
How An Optimized DBSCAN Implementation
Reduces Execution Time And Memory

Requirements For Large Data Sets
Ole Kristian Ekseth and Svein-Olaf Hvasshovd

Department of Computer Science (IDI)
NTNU

Trondheim, Norway
email: oekseth@gmail.com and sophus@ntnu.no

Abstract—In data-analysis the use of approximate cluster
algorithms has received broad popularity. A popular cluster
algorithm is the DBSCAN cluster algorithm. While a number
of software libraries provide support for the latter, they provide
poor performance when analysing high dimensional data. In this
work we address this issue. We present a novel method and
implementation which significantly boosts the performance of
DBSCAN. The result is a software which reduce the memory
consumption by 103GB for large data sets while reducing the
execution time by 600x+ (for important similarity metrics). This
artilce presents a high-performance appraoch to identify answers
to region based similarity queries. While our work is tuned
towards the application of DBSCAN, our novel approach for
high-performance filtering of pairwise similarity scores may be
used in a number of cluster algorithms. Therefore, the proposed
method and software manages to address issues which are known
to hamper high dimensional data analysis.

Keywords: clustering; similarity metrics; data analysis; performance.

I. INTRODUCTION

A center piece in high productive research is the availability
of accurate and fast data analysis. The authors of [1] observe
how application of established cluster algorithms require accu-
rate knowledge of cluster algorithms and their configuration.
The works of [2], [3], [5]–[7] observe that the size in data
sets outgrows the speed of computer software. To address the
performance issues numerous algorithms are presented every
year, eg, with respect to algorithm permutations of k-means
[8], SLINK [9], MCL [10], etc. A strategy for performance
improvement concerns the application of K-D tree [11], which
is used to reduce the time cost of pairwise similarity metric
computation. For many clustering algorithms the major time
consumer is the task to compute pairwise similarity, e.g.,
through application of the Euclidean pairwise similarity met-
ric. Figure 1 measures the time cost of different strategies for
computation of pairwise similarity. The growth curve in time
consumption (Figure 1) implies that it is unfeasible to apply
“Density-based spatial clustering of applications with noise”
(DBSCAN) on large data sets, i.e., when using established
software.

The use of heuristics, such as K-D tree, has many weak-
nesses. The work of [12] observes that in the analysis of “high-

0 200 400 600 800 1,000 1,200 1,400 1,600

0

5

10

15

20

Time to compute pairwise simliarity for a squared matrix

U
se
r
T
im

e
[s
]

Time-cost of pariwise simliarity-metrics in established software-libraries

R: compute

Perl

Cluster-C

sciPySpatial (python)

Java

hpLysis

1

Fig. 1. The time cost of pairwise similarity metrics. The above figure
captures the time cost of different strategies for computation of the Euclidean
pairwise similarity metric. We observe how an naive python implementation
causes a 600x+ execution timeperformance overhead.

dimensional data, indexing schemes such as k-d tree do not
work well” [12]. This is due to difficulties in designing a split-
ting criteria for rows which correctly captures the geometry of
a high dimensional space. To overcome this issue many alter-
native approaches are described, such as with respect to “k-
means mini-batch” [13], “k-means++” [14], and “k-medoid”.
The results in Figure 4 demonstrate how the Expectation–
Maximization (EM) based cluster algorithms of “k-means++”
[13] and “k-means” [8] identify cluster predictions with poor
accuracy for cases where the type of data normalization and
similarity metric is inaccurate. (While Figure 4 focuses on
prediction accuracy on synthetic data sets, the complete set
of measurement results may be generated through the scripts
described in sub section V-C.)

