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Abstract—The design of many tasks in computer vision field
requires addressing difficult NP-hard energy optimization prob-
lems. An example of application is the visual correspondence
problem of optical flow, which can be formulated as an elastic
pattern matching optimization problem. Pixels of a first image
have to be matched to pixels in a second image while preserving
elastic smoothness constraint on the first image deformation. In
this paper, we present a parallel approach to address optical
flow problem following the concept of distributed local search.
Distributed local search consists in the parallel execution of many
standard local search processes operating on a partition of the
data. Each process performs local search on its own part of the
data such that the overall energy is minimized. The approach is
implemented on graphics processing unit (GPU) platform and
evaluated on standard Middlebury benchmarks to gauge the
substantial acceleration factors that can be achieved in the task
of energy minimization.

Keywords–Optical flow; Parallel and distributed computing;
Variable neighborhood search; Graphics processing unit.

I. INTRODUCTION

Many image processing and computer vision problems can
be formulated as optimization problems. Optical flow is a
fundamental problem in this field. Despite the big progress
since the first works of Horn-schunk [1] [2], optical flow
remains very challenging [3].

Such optimization problem can be stated in a generic
framework of image matching, including optical flow and
stereo matching problems. It is worth noting that large classes
of applications can be formulated as pattern matching op-
eration between two graphs, such as locations of services,
routing problems, and also the traveling salesman problem
[4]. Because metaheuristic algorithms are time-consuming we
deal with minimizing the corresponding energy functions in a
massively parallel way. In order to address optical flow, we
propose a distributed local search (DLS) algorithm following
the idea of Verhoeven and the approach proposed in [5] [6]
for stereo matching. The approach is a parallel formulation of
a local search procedure in a partition of the data following
standard local search metaheuristic.

Starting from a given initial solution, local search contin-
ually improves that solution at each iteration by searching it’s
neighborhood solution with lower cost, and then replacing it.
The search stops when all solution neighbors are worse than
the current solution, meaning a local optimum is reached. In
the distributed local search approach proposed in this paper,

image data is partitioned based on a regular decomposition of
the plane between cells. We implement a parallel local search
algorithm on GPU with the compute unified device architecture
(CUDA) programming interface, under the concept of one cell
to one thread. DLS runs many local search operations on
different parts of the data in a distributed way to build a single
solution that we obtain by gathering all the partial solutions
from the different threads/cells. We apply the proposed DLS
algorithm to resolve optical flow problem by minimizing
the corresponding energy function, and we evaluate on the
standard Middlebury benchmarks [8].

The rest of this paper is organized as follows. In section
II, we present some of previous works on optical flow. In
Section III, we formulate a general energy function to be
equivalent to optical flow problem. In Section IV, we present
the DLS algorithm in detail, providing basic data structures and
operations, explaining local evaluation, and giving the details
of GPU implementation. Experimental results are reported in
Section V, before some conclusions are drawn in Section VI.

II. RELATED WORK

Optical flow estimation has been improving steadily, since
the work of Horn and Schunck [1]. We can see a progress
clearly in the increasing quality of works on the Middlebury
site for optical flow benchmark [8]. Most existing approaches
follow the same spirit of the Horn and Schunck [1] formula-
tion, which is based on differential form. An objective function
is optimized which combines a data term that models matching
between pixels and smoothness term that models how the flow
is expected. In this part, we review some of the work related
to optical flow estimation.

For better understand to the problem Simon et al. [9]
provided a set of database and evaluation methods for optical
flow algorithms. They contributed several types of data to
inspect different types of optical flow algorithms. Yuri Boykov
[10] showed that combinatorial optimization techniques are
powerful tools for solving the problem, by developing al-
gorithms based on graph cuts, that efficiently find a local
minimum. His method works two to five times faster than
any of the other methods, making near real-time performance
possible. Tom et al. [11] proposes a global technique for mini-
mizing non-convex, vector valued energy functions defined on
Markov random fields using a functional lifting approach to
resolve the problem. In [12], Lempitsky et al. put forward a
new energy minimization approach for optical flow estimation
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called FusionFlow that combines the advantages of discrete
and continuous optimization. Thomas et al. [13] describes an
approach to estimate a dense optical flow field with almost
the same high accuracy as known from variation optical flow
by integrating rich descriptors into the variation optical flow
setting.

