++'s functionality and utility, we

conducted a user case study. In order to facilitate the case
study, a data source plugin for Search++ was developed to
leverage AWS as a repository. We asked a group of ten
individuals who described themselves as “non-technical”, five
male, five female, aging from 25 – 62, having highest educa-
tion degree: graduate (2), undergraduate (4), and high school
diploma (4) to search for six unique products they are seeking
to purchase; three searches using Amazon's search interface
and three using Search++. We compared the number of steps
taken by participants to find the desired search result, level of
confidence participants had with the search result, and overall
experience using each (Amazon, Search++). In the following
sections we describe the results and conclusions of this case
study.

A. Results
We captured data from ten participants and sixty search

attempts; thirty using Amazon’s search interface and thirty us-
ing Search++. We counted the number of steps each participant
took in each search attempt to find the desired search result. A
step is defined as any and each manipulation that a participant
performs on the view. On average we found each participant
took 7.8 steps using Amazon’s search interface compared to
7.3 steps using Search++ to find the desired search result.
Table II shows summarized results of participant steps. Table
IV shows summarized results of Amazon‘s search interface.
Table V shows summarized results of Search++.

In general, we found participants using Search++ required
fewer steps compared to Amazon’s search interface to find the
desired search target. Search++ required fewer steps except for
filtering/re-ranking. We believe participants in this study re-
ranked items more than necessary as they were experiencing
the Search++ technique for the first time. In the next section
we will discuss user feedback of this case study.

TABLE II. THE FOLLOWING TABLE SHOWS SUMMARIZED RESULTS OF
PARTICIPANT STEPS

Amazon Search++
Average Number of Steps 7.8 7.37
Median 7 7
Mode 6 7
Standard Deviation 2.98 1.45

At the conclusion of each participant’s search, we asked
the participant: “How confident do you feel that your selected
search result is best result that could be found? Rate 1–
5 (1 being the lowest level of confidence and 5 being the

highest)”. Participant confidence with the selected search result
was found to be higher using Search++. Table III shows the
summarized results of participant confidence with the selected
search result. We believe the Amazon’s search interface filters,
which omit results from the result set, led participants to have a
low level of confidence. In contrast, Search++ re-prioritization
technique does not omit results, but re-orders the result set.

TABLE III. THE FOLLOWING TABLE SHOWS USERS SUMMARIZED
CONFIDENCE LEVEL

Amazon Search++
Average Confidence Level 3.53 4.37
Median 4 4
Mode 4 4
Standard Deviation 0.73 0.49

TABLE IV. THE FOLLOWING TABLE SHOWS SUMMARIZED RESULTS OF
PARTICIPANT STEPS USING AMAZON’S SEARCH INTERFACE

Back
Button

New
Search
Term Filtering

Product
Detail
View

Next
Page

Average 0.6 1.37 3.33 1.6 1.33
Median 0.0 1.0 3.0 1.0 1.0
Mode 0.0 1.0 3.0 1.0 1.0
Standard Deviation 0.81 0.56 0.48 0.81 0.55
Count 18 41 100 48 40

TABLE V. THE FOLLOWING TABLE SHOWS SUMMARIZED RESULTS OF
PARTICIPANT STEPS USING SEARCH++

Back
Button

New
Search
Term

Rank
Change

Product
Detail
View

Next
Page

Average 0.27 1.2 3.93 1.27 1.33
Median 0.0 1.0 4.0 1.0 1.0
Mode 0.0 1.0 4.0 1.0 1.0
Standard Deviation 0.45 0.41 0.64 0.45 0.55
Count 8 36 118 38 40

In addition to the confidence rating, we asked participants:
“What was your experience using Search++” and “Would you
like to use the Search++ technique in other areas of search on-
line?” Eight out of the ten participants responded favorably to
their experience using Search++.

Nine out of the ten participants would like to see Search++
in other areas of search on-line. “I like how I can just
continuously re-shuffle my results without having to search
over and over again.”

One more observation: We collected all dynamic and child
attributes that were used to present the returned Search++
fields. Table VI shows a summary of the result set. Note that
the selection pool of dynamic and child attributes listed in
the table provides plenty data to priority-sort search terms.
This seems to offer more power to the user than the prevailing
filtering approaches, which tend to remove potentially relevant
data from the analysis.

B. Conclusion
The case study yielded favorable results for Search++,

showing that it is easily adopted by users, can reduce the
number of steps to obtain search results, and might be preferred
over existing search interfaces. We believe that participants
that did not respond favorably to Search++ may have factored

37Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

TABLE VI. THE FOLLOWING TABLE SHOWS DYNAMIC AND CHILD
ATTRIBUTES RETREIVIED DURING SEARCH++ SEARCHES

Dynamic Child Attributes
Average 32.8 289.12
Mode 30 288
Min 25 233
Max 51 357
Standard Deviation 5.64 32.37
Total 820 7228

Amazon’s other offerings above and beyond search results
when making the comparison (e.g., “Customer Reviews”,
“Customers also bought”). The technique allows users to find
results that they may not have known existed using other search
interfaces. “I found a school supply package using Search++
including the crayons I was looking for as well as other
markers and paper which I assumed I’d have to buy separate,
I didn't see this on Amazon’s search.”

Search++ yielded only slightly better results in terms of
steps to find desired search results; 7.3 steps on average
compared to that of 7.8 using Amazon however, Search++
rated hire in participant confidence. However, it is worth
considering that subjects had had more experience searching
with Amazon’s search interface than with Search++; it is
reasonable to expect that with a little more experience, their
performance and satisfaction using Search++ would improve.

