PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

On the Variability Dimensions of Normalized Systems Applications:
Experiences from an Educational Case Study

Peter De Bruyn, Herwig Mannaert and Philip Huysmans

Department of Management Information Systems
Faculty of Applied Economics
University of Antwerp, Belgium
Email: {peter.debruyn, herwig.mannaert,philip.huysmans}Quantwerp.be

Abstract—Normalized Systems Theory (NST) aims to create
software systems exhibiting a proven degree of evolvability. While
its theorems have been formally proven and several applications
have been used in practice, no real overview of the typical types
or dimensions along which such NST compliant applications can
evolve is present. Therefore, this paper presents an NST case
within an educational context in which its different variability
dimensions are illustrated. Based on this case, a more general
overview of 4 variability dimensions for NST applications is
proposed: changes regarding the application model, expanders,
craftings and technological options.

Keywords—Evolvability; Normalized Systems; Variability dimen-
sions; Case Study

I. INTRODUCTION

The evolvability of information systems (IS) is considered
as an important attribute determining the survival chances of
organizations, although it has not yet received much attention
within the IS research area [1]. Normalized Systems Theory
(NST) was proposed as one theory to provide an ex-ante
proven approach to build evolvable software by leveraging con-
cepts from systems theory and statistical thermodynamics [2]-
[4]. The main dimensions of evolvability or variability facili-
tated by the theory have nevertheless not yet been thoroughly
documented. Additionally, while some NST cases have been
documented in extant literature [5]-[9], the overall number of
cases is still fairly limited. This paper attempts to tackle both
mentioned gaps by discussing an NST application, which was
built and used for the management of process evaluations of
master dissertations at the faculty of the authors. Based on
this case, we discuss the different dimensions along which
variations in an NST application can arise. These dimensions
are consequently also important indications with respect to the
main areas in which an NST application can evolve throughout
time.

The remainder of this paper is structured as follows. In
Section II, we briefly present NST as the theoretical ba-
sis on which the considered software application was built.
Section IIT provides some general context regarding the case:
why and how the application was used. Next, the case is further
analyzed in Section IV. We offer a discussion in Section V and
our conclusion in Section VI.

II. NORMALIZED SYSTEMS THEORY

The case application we will present and analyze in the
following sections, is based on NST. This theory has been

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

previously formulated with the aim of creating software ap-
plications exhibiting a proven amount of evolvability [2]-
[4]. More specifically, the goal is to eliminate the generally
experienced phenomenon in which software systems become
more difficult to maintain and adapt, as they become bigger
and evolve throughout time [10].

NST is theoretically founded on the concept of stability
from systems theory. Here, stability is considered as an essen-
tial property of systems. Stability means that a bounded input
should result in a bounded output, even if an unlimited time
period T' — oo is considered. In the context of information
systems, this implies that a bounded set of changes should only
result in a bounded impact to the system, even in cases where
T — oo (i.e., considering an unlimited systems evolution).
Put differently, it is demanded that the impact of changes to
an information system should not be dependent on the size of
the system to which they are applied, but only on the size and
property of the changes to be performed. Changes dependent
on the size of the system are called combinatorial effect. It
has been formally proven that any violation of any of the
following theorems will result in combinatorial effects (thereby
hampering evolvability) [2]-[4]:

e Separation of Concerns, stating that each concern (i.e.,
each change driver) needs to be separated from other
concerns in its own construct;

e Action Version Transparency, stating that an action
entity should be able to be updated without impacting
the action entities it is called by;

e Data Version Transparency, stating that a data entity
should be updateable without impacting the action
entities it is called by;

o Separation of States, stating that all actions in a
workflow should be separated by state (i.e., being
called in a stateful way).

The application of the theorems in practice has shown
to result in very fine-grained modular structures, which are
generally considered to be difficult to achieve by manual
programming. Therefore, NST proposes five elements (action,
data, workflow, connector and trigger) that serve as design
patterns [3], [4]:

o data element: a set of software constructs encapsula-
ting a data construct (including a set of convenience
methods, such as get- and set-methods, and providing

45

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

remote access and persistence), allowing data storage
and usage within an NST application;

e qaction element: a set of software constructs encapsu-
lating an action construct (providing remote access,
logging and access control), allowing the execution
of units of processing functionality within an NST
application;

o workflow element: a set of software constructs allo-
wing the execution of a sequence of action elements
(on a specific data element) within an NST applica-
tion;

e connector element: a set of software constructs ena-
bling the interaction of an NST application with
external systems and users in a stateful way;

e trigger element: a set of software constructs enabling
the triggering of action elements within an NST ap-
plication, based on error and non-error states.