Using cost volume filtering techniques become more and
more interesting, since it efficiently achieves high-quality
solutions for general multi-label problems. An interesting
approaches is the Patch-Match filter for visual correspon-
dence proposed by Lu et al. [14], due to its accurate re-
sult, computational efficiency and its ability to handle large
textureless regions. In [15] the authors demonstrate a simple
and powerful filtering approach for solving discrete labeling
problems, that handles both fine motion structure and large
displacements. For large displacement motion, we find the
work of Bao et al. [16], who invested in the successes of
local methods in visual correspondence searching as well as
approximate nearest neighbor field algorithms to provide a fast
approach that can handle the issues of fast running time with
preserving the quality of the result. Classical coarse to fine
framework [17] works also well for large displacement motions
estimation, but it has some limitations with fine scale image
structures, which may disappear in coarse scales. All these
approaches are sequential approaches most often related on
energy minimization framework. In this paper, we also address
energy minimization providing a full parallel implementation
of standard local search technique. We did not found yet such
a direct application of combinatorial optimization local search
technique to the optical flow problem.

III. ENERGY FORMULATION

Given a pair of images I and I ′, the goal of image
matching is to assign each pixel p = (xp, yp) a label l
from the label set L = 0, 1, ..., L− 1. A label lp in visual
correspondence represents a pixel moving from its regular
position into the direction of its homologous pixel [18]. In
the following sections, we will directly use the notations of
labels as relative displacements, as usual with such problems.
For optical flow problems considered here, l = (u, v), where
u and v correspond to the displacement in x and y directions.

We model the problem of optical flow estimation as an
elastic grid matching problem. The two images are respectively
represented by two graphs where edges correspond to the 4-
connected image neighborhood. One graph is called matcher
grid G1 = (V1, E1) where a vertex is a pixel (from image I)
with a variable location in the plane, the second is called the
matched grid G2 = (V2, E2) where vertices are pixels located
in a regular grid (from image I ′). The goal of elastic grid
matching is to find the matcher vertex locations in the plane,
so that the following energy function is minimized:

E(G1, G2) =
∑
p∈V1

Dp(p, c
V2
p ) + λ ·

∑
{p,q}∈E1

Vp,q(p− p0, q − q0) (1)

where p0 and q0 are the initial locations of p and q respectively
in a regular grid. Here, the first term of the energy function so
called data term Dp expresses the data energy that measures
how much assigning label fp to pixel p disagrees with the
data. In particular, it models how well the corresponding pixels
of I and I ′ match. Traditionally, it is modeled based on

the brightness (or color) constancy assumption. The second
term Vp,q is the smoothness term which favors certain flow
fields over others. It expresses smoothness constraints on the
labeling enforcing spatial coherence [18] [19] [20]. The
energy function is commonly used for visual correspondence
problems, and it can be justified in terms of maximum a
posteriori estimation of a Markov random field (MRF) [21]
[22].

IV. ENERGY MINIMIZATION

We use Distributed Local Search to minimize the energy
function.

A. Distributed Local Search

There are many parallelization models for local search
in literature. Following the original idea of Verhoven et al.
[5] for the 2-opt local search in TSP, we adopt the method
for image processing field and hence change the variable
neighborhood search strategy. Distributed local search is a
parallel formulation for local search algorithms [23] based on
cellular decomposition of the Euclidean plane, in attempt to
keep the principles of standard local search metaheuristic.

By the partition of a solution into a number of partial
solutions, we implement several local search operations in a
parallel way. Each operation acts on a part of the data to
reach one partial solution. The data is partitioned according
to a cellular decomposition. We assign one process to each
cell in order to achieve local evaluation, perform neighborhood
search, and select local improvement moves to execute. The
many processes locally evolve the current solution into an
improved one. The solution results from the many independent
local search operations simultaneously performed on the dis-
tributed data in the plane. To exploit more potontial solutions,
and escape local minima obtained by local search in most
cases, we design different operators in a similar way to the
variable neighborhood search (VNS).

Figure 1. Distributed Local Search projection for visual correspondence
problems through the cellular decomposition of the plane.
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B. Data Structures and Basic Operations

The data structures and direction of operations for DLS
algorithms are illustrated in Figure 1. As we mention before,
we represent an image by a regular grid. The input data
set is deployed on the pixel level. The image is partitioned
between regular cells, such that a given cell corresponds to a
zooming out of the image at a given level. The figure shows
a zoom of level 1. Each cell is a basic processor that handles
a local search processing iteration with the three following
steps: neighborhood generation step (get), where we assign
to each partial solution a set of partial local neighbors that
can be reached within a single local search iteration; neighbor
solution evaluation and selection of the best neighbor(search);
then moving the matcher pixels toward the selected matched
pixels (operate). Here, the neighborhood structure is directly
defined by the cell structure. Each processor is responsible for
moving the pixels inside its cell and only these pixels. The
nature and size of specific moves and neighborhoods depend
on the type of operator used and the size of the decomposition.
The higher is the size, the larger is the local cell/neighborhood.
The final solution is composed by the many partial solutions
from the cells.