VII. CONCLUSIONS
It has been shown that better search tools are needed for

better exploration [21]. Oblinger and Oblinger [22] argue that
the “Net generation” (those who learned to read after the Web)
are qualitatively different in their informational behaviors and
expectations; they multitask and expect their informational
resources to be electronic and dynamic. The Net generation
expects to be able to use Web resources to lookup, learn, and
investigate tasks with fluid user interfaces. To the best of our
research, even now, ten years after that observation was made,
search tools still cannot meet those expectations.

In this paper, we have introduced Search++, a technique
that allows users to easily execute a search against one or many
sources, identify the attributes that may be most important to
them, prioritize attributes according to importance, and find the
search results that most closely align with their priorities. We
have demonstrated that additional search options are needed.
We have shown various ways to explore these integrated results
within the interactive visualization paradigm, by the three UI
components described in Section III (Dynamic Table, Input
Box, and Dynamic Attributes). We have provided methods
to efficiently organize these results without interfering with
cognitive workflow.

We provided a case study that explored the value in
Search++, by asking ten “non-technical” individuals to search
for six unique products they are seeking to purchase; three
searches using Amazon’s search interface and three using
Search++. We found that Search++ offered a slight improve-
ment over Amazon’s search interface. Our research was limited
with our case study of ten users. We plan on advancing
Search++ by introducing a collaboration feature, which will
allow multiple searchers to work towards a a common goal.
Search++ may be adapted to solve other decision based real
world problems, by taking into considerations features inherent

to each problem. (For example, consider the problem of
seeking a new job, and imagine the various job-related features
that might impact the search.)

REFERENCES
[1] B. Shneiderman, D. Byrd, and W. B. Croft, “Clarifying search: A user-

interface framework for text searches,” D-lib magazine, vol. 3, no. 1,
1997, pp. 18–20.

[2] C. C. Kuhlthau, “Inside the search process: Information seeking from
the user’s perspective,” JASIS, vol. 42, no. 5, 1991, pp. 361–371.

[3] M. J. Bates, “Information search tactics,” Journal of the American
Society for information Science, vol. 30, no. 4, 1979, pp. 205–214.

[4] A. Halavais, Search engine society. John Wiley & Sons, 2013.
[5] M. W. Newman and J. A. Landay, “Sitemaps, storyboards, and speci-

fications: a sketch of web site design practice,” in Proceedings of the
3rd conference on Designing interactive systems: processes, practices,
methods, and techniques. ACM, 2000, pp. 263–274.

[6] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger, “The perfect
search engine is not enough: a study of orienteering behavior in directed
search,” in Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM, 2004, pp. 415–422.

[7] K. Naz and H. Helen, “Color-emotion associations: Past experience and
personal preference,” in AIC 2004 Color and Paints, Interim Meeting
of the International Color Association, Proceedings, vol. 5. Jose Luis
Caivano, 2004, p. 31.

[8] E. Amazon, “Amazon elastic compute cloud (amazon ec2),” Amazon
Elastic Compute Cloud (Amazon EC2), 2010.

[9] J. Y. Kim, M. Cramer, J. Teevan, and D. Lagun, “Understanding how
people interact with web search results that change in real-time using
implicit feedback,” in Proceedings of the 22nd ACM international
conference on Conference on information & knowledge management.
ACM, 2013, pp. 2321–2326.

[10] H. He, W. Meng, C. Yu, and Z. Wu, “Wise-integrator: An automatic
integrator of web search interfaces for e-commerce,” in Proceedings of
the 29th international conference on Very large data bases-Volume 29.
VLDB Endowment, 2003, pp. 357–368.

[11] Q. Peng, W. Meng, H. He, and C. Yu, “Clustering e-commerce search
engines,” in Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters. ACM, 2004, pp.
416–417.

[12] M. Wilson, A. Russell, D. A. Smith et al., “mspace: improving
information access to multimedia domains with multimodal exploratory
search,” Communications of the ACM, vol. 49, no. 4, 2006, pp. 47–49.

[13] J. Zhang and G. Marchionini, “Evaluation and evolution of a browse
and search interface: Relation browser++,” in Proceedings of the 2005
national conference on Digital government research. Digital Govern-
ment Society of North America, 2005, pp. 179–188.

[14] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[15] B. C. Ling, E. Kiciman, and A. Fox, “Session state: Beyond soft state.”
in NSDI, vol. 4, 2004, pp. 22–22.

[16] D. Birsan, “On plug-ins and extensible architectures,” Queue, vol. 3,
no. 2, 2005, pp. 40–46.

[17] A. Leff and J. T. Rayfield, “Web-application development using the
model/view/controller design pattern,” in Enterprise Distributed Object
Computing Conference, 2001. EDOC’01. Proceedings. Fifth IEEE
International. IEEE, 2001, pp. 118–127.

[18] N. Jain, P. Mangal, and D. Mehta, “Angularjs: A modern mvc frame-
work in javascript,” Journal of Global Research in Computer Science,
vol. 5, no. 12, 2015, pp. 17–23.

[19] M. Otto and J. Thornton, “Bootstrap,” Twitter Bootstrap, 2013.
[20] B. Bibeault and Y. Kats, jQuery in Action. Dreamtech Press, 2008.
[21] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis,

and T. L. Madden, “Ncbi blast: a better web interface,” Nucleic acids
research, vol. 36, no. suppl 2, 2008, pp. W5–W9.

[22] D. Oblinger, J. L. Oblinger, and J. K. Lippincott, Educating the net
generation. Boulder, Colo.: EDUCAUSE, c2005. 1 v.(various pagings):
illustrations., 2005.

38Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