While iterative cluster algorithms such as “k-means” permu-
tations apply strategies for centrality to capture core traits in
networks, there are alternative strategies which are faster and
(for some use cases) more accurate, e.g., with respect to the

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

14

Data with increasing feature-size, clusters=2.
T
im

e
[s
]

scores=[Time-cost of synthetic data when Kendall’s Tau is used during computation

k avg

miniBatch

hca max

Kruskal: hca

DBSCAN: kdTree

DBCAN: Dense

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

120

140

160

Data with increasing feature-size, clusters=(rows/2)

T
im

e
[s
]

Time-cost of synthetic data when Kendall’s Tau is used during computation

k avg

miniBatch

hca max

Kruskal: hca

DBSCAN: kdTree

DBSCAN: Dense

0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

14

Data with increasing feature-size, clusters=2.

T
im

e
[s
]

Time-cost of synthetic data when Kendall’s Tau is used during computation

k avg

miniBatch

hca max

Kruskal: hca

DBSCAN: kdTree

DBSCAN

0 1 2 3 4 5 6 7 8 9

0

50

100

150

Data with increasing feature-size, clusters=(rows/4).

T
im

e
[s
]

Time-cost of synthetic data when Kendall’s Tau is used during computation

k avg

miniBatch

hca max

Kruskal: hca

DBSCAN: kdTree

DBSCAN dense

1

Fig. 2. Execution time between different cluster algorithms. The above figure measures the execution time on synthetic data sets with well defined clusters,
thereby avoiding the predictions from being limited to the evaluated real life data sets. From the figure it is clear that the relative performance improvements
of DBSCAN increases with increased feature size and cluster count.

DBSCAN algorithm [15]. The popularity of DBSCAN stems
from its low execution time (Figure 2) and accurate predictions
(Figure 4). The challenge in application of DBSCAN concerns
its high execution time for data sets with many features [12].
An approach which addresses the latter may therefore increase
the applicability of DBSCAN, hence improving a number of
efforts in data mining. In brief a major challenge of the
DBSCAN cluster algorithm concerns its high execution time
and inaccurate cluster prediction results.

Application of our high performance machine learning
library hpLysis [16] offers the ability to address the latter issue.
The hpLysis software provides support for 320+ pairwise
similarity metrics and 20+ unsupervised cluster algorithms.
However, its high memory consumption makes it unfeasible
for data analysis on large data sets.

In this work we unify the expressiveness of the hpLysis
software with the requirements of large scale data analysis:

1) time and memory: design a software which reduces the
execution time by 600x+ (Figure 1) while reduces the
memory consumption by a factor of 107x (Section III);

2) prediction quality: support accurate similarity metrics,
hence improving prediction accuracy by 100x+ (sub
section V-B);

3) applicability: a new library for high performance infer-
ence of filtered similarity metrics from a dense evalua-
tion of pairwise similarity metrics (sub section V-C).

The remainder of the paper is organized as follows. Section
II briefly surveys related approaches, and Section III describes
the approach. Section IV describes an approach to evaluate the
influence of the data mining strategy proposed in this paper,
a method which is applied in the result Section V. This paper
ends with a brief summary of observations in Section VI.

II. RELATED WORK

An evaluation of current approaches for improving pre-
diction accuracy and execution time of DBSCAN cluster

0 10 20 30 40 50 60

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The internal index of 60 real-life data-sets

T
h
e
S
il
h
ou

et
te

sc
or
e

Test-case: Euclid similarity metric and Silhouette quality metric

DB-SCAN

HCA(Euclid)

1

Fig. 3. A quality comparison of “SLINK” [9] and DBSCAN. The above
figure describes the prediction accuracy of cluster algorithms on 60+ real life
data sets found in the real-kt data set [16]. In the evaluation of prediction
accuracy the “Silhouette Index” [17] is used.

algorithms [15] reveals issues in:
1) prediction quality: while software for DBSCAN and pair-

wise similarity metrics are focused on similarity metrics
(sub section V-B), existing approaches are limited to
Minkowski based metrics;

2) time and memory: software for data mining does not
apply low level performance tuning strategies (Figure
1).