Based on these elements, NST software is generated in
a relatively straightforward way through the use of the NST
expansion mechanism. First, a model of the considered uni-
verse of discussion is defined in terms of a set of data,
action and workflow elements. Next, NST expanders generate
parameterized copies of the general element design patterns
into boiler plate source code. Several layers can be discerned
in this code: a shared layer (not containing any reference to
external technologies), data layer (taking care of data services),
logic layer (taking care of business logic and transactions),
remote or proxy layer (taking care of remote access), control
layer (taking care of the routing of incoming requests to
the appropriate method in the appropriate class in the proxy
layer) and view layer (taking care of presenting the view to
be rendered by the user interface, such as a web browser).
This generated code can, if preferred, be complemented with
craftings (custom code) to add non-standard functionality that
is not provided by the expanders themselves at well specified
places (anchors) within the boiler plate code. The boiler plate
code together with the optional craftings are then compiled
(built) so that the application can be deployed.

III. CASE INTRODUCTION

The case we present is concerned with the master thesis
evaluations at the Faculty of Applied Economics of the Uni-
versity of Antwerp. At the university, master students writing
their dissertation are not only evaluated with regard to the end
result (i.e., the thesis itself) but also (for a minor part) with
regard to the process they make in order to arrive at that end
result (e.g., their communication and reporting skills, problem-
solving attitude, etcetera during the project). This “process
evaluation” is built around a set of specific evaluation criteria
for students of this faculty, based upon the pedagogic vision the
faculty. More specifically, depending on the trajectory a student
is following, the thesis advisor(s) need(s) to assess a student
two or three times on 4 skill dimensions (each comprising of
a set of specific skills to be rated from insufficient until very
good) during the completion of his or her master thesis.

In this context, the procesEval application, based on NST,
was created around 2013. Up to that moment, the process
evaluation was either performed on paper or had to be regis-
tered via a customized part of the university’s online learning

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

and course management system. While the paper based eva-
luation was considered as generating administrative overhead
(the results had to be manually copied into the university’s
database systems by the administration) and providing little
overview for the thesis advisors (e.g., when performing the
second process evaluation they could not easily consult the
first process evaluation in order to make a more objective
comparison), the electronic variant in the online learning
and course management system was considered cumbersome
from a usability perspective (e.g., users complaining about
the amount of clicks required to perform “simple” actions or
experiencing difficulties in order to find the information they
are looking for).

The faculty management decided to develop an NST ap-
plication to manage the process evaluations. This choice was
made for several reasons. First, the expertise on how to build
NST applications was present within the faculty itself as the
theory (and the adjoining code expanders) was the output of
research projects of faculty members. Second, as the software
system would be developed by members of the faculty itself
as well, the developers were highly knowledgeable about
the inner working of the faculty (administration) and the
associated (functional) requirements. And third, evolvability
and maintainability were considered to be import quality
aspects of the software system to be developed as the process
evaluation was anticipated to remain an important part of the
student evaluations for several years to come (but could be
subject to some further fine-tuning or redirection in the future).
Given the situation of the project as sketched above, it was
expected that the application could be developed in a rather
short development trajectory without too many hurdles (i.e.,
no significant risk related to the technology was present and
the application domain was well known and understood).

The application itself was developed in the beginning of
2013. In the academic years 2013-2014 and 2014-2015, a
first pilot test with a set of key users (technological proactive
faculty members) was conducted. In the academic years 2015—
2016 and 2016-2017, the set of test users was gradually ex-
panded up to the level were all thesis supervisors could use the
procesEval application if they wanted, but could still use the
paper version if preferred. As of the academic year 2017-2018,
all faculty members were expected to use the NST procesEval
application for the administration of the master thesis process
evaluations. Apart from minor (usability) adjustments, the
project has been completed without major problems. Currently,
on a yearly basis, about 45 faculty members manage the
process evaluation of roughly 500 students via the procesEval
application.

