PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

Trie Compression for GPU Accelerated
Multi-Pattern Matching

Xavier Bellekens
Division of Computing and Mathematics
Abertay University
Dundee, Scotland
Email: x.bellekens@abertay.ac.uk

Abstract—Graphics Processing Units (GPU) allow for running
massively parallel applications offloading the Central Processing
Unit (CPU) from computationally intensive resources. However
GPUs have a limited amount of memory. In this paper, a trie
compression algorithm for massively parallel pattern matching
is presented demonstrating 85% less space requirements than
the original highly efficient parallel failure-less Aho-Corasick,
whilst demonstrating over 22 Gbps throughput. The algorithm
presented takes advantage of compressed row storage matrices
as well as shared and texture memory on the GPU.

Keywords—Pattern Matching Algorithm; Trie Compression;
Searching; Data Compression; GPU

I. INTRODUCTION

Pattern matching algorithms are used in a plethora of
fields, ranging from bio-medical applications to cyber-security,
the internet of things (IoT), DNA sequencing and anti-virus
systems. The ever growing volume of data to be analysed,
often in real time, demands high computational performance.

The massively parallel capabilities of Graphical Processor
Units, have recently been exploited in numerous fields such
as mathematics [1], physics [2], life sciences [3], computer
science [4], networking [5], and astronomy [6] to increase the
throughput of sequential algorithms and reduce the processing
time.

With the increasing number of patterns to search for and
the scarcity of memory on Graphics Processing Units data
compression is important. The massively parallel capabilities
allow for increasing the processing throughput and can benefit
applications using string dictionaries [7], or application
requiring large trees [8].

The remainder of this paper is organised as follows: Sec-
tion II describes the GPU programming model, Section III pro-
vides background on multi-pattern matching algorithms while,
Section IV discusses the failure-less Aho-Corasick algorithm
used within this research. Section V highlights the design
and implementation of the trie compression algorithms, while
Section VI provides details on the environment. The results
are highlighted in Section VII and the paper finishes with the
Conclusion in Section VIII.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

Amar Seeam
Department of Computer Science
Middlesex University
Mauritius Campus
Email: a.seeam@mdx.ac.uk

Christos Tachtatzis & Robert Atkinson
EEE Department
University of Strathclyde
Glasgow, Scotland
Email: name.surname @strath.ac.uk

II. BACKGROUND
A. GPU Programming Model

In this work, an Nvidia 1080 GPUs is used along with the
Compute Unified Device Architecture (CUDA) programming
model, allowing for a rich Software Development Kit (SDK).
Using the CUDA SDK, researchers are able to communicate
with GPUs using a variety of programming languages. The
C language has been extended with primitives, libraries and
compiler directives in order for software developers to be able
to request and store data on GPUs for processing.

GPUs are composed of numerous Streaming Multipro-
cessors (SM) operating in a Single Instruction Multiple
Thread (SIMT) fashion. SMs are themselves composed of
numerous CUDA cores, also known as Streaming Proces-
sors (SP).

B. Multi-Pattern Matching

Pattern matching is the art of searching for a pattern P
in a text 7. Multi-pattern matching algorithms are used in a
plethora of domains ranging from cyber-security to biology
and engineering [9].

The Aho-Corasick algorithm is one of the most widely
used algorithms [10][11]. The algorithm allows the matching
of multiple patterns in a single pass over a text. This
is achieved by using the failure links created during the
construction phase of the algorithm.

The Aho-Corasick, however, presents a major drawback
when parallelised, as some patterns may be split over two
different chunks of T'. Each thread is required to overlap the
next chunk of data by the length of the longest pattern —1.
This drawback was described in [12] and [13].

C. Parallel Failure-Less Aho-Corasick

Lin et al. presented an alternative method for multi-pattern
matching on GPU in [14].