In below we identify key approaches in software and algo-
rithms for DBSCAN. The importance of efficiently supporting
the 320+ established similarity metrics stems from the purpose
of clustering, i.e., to accurately identify groups of entities.
An example concerns the comparison of features which use
different scales, an use case where Minkowski based metrics

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

0 1 2 3 4 5 6 7 8 9

0.5

0.6

0.7

0.8

0.9

1

Data with increasing feature-size, given scores=[1–100], clusters=2, linear.
S
il
h
ou

tt
e
q
u
al
it
y
sc
or
e

scores=[Prediction accuracy of synthetic data when Kendall’s Tau is used during computation

hca max

disjoint kdTree

disjoint

k avg

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

Data with increasing feature-size, clusters=(rows/4).

S
il
h
ou

tt
e
q
u
a
li
ty

sc
o
re

Prediction accuracy of synthetic data when Kendall’s Tau is used during computation

k avg

hca max

Kruskal hca

disjoint kdTree

disjoint

0 1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

Data with increasing feature-size, clusters=(rows/2).

S
il
h
o
u
tt
e
q
u
al
it
y
sc
o
re

Prediction accuracy of synthetic data when Kendall’s Tau is used during computation

k avg

hca max

Kruskal hca

disjoint kdTree

disjoint

0 1 2 3 4 5 6 7 8 9

0.5

0.6

0.7

0.8

0.9

1

Data with increasing feature-size, clusters=2.

S
il
h
ou

tt
e
q
u
al
it
y
sc
or
e

Prediction accuracy of synthetic data when Kendall’s Tau is used during computation

hca max

disjoint kdTree

disjoint

k avg

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

Data with increasing feature-size, given scores=[1–20], clusters=(rows/4), linear.

S
il
h
ou

tt
e
q
u
al
it
y
sc
or
e

Prediction accuracy of synthetic data when Kendall’s Tau is used during computation

disjoint kdTree

disjoint

Kruskal hca

hca max

k avg

0 1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

Data with increasing feature-size, given scores=[1–20], clusters=(rows/2), linear.

S
il
h
ou

tt
e
q
u
a
li
ty

sc
or
e

Prediction accuracy of synthetic data when Kendall’s Tau is used during computation

disjoint kdTree

disjoint

k avg

hca max

Kruskal hca

1

Fig. 4. The quality of cluster algorithms. The above figure evaluates the “Silhouette” [17] prediction accuracy for the cluster algorithms described in Figure
2. Each of the sub figures describe different cluster topologies.

fail.

A. Prediction quality

DBSCAN is asserted to provide a high degree of prediction
quality in minimal execution time [18], [19]. A weakness
in review articles such as [18], [22] concerns their lack of
discussion with respect to the different DBSCAN implemen-
tations. In DBSCAN there are two different approaches for
optimization of algorithm: to either use a K-D tree approach
[11] in DBSCAN [3], [20] or to access the relationships from
a matrix of scores, e.g., as seen in the work of [21]. “K-D tree
nearest neighbour (kdNN) [etc.,] has many characteristics like:
simple, fast, and provide completely balanced tree [etc.,] has
several significant drawbacks such as: need extreme search,
time consuming, and impulsively divide points into two equal
parts which may miss out on data structure” [22]. While
[19] evaluates the performance of DBSCAN [22], they do not
consider the implication of replacing K-D tree with a dense
similarity metric computation, a view which is in contrast to
[12].

B. Execution Time and Memory Consumption

For DBSCAN software implementations concerned with
supporting high dimensional data analysis, the main time
cost is associated with the computation of similarity metrics
(Figure 1). To address this issue K-D tree [11] is used, a
strategy which reduces the execution time. While the time
complexity of a matrix based DBSCAN approach is of O(n2f)
(where n is the number of vertices in the graph and f is
the features), a K-D tree approach has a time complexity of
O(n∗ log(n)) [11]. The inaccurate cluster prediction accuracy
of K-D tree application [22] motivates the computation of
a dense similarity matrix: to apply filters during run time,
hence reducing the memory consumption from n2 to n ∗ k,
where k denotes the maximum number of adjacency vertices
to be stored for each vertex. Established software does not
provide support for the latter, e.g., with respect to the “sci-
kit-learn” software library [23]. A different aspect concerns
the application of parallel hardware to reduce the time cost
of computations, eg, through application of GPUs in [21]. In
[21] the authors assert that they manage a 100x performance
improvement when compared to a CPU based implementation.