In Figure 1, a screenshot of the procesEval application is
shown (the names of the students are blurred out to assure
anonymity, the names of the label being Dutch as this is
the administrative language of the organization). Here, one
can see that a supervisor can get an overview of all the
students he or she is supervising in the current academic
year. By selecting a particular student, a set of tabs appears
below the first table providing further details regarding his
(earlier) evaluations or working sessions (e.g., meetings) and
documents (e.g., preliminary thesis version). Figure 2 shows a
screenshot of one particular process evaluation. The application
therefore manages all process evaluations (typically 2-3) of all
master dissertations (as of 2017-2018) of multiple academic

46

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

.
5
£
= b
S 2
=] @2
2~ [
2 £
S
x
% a
-
- v o
" S 5 S
222
3 8 ©
2 ¢ g ¢
s o o
= 2 2 2
5 T © ©
5 3 3 =
T T T
3 z = =
2 3 B
3 2 2
@ 3 o
8 38 8
2 2 2
& & a
2 @
$ v v T
28 3% 3
g gt
2= =
» o
L & g
9 ¢ £
] 3
2
£ 3
s 2
5 =2
o £
Q &
5% %3
s ©
3 2
c
L8 S8 S
5
8
T o 1 ow
E S S S
s & § ¢
T o+ oo
¢ 5 5 5
4 & N N
@
LY
h-] =
2 c
£ 3
5 2
2 3
- © &
2 @ g
£ 2] ®
g £ 5
=] kS
pat > b
g
© 3 3
5 c o
° O a
~ = -
s _ E
£ 35 8
s B £
R @ 8 ¢ ¢
- S o £ ©
= § s € e
. c < g
3 -~ 3 3
3 £ 8 &
< > g 5|2
LizE
» < o O ¢
= = £ ©
2 3 sz
i E E 6
S S B =
g Q Els |8
3 s 3
g £ s
8 z %
o o 5 8
S 3% S
» 2 ¢ @
> £ £ o
8 £ 8T
= 5 2 g
S g| ¢ Elg
= 2 c o 8
a5 2 2
SIC|E|S®
a & E §
» 2le|l§l®
@ 5|2 |8|c
) 25 58 6
B F oo w
s ?
o 5
s
g. o oo
== = = ==
0
5
a2
O -
') 5
&
I3} 3
e -
|7} d 1
3 £
= <
3
z

Figure 1. A general screenshot of the procesEval application.

Copyright (c) IARIA, 2018.

Document

=
S -
2 g
@ 2 5 8
T &8 - %5
s 3 2 =
S S %
g S8 2
T & 2 ®
2 2 5 8
g g 2 2
g 8 3 ¢ P
s s 2 z 8
& & § o ©
s} o g
o e 2 8 2
ANARY - 3 2
g & @ & s
¢ ° 2 o g 2
g8t e 3
5 3
S 5 e e E g
s S
2 a <
53
£
3
>
£
=
&
» B B B o)
®|® @ 2
3 5 5
e 22 S
c|c g E
g & 8 8 s
=
o 5
3 Q
T 9
w © e 8
289 o o
S 5 5 5
IEENRENE
+ 0+ 0+ B
S S 5 5
8 & & | -
@
2 -
o @)
1 ki o
2 = -3
7 b4
g H §
B S
S °
Q -
] =3
@ 15
> 3
= 8
9 e
© = -
o) G
F = 2
| - o
o =
§| 2 £
L = o =
g & g g
g < = o 3
5 @ T i
a 3 g o N
=2 3
3 g 2
s 2 2 8
g5 °
gy S
s 8 o -
< |5 s 3 2
s 3] 2 5
b) = o
T © 2 @
g g = s
%‘?’é o N
u 9 =
c = g
s 8 % E
2 £ 3
g5 2 P
S § 2 2
s S 2
°
g g ©
£ 5 a b=}
£ & : @
g @ s
EE B =]
; 5 2
g2 is = 23
““Eg £ 09
gaa © 5|2
T = E-]
° 8 © N N
S & @ =
S ® @ ©
= |2 c BN >
T ¥ x 8 o
2 35 § 8 a
s 58 8 & &
2 853 & e <
§ 35 % 3 S S 3
= D [2 8
G L O o 3 £ §
4 T 3
= c Qo
= < N
[- °
I | I (I s =
E
3
s Q
b}
3]
8 s g
e o ® 2
a EO
2 32
i 3
e g 8
c +
] < N