C. Local Evaluation with Mutual Exclusion

During the parallel execution of local search operators,
many conflicts should occur, which affect the coherence of
local evaluations when two neighbor threads evaluate and
move the same pixel or two neighboring pixels at the same
time. According to the cellular partition of the image, conflict
operations could only happen on the cells frontiers.

In order manage cell frontiers during DLS , we propose a
strategy called dynamic change of cell frontiers (DCCF), by
which we fix the pixels on the cell frontiers, and only evaluate
and move the pixels inside a cell. As the cell frontiers are
fixed we guarantee the exclusive execution of the thread on
the pixels inside its cell. But we still have to deal with the cell
frontier pixels and make them participating in the optimization
process. To do that we make the cellular decomposition of the
plane dynamically changeable between each round of DLS
operations. At different moments, the cellular decomposition
slightly shifts on the input image in order to change the cell
frontiers and consequently the fixed pixels.

D. Neighborhood Operators

In order to exploit more solution space, and escape the
local minima that reached by local search, we design different
neighborhood operators. Mainly we have two kinds of oper-
ators, small operators to move only a single pixel from the
cell at each iteration, and large operators to simultaneously
move a set of pixels inside a cell. Moving a pixel in a given
neighborhood structure corresponds to changing its label in the
corresponding labeling space.

Small Move Operators. In a move operation, if only one
pixel moves, meaning that only one pixel’s label is changed,
this kind of move operation is called small move operation.
We design two small move operators.

• Local move operator. It applies an incre-
ment/decrement to the current label of the considered
pixel.

• Propagation operator. It takes the labels of the con-
sidered pixel’s neighboring pixels, as the candidate
labels, and it replaces the current label with the best
one found in the propagation window.

Large Move Operators. They consider multiple pixels.
We design several large move operators.

• Random pixels move operator. It randomly picks sev-
eral pixels in the considered cell, and it assigns a
same candidate label to these pixels. A parameter
pickedNumber is set to control the number of pixels
the operator randomly picks.

• Random pixels jump operator. It randomly picks sev-
eral pixels in the considered cell, and it applies a
same increment/decrement to the current labels of the
considered pixels.

• Random pixels expansion operator. It randomly picks
two groups of pixels, where pixels in the same group
have the same label. Then, it “expands” the label of
one group to the other, setting the labels of all the
pixels in the second group with the same label as
the first group. A parameter maxPickedNumber is set
to control the max number of pixels the operator is
allowed to randomly pick for each group.

• Random pixels swap operator. It picks pixels in the
same way as the random pixels expansion operator
does. Then, it “swaps” the labels of the two groups,
setting the labels of all the pixels in the second group
with the label of the first group, meanwhile setting the
labels of all the pixels in the first group with the label
of the second group.

• Random window move operator. It picks a fixed-sized
window of pixels at a random position within the
considered cell, and it assigns a same candidate label
to all the pixels in this picked window. A parameter
pickedWindowRadius is set to control the radius of the
randomly picked window of considered pixels.

• Random window jump operator. It picks pixels in
the same way as the random window move operator
does, and it applies a same increment/decrement to the
current labels of all the pixels in this picked window.

E. GPU Implementation Under VNS Framework

We use Compute Unified Device Architecture (CUDA)
to implement the DLS algorithm on GPU platforms. The
CUDA kernel calling sequence from the CPU side allows
applications of different operators in the spirit of VNS and
manages dynamic changes of cellular decomposition frontiers.
According to our previous experiments, the repartition of tasks
between host (CPU) and device (GPU) is actually the best
compromise we found to exploit the GPU CUDA platform at
a reasonable level of computation granularity. Data transfer
between CPU side and GPU side only occurs at the beginning
and the end of the algorithm. It is the CPU side that controls
DLS kernel calls with different operators executed within the
DCCF pattern for frontier cells management. With several
neighborhood operators in hand, we use them under the VNS
framework in order to enhance the solution diversification.
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V. EXPERIMENTAL STUDY

We use DLS algorithm to compute Optical flow, viewing
the task as an energy minimization problem, by using a simple
energy function, applied to benchmark images from the widely
used Middlebury optical flow data set [9]. The labels are
the displacement, and the data costs are the absolute color
differences between corresponding pixels. For the smoothness
term in energy function, we use a truncated linear cost as the
piecewise smooth prior defined in [19].

In Figure 2, there are reported the experimental results
of optical flow using DLS on the Middlebury optical flow
benchmark [9], with a set of choice of operators.

We test the random window move operator, the random
pixels move operator, and the random pixels expansion swap
operator respectively. The random pixels expansion swap op-
erator combines the random pixels expansion operator and the
random pixels swap operator together, selecting the best move
of these two operators to act.