The measurements presented in sub section V-B identifies
how the accurate choice of similarity metrics is critical for
prediction accuracy, hence the limited applicability of their
approach. A different aspect concerns their comparison basis,
where Figure 1 demonstrates how a poor implemented C/C++
implementation results in a 30x+ performance-overhead, while
the use of a naive R implementation introduce a 3000x+
performance penalty.

III. METHOD: RUN TIME FILTERING AND HARDWARE
CLOSE OPTIMIZATION

The optimized implementation of DBSCAN, described in
this paper, focuses on addressing the performance of dense
similarity metric computation. The idea is to update the com-
putation of each of the 320+ pairwise similarity metrics, sup-
ported by the hpLysis machine learning library [16], through
introduction of run time filtering. This Section focuses on how
to update the 320+ established metrics without introducing
performance penalties to the hardware close optimization
strategies applied by the hpLysis software: to compute sim-
ilarity between O(n2) pairs of measurements without using
1012B = 103GB for a data set with 106 rows.

In order to provide support for computation of dense pair-
wise similarities without requiring the storage of all pairwise
similarities, the hpLysis is updated with a new data structure
and related logic. The result is a performance optimized
approach which store n ∗ k relationships instead of n2 re-
lationships, where n represents the number of feature rows,
while k denotes the user specified number of best performing
vertices to remember. In the high performance computation
of similarity metrics hpLysis makes use of the optimization
strategy described in [24].

To address the requirement of result filtering during compu-
tation of pairwise similarity metrics, hpLysis is updated with
new logics to post process each matrix tile. A matrix tile
represents an matrix[i...(i+b)][m...(m+b)] ∈ matrix where
i is a row index in the matrix, m is a column index (in the
matrix) and b is the block size. Each of the evaluated matrix
tiles are merged after the tiles are computed. This strategy
translates into a significant reduction in memory consumption
without introducing penalty to execution time nor parallelism:

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

1) arithmetic: the time cost of similarity metrics regards the
computation of each matrix tile, hence the introduction
of post processing steps (separately for each matrix tile)
does not result in a noteworthy increase in execution
time;

2) parallelism: each thread computes separately for a block
of row combinations, hence the merging of matrix tiles
does not include any performance overhead with respect
to communication nor memory delays;

3) memory consumption: for a matrix with 109 rows and
where only the 10 best row similarities are of interest
(for each vertex) the proposed approach enables a 108x
reduction in memory requirement (when compared to
the default approach), i.e., from 1018B = 109GB to
1010B = 10GB.

Therefore, the proposed approach enables accurate and
efficient evaluation of large scale data sets. A complexity in
the matrix tile merge step concerns the use cases where a
ranked step is to be applied, i.e., where each row is to hold
the best performing relationships. In the merging of matrix
tiles each row is evaluated separately. For the ranked step
sorting is required, for which the “quick-sort” algorithm [25] is
used. Hence, the time cost of a ranked step in matrix filtering
is O(n ∗ log(n)), where n is the number of vertices. The
latter time cost is insignificant when compared to the overall
time cost of dense similarity computation of O(n2f), where
f is the number of column features. Therefore, the proposed
merging procedure will not increase the overall execution time
of similarity metric computation.

The parallel computation support is enabled through a new
compile time added parameter to the hpLysis software. For
the parallel computation strategy to produce correct results, a
requirement has to ensure that the row identities of a given
matrix block is separately handled by each computer thread
(i.e., not shared by multiple threads). In our implementation
of the parallel thread scheduler, the scheduler delegates tile
matrix blocks matrix[i....m][0...|cols|] to a given computer
thread, hence the parallel scheduler avoids the need for a
writing lock when updating the sparse result containers.