ISBN: 978-1-61208-612-5

EersteProcesEvaluatie

ANALYZER -
KWALITEIT VAN DE INFORMATIE @

Accuraatheid @ Zeer goed

COORDINATOR

PROBLEEMOPLOSSENDE ONDERZOEKSHOUDING 0

Analytisch @ Zeer goed
Zelfstandigheid @ Zeer goed

COMMUNICATOR

SCHRIFTELIJKE RAPPORTAGE @

Structuur @ Zeer goed

CREATOR

PERSOONLIJKE INBRENG @

Eigen initiatief @ Zeer goed
Opmerkingen

Is compleet

Status RapportVerzonden

Datum evaluatie 10-06-2016 15:26:53

Close

Figure 2. A screenshot of a specific process evaluation within the procesEval
application.

years. Based on the provided information, the application
automatically generates overview reports of the evaluations,
sends an email with information regarding their evaluations to
students and supervisors as well as reminders (e.g., when a
particular process evaluation is due).

IV. CASE ANALYSIS
A. General overview

An NST application typically consists of a set of base
components (which are reused in several applications), as well
as one or multiple non-base components (typically specific
for the application under consideration). The base components
used within the procesEval application consisted of 29 data
elements, 7 task elements and 1 flow element. The non-base
component used within the procesEval application consisted
of 14 data elements, 8 task elements and 4 flow elements. As
a consequence, relatively speaking, the NST application was
still rather small comprising about 63 NST elements.

B. Model variations

By using the NST approach, the procesEval application
could be extended and adapted at the level of the model
(i.e., the definition of the different element instances for
the considered application domain). For instance, additional
elements could be added: next to the registration of three
possible process evaluations for each student, some working
documents and information regarding working sessions (e.g.,
what was agreed upon by the student and his supervisor during
a meeting) could be added to the model. After re-generating
the application based on this model, this functionality becomes
available in the new version of the application. Similarly,
existing (i.e., earlier created) components could be added
to the model. For example, a notification component was
added to the procesEval as this contained the functionality to
automatically trigger emails and could be leveraged to enable
the automatic report delivery (of the process evaluations to
the students, supervisors and administration). While the model
could be changed in terms of data elements and components,
this also holds for all other possible changes within the model.

47

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

More specifically, the following types of adaptations can be
performed to create different variations of the application:

e addition, update or deletion of a component (i.e., a set
of data, task and flow elements);

e addition, update or deletion of a data element defi-
nition (its fields with its types and options, finders,
options, child elements);

e addition or deletion of a task element definition (the
specific implementation of a task is a crafting, see
below);

e addition update or deletion of a flow element definition
and its accompanying default state transitions.

It should be remarked that the determination and evolutions
of such model is completely technology-agnostic (i.e., does
not require any specification in programming language specific
terminology). For instance, the specification of the model (in
terms of elements and their properties) is currently stored in
an XML format, not containing any references to the (back-
ground) technology of the current reference implementation
(i.e., Java). Based on this model, boiler plate source code for
each of the layers can be created.

C. Crafting variations

Once the model is converted into boiler plate source
code, additional code (so-called “craftings”, which are custom
made for an application) could be added between predefined
anchors (insertions) or in additional classes (extensions). This
way, non-standard functionality can be incorporated within
the application as well. In total, the procesEval contained
22 classes with insertions and 29 additional classes. For
instance, in the procesEval application, specific coding had
to be added to make sure that a supervisor logging into the
application can only view those master dissertations that he is
supporting in the concerning year (i.e., dissertations supported
by other supervisors or those of the previous year should not
be visible). For this purpose, a few lines of code were added
in the MasterThesisFinderBean determining the fetching of the
results viewable for a particular user. These FinderBeans are
expanded as part of the data layer: enforcing the filter of master
dissertations at the level of the data layer ensures that no data
from other users can be retrieved by the currently logged in
user. Consequently, this crafting only impacts the data layer,
while the remaining layers have no impact from this change:
they perform their functionality handling the (filtered) data
offered by the MasterThesisFinderBean.