We tested also different combinations of operators, listed
on the Figure 2

Figure 2. DLS with different operator combinations, on the Middlebury set
of benchmark. The x-axis shows the running time and the y-axis shows the

energy value. All the results are mean values over 10 runs.

Results show that the number of picked pixel has an
essential role in the energy minimization process, since random
large move operators lead to a faster convergences toward
low energies, while small move operators lead to slower
convergences. Random pixels expansion swap operator has
more impact on running time than on the energy function. The
random pick random move operator produces lowest energy
with the longest execution time among all operators. Best
compromises between energy and execution time are provided
when we use a combination of operators.

Figure 3. DLS with different operator combinations, on the Middlebury set
of benchmark. The x-axis shows the energy function and the y-axis shows
the ground truth error value. All the results are mean values over 10 runs.

In principle, more operators tend to lead to better diver-
sification of solutions, hence lead to lower energies. This is
supported by the result of the most combination. Another
observation is that the combinations, which include the random
pixels expansion swap operator are more likely to find faster
result than other combinations. We think this is due to the
highly stochastic nature of the random pixels expansion swap
operator, where two randomly picked groups of pixels are
considered.

In Figure 3, with the same choices of operators, results
show the relation between the ground truth error and the energy
function. The results show that random pixel operators yield to
better quality than other operators, which make them a good
choice, since they provide relatively lower energy with a short
running time. In our experiments, the random pixels expansion
swap operator gives good ground truth result, and the least
execution time but with a higher energy value. At the same
time the random move random pick operator gives a result as
good as the random pixels expansion swap operator, but with
the most execution time.

In Figure 4 are displayed the flow results for some of the
Middlebury benchmarks. In the first and the second columns
we present the input image and the ground truth respectively,
in the third column is presented the DLS with random pixel ex-
pansion and swap operator which seems to be the best choice
as an operator. we are also shown the results of the random
pick random move operator, and the result of three operators
combined in similar way to the V NS algorithm. Note that
during our experiments, we deal with optical flow only as
an energy minimization problem, just focusing on minimizing
energies. The flow maps obtained from all the tested operators
are the raw results after energy minimization, without any
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Figure 4. An example of flow result on Middlebury benchmark. (1st row) RubberWhale; (2nd row) Grove3; (3rd row) Hydrangea; (4th row) Dimetrodon; First
column: input image ; second column: ground truth; third column: flow result with random pixels swap and expansion operator; fourth column: flow result

with random pick random move operator; last column flow result with 3 operators (V NS)

Figure 5. Comparison between DLS on GPU and DLS on CPU regarding
input image size

additional post-treatments such as left-right consistency check,
occlusion detection, which are all treatments specific to optical
flow in order to minimize the errors compared with ground
truth maps. Moreover, as pointed out in [18], the ground truth
solution may not always be strictly related to the lowest energy.

In Figure 5, we focus on the performance of DLS when

input size augments. We experiment on three images from
Middlebury data set with different sizes. We can see that DLS-
GPU has an acceleration factor which increases according
to the augmentation of input size. This means that further
improvement could be carried out only by the use of multi-
processor platform with more effective cores. Figure 6 is
a caption of the quantitative flow evaluation measured with
average endpoint error(AEE) [9] in the Middlebury site.

VI. CONCLUSION

In this work, we introduced a new approach for optical
flow estimation. By using combinatorial optimization, we have
proposed a parallel local search procedure, called distributed
local search. We have applied the algorithm to the well-known
Middlebury optical flow benchmark. The result of the GPU
implementation of DLS on optical flow is encouraging since
we used a very simple energy function and without any post
processing operations.

The main encouraging result is that the GPU implementa-
tion of DLS to optical flow provides an increasing acceleration
factor as the instance size augments while allowing substantial
minimization of the energy. That is why we hope for further
improvements or improved accelerations factors with the avail-
ability of new multi-processor platforms with more and more
independent cores.
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Figure 6. DLS optical flow performance on the Middlebury data set [9].

It is a well-known fact that the minimum energy level
does not necessarily correlate to the best flow field. Here,
we only address energy minimization discarding too much
complex post-treatments necessary for the “true” ground truth
flow field. It should follow that many tricks are certainly not
yet implemented to make energy minimization coincide to
ground truth evaluation. In order to improve the flow quality in
terms of minimizing the errors to ground truth only, specially
designed terms for addressing typical situations in vision, such
as occlusion, slanted surfaces, and the aperture problem, need
to be added in the formulation of energy function. Furthermore,
more complex post-treatments should also be considered to
complete the parallel energy minimization method.
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