IV. EXPERIMENTAL SETUP

This article seeks to improve data mining through provi-
sion for a fast DBSCAN implementation in support of 320+
pairwise similarity metrics.

A. Execution Time and Prediction accuracy

To evaluate differences in execution time the following
strategies are applied:

1) similarity metrics: through application of established
strategies to capture the isolated time cost of similarity
metric computations;

2) cluster algorithms: evaluate the 20+ cluster algorithms
supported in the hpLysis software, thereby identifying
the benefits of the proposed approach in application of
data mining;

3) data topology: how data sets capturing different topolog-
ical use cases are influenced by the approach, for which
the prediction accuracy is evaluated.

In order to capture the benefit of the large number of pub-
lished software we relate software implementation to execution
time, results which for brevity are summarized in Section V.

B. Prediction quality: Unsupervised parameter estimation to
avoid bias in comparison of prediction accuracy

A challenge in the evaluation of large data sets concerns
the difficulty in manually identifying correct parameter con-
figurations. The severity is further increased with respect to the
importance of choosing a dedicated similarity metric, and the
types data optimization strategies to apply. “The performance
of the JarvisPatrick algorithm and DBSCAN depend on two
parameters: neighborhood size in terms of distance, and the
minimum number of points in a neighborhood for its inclusion
in a cluster” [26]. In order to compare unsupervised cluster
algorithms on large data ensembles without introducing bias,
the following requirements need to be satisfied:

1) similarity metrics: the hpLysis library is used to eval-
uate the prediction influence of similarity metrics and
strategies for data normalization;

2) algorithm configurations: iteratively explore/evaluate nu-
merous cluster parameters for DBSCAN and “k-means”;

3) prediction quality: different metrics for external cluster
validation is used, e.g., with respect to “SSE” [8],
“Dunn’s Index” [27], “Silhouette” [17], and “VRC” [28],
etc.

The above list identify strategies which addresses issues
known to introduce bias in evaluation approaches for cluster
algorithms. In the identification of ’k’ clusters in EM based
cluster algorithms, e.g., k-means, “SLINK” [9] is used as an
initial pre step. The “SLINK” result is then partitioned into
disjoint clusters for different ’k’ counts, and where the ’k’
with the best cluster validity score (e.g., measured through
“Silhouette” [17]) is selected.

V. RESULT: EMPIRICAL EVALUATION

The proposed strategy to optimize DBSCAN manages to
address issues in execution time and prediction accuracy
of data mining efforts. The figures included in this paper
exemplifies how the following requirements are handled in
our approach:

1) time and memory: the design of a new approach for run
time filtering during dense similarity metric computa-
tion (Section III) decrease the performance discrepancy
between off the shelf computer hardware versus cluster
algorithms;

2) prediction quality: how application of the 320+ sup-
ported similarity metrics address issues in prediction
accuracy of DBSCAN.

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

A. Time cost and Memory consumption

To evaluate the influence of different implementation strate-
gies and data topologies, we measure the difference in execu-
tion time between alternative strategies. Figure 1 captures the
implication of different approaches for implementing similar-
ity metrics. To investigate the applicability of DBSCAN in
data analysis 20+ cluster algorithms [16] are applied to 100+
real life data sets and 320+ pairwise similarity metrics, where
a subset of the measurements are included in Figure 2. The
improvement in both prediction accuracy and execution time,
as identified in this paper, is due to the low level implemen-
tation strategies which we apply. Section III describes how
the proposed software implementation manages to reduce the
memory requirements from n2 to n∗k, where n is the number
of input rows, and k is the number of best scoring pairs to use.
Therefore, the software described in this paper enables an n/k
reduction in memory requirements. For k = 2 our approach
implies a reduction factor of 109/102 = 107 with respect to
the memory requirement.