To overcome these problems, Lin er al. presented the
failure-less Aho-Corasick algorithm. Each thread is assigned
to a single letter in the text 7. If a match is recorded, the
thread continues the matching process until a mismatch. When
a mismatch occurs the thread is terminated, releasing GPU

93

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

alala] -

D)
oj0|1 (1 val [T (111|121 [1([1][1
0]1]0(2 Col-ind [5(8|9|5|7(9([5([9(|5]9
0jo0j0 (1
STololt] Fowor [1[e[7]e]m

A) B)
[JA12I3]4]5]

1 2 112[3]4]5 oflo|ofo
ofo]ofo
3 4 ofo|ofo
b [o]ofofo]o olololo

i |1]0]0]o0]0

5 t |ofojofo|o

m [1|{ofofofo

a [o]jo|ofo|o

p

Figure 1. Memory layout transformation for a simplified transfer between the host and the device, allowing for better compression and improved throughput

resources. The algorithm also allows for coalesced memory
access during the first memory transfer, and early thread
termination.

I11.

The trie compression library presented within this section
builds upon prior research presented in [15] and [16] and aims
to further reduce the memory footprint of the highly-efficient
parallel failure-less Aho-Corasick (HEPFAC) trie presented
in [16], while improving upon the tradeoff between memory
compression operation and the throughput offered by the
massively parallel capabilities of GPUs.

DESIGN AND IMPLEMENTATION

The compressed trie presented in our prior research is
created in six distinct steps. I) The trie is constructed in a
breadth-first approach, level by level. II) The trie is stored in
a row major ordered array. III) The trie is truncated at the
appropriate level, as described in [15]. IV) Similar suffixes
are merged together on the last three levels of the trie (This
may vary based on the alphabet in use). V) The last nodes
are merged together. VI) The row major ordering array is
translated into a sparse matrix as described in [16].

In this manuscript, an additional step is added. The
sparse matrix representing the trie is compressed using
a Compressed Row Storage (CRS) algorithm, reducing
furthermore the memory footprint of the bitmap array [17][18].
The compressed row storage also allows the array to be stored
in texture memory, hence benefiting from cached data. The
row pointer generated by the CRS algorithm is stored in
shared memory, benefiting from both the cache and an on-chip
location reducing the clock cycles when accessing data.

Figure 2 is a visual representation of steps I to V

Figure 2. Trie Truncation and Node Compression

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

undertaken during the construction of the trie. As shown,
the trie is truncated to an appropriate level. This technique
was used by Vasiliadis et al. [19] and further studied by
Bellekens et al. [16]. After truncation, similar suffixes within
the trie are merged together and the leave nodes are replaced
by a single end node.

Figure 3 shows the composition of the nodes in the trie. Each
node is composed of a bitmap of 256 bits from the ASCII
alphabet. The bitmap is modular and can be modified based
on the trie requirements (e.g., for DNA storage). Each node
also contains an offset value providing the location of the first
child of the current node. Subsequent children can be located
following the method described in [16].

Figure 1 depicts four different memory layouts in order
to achieve better compression and increase the throughput
on GPUs. Figure 1 (A) represents the trie created with a
linked list. Figure 1 (B) represents the trie organised in a
row major order, this allows the removal of pointers and
simplifies the transition between the host and and the device
memory. Figure 1 (C) represents the trie in a two dimensional
array, allowing the trie to be stored in Texture memory on the
GPU and annihilate the trade-off between the compression
highlighted in Figure 1 A) and the throughput. Finally,
Figure 1 (D) is improving upon the compression of our
prior research while allowing the trie to be stored in texture
memory and the row_ptr to be stored in shared memory.

The CRS compression of the non-symmetric sparse matrix
A is achieved by creating three vectors. The val vector stores
the values of the non-zero elements present within A, while
the col —ind store the indexes of the val. The storage savings
for this approach is defined as 2nnz + n + 1, where nnz
represents the number of non-zero elements in the matrix
and n the number of elements per side of the matrix. In the
example provided in Figure 1 (C and D), the sparse matrix is

[oJoJoJoJoJo]o]o] 256 bits bitmap

IE’ 4 bytes offset

Figure 3. Bitmapped Nodes

94

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

[] O Elements
o Non O Elements
[0}

9]
[

10

15

20

25

30

35

40

45

50

Figure 4. Sparse Matrix Representation of the a Compressed Trie Containing
10 Patterns

reduced from 36 to 24 elements.