Popular/established/optimized software implementations
provide support for only a limited number of similarity
metrics, e.g., where “sci-kit-learn” [23] is designed only
for Minkowski based metrics. Hence, users are required to
write their own support for similarity metrics, which for
“R” introduce a 3000x+ performance penalty (Figure 1). The
measurements presented in this paper demonstrates how the
combination of high performance DBSCAN implementation
and accurate similarity metrics reduces both the execution time
and increases the prediction accuracy (Figure 3). While Figure
3 presents a subset of the measurements on the real-kt data
set [16] data set, Figure 4 measures the prediction accuracy on
synthetic data sets with well defined clusters, measurements
which agree in the prediction accuracy of DBSCAN.

B. Prediction difference: DBSCAN compared to other unsu-
pervised cluster algorithms

The related work Section II exemplifies how the execution
time of DBSCAN is highly reliant on the topology of micro
benchmark data, an observation verified in Figure 3. The
findings presented in this paper represents a small subset of the
observations. An example concerns the influence of pairwise
similarity metrics in data analysis. The measurement scripts
in sub-section V-C identifies how accurate choice of pairwise
similarity metrics improves prediction accuracy of more than
100x. Hence, the accurate choice of similarity metrics relates
directly to an increase in the prediction accuracy. To ensure
representativeness of the described prediction differences, both
measures for internal metrics (e.g., “Silhouette”) and external
metrics (eg,“Rand’s Index” [29] and “Adjusted Rand’s Index
(ARI)” [30]) have been evaluated. In brief they provide
consistent prediction results.

When discussing prediction accuracy this paper focuses
on internal metrics, an approach which is designed to avoid
certain algorithms from gaining a favorable bias during the
construction of micro benchmarks. To exemplify the latter, an
evaluation of the well known IRIS flower data set (with three

established cluster partitions) with the MINE similarity metric
[31] reveals how there are only two clusters present, while
Euclidean clearly identifies 2.3 clusters in the IRIS flower data
set. While the latter result may indicate that Euclidean provides
a better closeness to the gold standard, an investigation into the
feature similarities reveal patterns in the features which clearly
supports the MINE assumption (of two clusters in the IRIS
data set), i.e., for which we have observed how the application
of external metrics may present results which diverge from
visual perspectives of cluster similarity.

C. Reproducibility

The proposed software is implemented in the hpLysis soft-
ware, and made accessible through:

1) DBSCAN: integrated in the hpLysis api.h;
2) sparse similarity: accessible from the hp api sim dense.

h API, an interface for inferring sparse sets of similarity
metrics from a dense evaluation of pairwise similarity
metrics;

3) terminal interface: x hp sim dense enables computation
of sparse similarity and sparse DBSCAN,

The above interface provides access the high performance
optimization strategy described in Section III. The imple-
mentation level details of the result merging is found in
the insertBlockOf scores sorted kt list 2d(..) function (kt
list 2d.h, where latter file is found in the hpLysis repository).

To enable validation and extension of the performance
measurements included in this paper, a number of new use
cases have been included into hpLysis, such as:

1) effect of pairwise similarity metrics: tut sim 15
manMany Euclid selectBestInsideMetricComp.c;

2) accuracy of cluster algorithms: tut clust dynamicK 7
find nCluster multipleData allSim xmtPreFiltering.c;

3) execution time measurements: tut time
1 data syntetic wellDefinedClusters.c and
tut time 2 clustAlg syntAndReal.c.

The above measurement scripts makes use of the synthetic
data sets constructed from hp clusterShapes.h in combination
with the data ensembles of real-kt, kt-mine, shapes (located in
the hpLysis repository).

VI. CONCLUSION AND FUTURE WORK

This paper has presented a new approach to compute DB-
SCAN on large data sets, both with respect to sparse data sets,
dense matrices, and dense matrices with missing values/scores.
The results which are presented demonstrate how the applica-
tion and support of 320+ similarity metrics enables significant
performance boosts to cluster algorithms. Through application
of a approach for run time filtered computation of dense
similarity matrix, this paper manages to address issues known
to hamper fast and accurate analysis of many dimensional data
sets, as described in Section III. While our proposed approach
manages to reduce execution time by a factor of 600x+ (Figure
1), the memory consumption is reduced by a factor of 107x.