The sparse matrix compression combined with the trie
compression and the bitmap allows for storing large numbers
of patters on GPUs allowing its use in big data applications,
anti-virus and intrusion detection systems. Note that the CRS
compression is pattern dependent, hence the compression will
vary with the alphabet in use and the type of patterns being
searched for.

IV. EXPERIMENTAL ENVIRONMENT

The Nvidia 1080 GPU is composed of 2560 CUDA cores
divided into 20 SMs. The card also contains 8 GB of GDDR5X
with a clock speed of 1733 MHz. Moreover the card possesses
96 KB shared memory and 48 KB of L1 cache, as well as 8
texture units and a GP104 PolyMorph engine used for vertex
fetches for each streaming multiprocessors. The base system is
composed of 2 Intel Xeon Processors with 20 cores, allowing
up to 40 threads and has a total of 32GB of RAM. The server is
running Ubuntu Server 14.04 with the latest version of CUDA
8.0 and C99.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

Trie Compression

500000 ~
OriginalTrie .~

200000 | TrieCompression —=
CSRCompression == N
100000 -

50000 |
20000 | N
10000 7
5000
2000
1000 -

500

Size in Bytes

100 -

77777
VPP PSPPI IIIIIIII IS IS
TS S S S S S S

S

N
100 1000
Pattern Number

Figure 5. Comparison between the current state of the art and the CRS Trie

V. RESULTS

The HEPFAC algorithm presented within this manuscript
improves upon the state of the art compression and uses
texture memory and shared memory to increase the matching
throughput.

The evaluation of compression algorithm presented
is made against the King James Bible. The patterns are
chosen randomly within the text using the Mersenne Twister
algorithm [20].

Figure 4 is a representation of the compressed trie stored
in a 2D layout. The trie contains ten Patterns. The blue
elements represent non-zero elements in the matrix while the
red elements represent empty spaces within the matrix. The
last column of the matrix only contains the offsets of each
node.

Figure 5 demonstrates the compression achieved by the
different compression steps aforementioned. The original
trie required a total of 36 bytes for each nodes, 256 bits to
represent the ASCII alphabet and four bytes for the offset.
The trie compression, on the other hand requires 36 bytes
for each node but reduces the size of the trie based on the

Throughtput Failure Less Trie

1 CRS Trie Texture
2 CRS Trie Global
= N
Y

20
o
=
I=}
e
g 15
o
@
Q
)
S
3 10
=
[=J
3
o
£
[

5

0 h . .

10Patterns 50Patterns 100Patterns 500Patterns 1000Patterns

Figure 6. Throughput Comparison Between Global Memory and Texture
Memory

95

PATTERNS 2017 : The Ninth International Conferences on Pervasive Patterns and Applications

alphabet used (in this case to eight levels), then merges
similar suffixes together and merges all final nodes in a single
one. Finally, the CRS compression algorithm compresses the
sparse matrix representation of the trie. This technique allows
an 83% space reduction in comparison to the original trie
and a 56% reduction in comparison to the trie compression
algorithm presented in [15].

Figure 6 depicts the throughput obtained when storing the
CRS trie in global memory and in Texture memory. Global
Memory does not provide access to a cache and requires up
to 600 clock cycles to access data. This inherently limits the
throughput of the pattern matching algorithm to 12 Gbps.
When the CRS trie is stored in texture memory and the row_ptr
is stored in shared memory the algorithm demonstrate 22 Gbps
throughput when matching a 1000 patterns within an alphabet
> = 256.

VI. CONCLUSION

In this work a trie compression algorithm is presented.
The trie compression scheme improves upon the state of
the art and demonstrates 83% space reduction against the
original trie compression and 56% reduction over the HEPFAC
algorithm. Moreover, our approach also demonstrates over
22 Gbps throughput while matching a 1000 patterns. This work
highlighted the algorithm on single GPU node, however, the
algorithm can be adapted to cloud computing, or on FPGAs.

REFERENCES

[11 A. Nasridinov, Y. Lee, and Y.-H. Park, “Decision tree construction
on gpu: ubiquitous parallel computing approach,” Computing, vol. 96,
no. 5, 2014, pp. 403-413.

[2] N. Nakasato, “Oct-tree
arXiv:0909.0541, 2009.