This paper demonstrates how the application of high perfor-
mance implementation strategies enables a boost in prediction

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

hpLysis_api.h
hp_api_sim_dense.h
hp_api_sim_dense.h
x_hp_sim_dense
insertBlockOf_scores__sorted__kt_list_2d(..)
kt_list_2d.h
kt_list_2d.h
tut_sim_15_manMany_Euclid__selectBestInsideMetricComp.c
tut_sim_15_manMany_Euclid__selectBestInsideMetricComp.c
tut_clust_dynamicK_7_find_nCluster_multipleData_allSim_xmtPreFiltering.c
tut_clust_dynamicK_7_find_nCluster_multipleData_allSim_xmtPreFiltering.c
tut_time_1_data_syntetic_wellDefinedClusters.c
tut_time_1_data_syntetic_wellDefinedClusters.c
tut_time_2_clustAlg_syntAndReal.c
hp_clusterShapes.h

accuracy and execution time. The combination of results from
Figure 1 and Figure 2 reveals how the application of accurate
similarity metrics combined with low level implementation
may significantly improve prediction accuracy of data mining.
In the measurement Section V we have demonstrated how
accurate parameter identification of DBSCAN settings and
similarity metrics enables DBSCAN to predict clusters which
a high degree of prediction accuracy, i.e., when compared to
default approaches. Therefore, DBSCAN offers the potential
for accurate identification of clusters.

In this work we have addressed a shortfall with respect
to established approaches. To enable accurate computation of
similarity without being constrained by memory thresholds
and unfeasible execution time of current approaches. There-
fore, we assert that the software and methodology for accurate
and high performance data mining, presented in this paper,
may improve a number of established approaches in data
analysis.

A. Future Work

A challenge in application of DBSCAN concerns the need
to identify accurate configuration thresholds. We plan to
address the weakness of automated parameter identification
in DBSCAN, i.e., to provide a methodology and software for
accurate and fast evaluation of threshold parameters.

ACKNOWLEDGEMENTS

The authors would like to thank MD K.I. Ekseth at UIO,
Dr. O.V. Solberg at SINTEF, Dr. S.A. Aase at GE Healthcare,
MD B.H. Helleberg at NTNU–medical, Dr. Y. Dahl, Dr. T.
Aalberg, Dr. J.C. Meyer, and K.T. Dragland at NTNU, and
the High Performance Computing Group at NTNU for their
support.

REFERENCES

[1] Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata
and community detection in networks. Science Advances 3(5), 1602548
(2017)

[2] Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional
data: a review. Acm Sigkdd Explorations Newsletter 6(1), 90–105
(2004)

[3] Narayanan, R., Ozisikyilmaz, B., Zambreno, J., Memik, G., Choudhary,
A.: Minebench: A benchmark suite for data mining workloads. In:
Workload Characterization, 2006 IEEE International Symposium On,
pp. 182–188 (2006). IEEE

[4] Consortium, U., et al.: Uniprot: the universal protein knowledgebase.
Nucleic acids research 45(D1), 158–169 (2017)

[5] Mekkat, V., Natarajan, R., Hsu, W.-C., Zhai, A.: Performance character-
ization of data mining benchmarks. In: Proceedings of the 2010 Work-
shop on Interaction Between Compilers and Computer Architecture, p.
11 (2010). ACM

[6] Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P.,
Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., et
al.: The landscape of parallel computing research: A view from berkeley.
Technical report, Technical Report UCB/EECS-2006-183, EECS Depart-
ment, University of California, Berkeley (2006)

[7] Lu, S.-L., Karnik, T., Srinivasa, G., Chao, K.-Y., Carmean, D., Held, J.:
Scaling the x201C memory wall x201D designer track. In: Computer-
Aided Design (ICCAD), 2012 IEEE/ACM International Conference On,
pp. 271–272 (2012)

[8] Lloyd, S.: Least squares quantization in pcm. IEEE transactions on
information theory 28(2), 129–137 (1982)

[9] Sibson, R.: Slink: an optimally efficient algorithm for the single-link
cluster method. The computer journal 16(1), 30–34 (1973)

[10] Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm
for large-scale detection of protein families. Nucleic Acids Res 40,
1575–1584 (2002)

[11] Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS) 3(3), 209–226 (1977)

[12] Hamerly, G.: Making k-means even faster. In: Proceedings of the 2010
SIAM International Conference on Data Mining, pp. 130–140 (2010).
SIAM

[13] Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th
International Conference on World Wide Web, pp. 1177–1178 (2010).
ACM

[14] Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seed-
ing. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1027–1035 (2007). Society for Industrial
and Applied Mathematics

[15] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based
algorithm for discovering clusters in large spatial databases with noise.
In: Kdd, vol. 96, pp. 226–231 (1996)

[16] Ole Kristian Ekseth: hpLysis: a high-performance software-
library for big-data machine-learning. https://bitbucket.org/oekseth/
hplysis-cluster-analysis-software/. Online; accessed 06. June 2017

[17] Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied
mathematics 20, 53–65 (1987)

[18] Shah, G.H., Bhensdadia, C., Ganatra, A.P.: An empirical evaluation
of density-based clustering techniques. International Journal of Soft
Computing and Engineering (IJSCE) ISSN 22312307, 216–223 (2012)

[19] Kockara, S., Mete, M., Chen, B., Aydin, K.: Analysis of density based
and fuzzy c-means clustering methods on lesion border extraction in
dermoscopy images. BMC bioinformatics 11(6), 26 (2010)

[20] Michael Hahsler: A C-package-library for efficient DB-SCAN compu-
tation. https://github.com/mhahsler/dbscan. Online; accessed 06. June
2017

[21] Andrade, G., Ramos, G., Madeira, D., Sachetto, R., Ferreira, R., Rocha,
L.: G-dbscan: A gpu accelerated algorithm for density-based clustering.
Procedia Computer Science 18, 369–378 (2013)

[22] Otair, M.: Approximate k-nearest neighbour based spatial clustering
using kd tree. International Journal of Database Management Systems
5(1), 97 (2013)

[23] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.:
Scikit-learn: Machine learning in python. Journal of Machine Learning
Research 12(Oct), 2825–2830 (2011)

[24] Drepper, U.: What every programmer should know about memory. Red
Hat, Inc 11, 2007 (2007)

[25] Hoare, C.A.: Quicksort. The Computer Journal 5(1), 10–16 (1962)
[26] Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern recogni-

tion letters 31(8), 651–666 (2010)
[27] Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. Journal

of cybernetics 4(1), 95–104 (1974)
[28] Caliński, T., Harabasz, J.: A dendrite method for cluster analysis.

Communications in Statistics-theory and Methods 3(1), 1–27 (1974)
[29] Rand, W.M.: Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical association 66(336), 846–850 (1971)
[30] Yeung, K.Y., Ruzzo, W.L.: Details of the adjusted rand index and

clustering algorithms, supplement to the paper an empirical study
on principal component analysis for clustering gene expression data.
Bioinformatics 17(9), 763–774 (2001)

[31] Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean,
G., Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M., Sabeti, P.C.:
Detecting novel associations in large data sets. science 334(6062), 1518–
1524 (2011)

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

https://bitbucket.org/oekseth/hplysis-cluster-analysis-software/
https://bitbucket.org/oekseth/hplysis-cluster-analysis-software/
https://github.com/mhahsler/dbscan

	Introduction
	Related Work
	Prediction quality
	Execution Time and Memory Consumption

	Method: run time filtering and hardware close optimization
	Experimental Setup
	Execution Time and Prediction accuracy
	Prediction quality: Unsupervised parameter estimation to avoid bias in comparison of prediction accuracy

	Result: Empirical evaluation
	Time cost and Memory consumption
	Prediction difference: DBSCAN compared to other unsupervised cluster algorithms
	Reproducibility

	Conclusion and Future Work
	Future Work

	References