[3] S. Memeti and S. Pllana, “Combinatorial optimization of work distribu-
tion on heterogeneous systems,” in 2016 45th International Conference
on Parallel Processing Workshops (ICPPW), Aug 2016, pp. 151-160.

[4] D. Aparicio, P. Paredes, and P. Ribeiro, “A scalable parallel approach
for subgraph census computation,” in European Conference on Parallel
Processing. Springer International Publishing, 2014, pp. 194-205.

[5]1 G. Rétvdri, J. Tapolcai, A. Ko&rosi, A. Majdan, and Z. Heszberger,
“Compressing ip forwarding tables: towards entropy bounds and be-
yond,” in ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4. ACM, 2013, pp. 111-122.

[6] J. Bédorf, E. Gaburov, and S. P. Zwart, “Bonsai: A gpu tree-code,”
arXiv preprint arXiv:1204.2280, 2012.

[71 M. A. Martinez-Prieto, N. Brisaboa, R. Canovas, F. Claude, and
G. Navarro, “Practical compressed string dictionaries,” Information
Systems, vol. 56, 2016, pp. 73—108.

[8] G. Navarro and A. O. Pereira, “Faster compressed suffix trees for
repetitive collections,” Journal of Experimental Algorithmics (JEA),
vol. 21, no. 1, 2016, pp. 1-8.

[91 T. T. Tran, M. Giraud, and J.-S. Varré, “Bit-parallel multiple pattern
matching,” in International Conference on Parallel Processing and
Applied Mathematics. Springer, 2011, pp. 292-301.

method on gpu,” arXiv preprint

[10] A. V. Aho and M. J. Corasick, “Efficient string matching:
An aid to bibliographic search,” Commun. ACM, vol. 18,
no. 6, Jun. 1975, pp. 333-340. [Online]. Available:

http://doi.acm.org/10.1145/360825.360855

[11] S. Vakili, J. Langlois, B. Boughzala, and Y. Savaria, “Memory-efficient
string matching for intrusion detection systems using a high-precision
pattern grouping algorithm,” in Proceedings of the 2016 symposium
on architectures for networking and communications systems. ACM,
2016, pp. 37-42.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-534-0

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

X. Bellekens, I. Andonovic, R. Atkinson, C. Renfrew, and T. Kirkham,
“Investigation of GPU-based pattern matching,” in The 14th Annual
Post Graduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting (PGNet2013), 2013.

A. Tumeo, O. Villa, and D. Sciuto, “Efficient pattern matching on
gpus for intrusion detection systems,” in Proceedings of the 7th ACM
international conference on Computing frontiers. ACM, 2010, pp. 87—
88.

C.-H. Lin, S.-Y. Tsai, C.-H. Liu, S.-C. Chang, and J.-M. Shyu, “Ac-
celerating string matching using multi-threaded algorithm on GPU,”
in Global Telecommunications Conference (GLOBECOM 2010), 2010
IEEE, Dec 2010, pp. 1-5.

X. J. A. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew,
and T. Kirkham, “A highly-efficient memory-compression scheme for
gpu-accelerated intrusion detection systems,” in Proceedings of the 7th
International Conference on Security of Information and Networks, ser.
SIN ’14. New York, NY, USA: ACM, 2014, pp. 302:302-302:309.
[Online]. Available: http://doi.acm.org/10.1145/2659651.2659723

X. J. A. Bellekens, “High performance pattern matching
and data remanence on graphics processing units,” Ph.D.
dissertation, University of Strathclyde, 2016. [Online]. Available:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698532

K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices
with efficient compression,” ACM Transactions on Database Systems
(TODS), vol. 31, no. 1, 2006, pp. 1-38.

H. Wang, “Sparse array representations and some selected array opera-
tions on gpus,” Master’s thesis, School of Computer Science University
of the Witwatersrand A dissertation submitted to the Faculty of Science,
University of the Witwatersrand, Johannesburg, 2014.

G. Vasiliadis and S. Ioannidis, “Gravity: a massively parallel antivirus
engine,” in International Workshop on Recent Advances in Intrusion
Detection. Springer, 2010, pp. 79-96.

M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, Jan. 1998, pp.
3-30. [Online]. Available: http://doi.acm.org/10.1145/272991.272995

96