Additionally, a set of screentips was added to assist the user
in filling-in the process evaluation (e.g., summarizing the mea-
ning of each of the evaluation criteria in case of a mouse-over).
The expanded NST code base supports this functionality by
providing a helpInfo Knockout binding. Specific screentips can
be added by including a crafting using this Knockout binding,
and referring to a certain key. At run-time, the specific values
for the required keys can be added in instances of HelpInfo
data elements. This enables the configuration of the screentips
even when the application has already been deployed. Note
that only the view layer is customized for this functionality.
This makes sense, since it is purely a useability concern, not
impacting actual business logic. However, it is dependent on
the specific technology used in the view layer (i.e., Knockout),
and should be remade when a different technology is used.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

Next, as mentioned before, the procesEval also needed to
create and send reports summarizing the content of the process
evaluation. The definition of these reports (the items to be
included and the corresponding layout) is considered to be a
separate functionality, and should therefore be contained in
a task element. The expanders provide all boilerplate code
needed to execute this task in the NST application, and only the
specific report generating functionality needs to be added as a
crafting. The actual implementation of the execution of a task
element is clearly separated, allowing versions and variations
of the task implementation to co-exist. Currently, reports are
generated using Jasper Reports. This requires the addition of
a Jasper template file to the code base, and some code to fill
the parameters to be inserted into this template. The additional
processing logic is completely contained in the logic layer.

These craftings were added in a gradual and iterative way to
the application: each time a particular additional functionality
was added or improved, a new version of the overall applica-
tion could be built and deployed. Each of these craftings were
situated at another layer (i.e., data, view and logic).

D. Infrastructural technology variations

The procesEval application could be generated by using
various different underlying infrastructural technologies. For
instance, whereas a prototype of the application is typically
demonstrated by using an HSQL database, most production
systems are deployed while using a PostgreSQL database.
Nevertheless, one can choose for SQLServer and MySQL
databases as well. Further, the procesEval can be built by
using different build automation frameworks (i.e., Ant and
Maven). And finally, the procesEval could also be generated
by using different controlling (Cocoon, Struts2, or combination
Struts2-Knockout) and styling frameworks (plain style or using
Bootstrap). In practice, the Struts2-Knockout and Bootstrap
were used in the production environment. Changing the choice
of a particular infrastructural technology in the procesEval
only impacts those layers depending on the purpose of the
technology (e.g., the database selection impact the data layer,
whereas the GUI framework selection impacts the view layer).

E. Expander version variations

The expanders (i.e., the programming logic used to convert
the model into boiler plate source code according to the
infrastructural technologies chosen) evolves throughout time as
well. This way, when considered the current procesEval project
duration (2013—present), 8 different production versions were
deployed while using the same model and craftings (as the
expanders provide backwards version compatibility). In each
of these production versions, the new or improved possibilities
of the expanders could be used. For instance, in one particular
version of the expanders, information regarding a Date field did
no longer have to be entered manually but could be selected
by using a more advanced date picker. And, more relevant in
the context of the procesEval, another particular version of
the expanders allowed the automatic creation of summarizing
graphs on certain fields. For example, it would now be possible
to inspect the number of master dissertations who did not yet
receive a first process evaluation versus those who did in a
visual way. In order to use the date picker, no changes in the
model or the craftings are required. In order to use the status
graphs, only one additional specification in the model (i.e., an

48

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

option indicating that a graph for a particular field should be
created) needs to be added. Clearly, the precise set of layers
that is impacted due to an expander update depends on the type
of modifications performed in that particular version update
(logic related, view related, etcetera).

V. DISCUSSION

While the above analysis is only based on one case study,
we anticipate that the proposed categorization can be generali-
zed to a large extend as it also aligns with the general “degrees
of freedom” available during the development and maintenance
of an NST application. This overall approach, together with 4
variability dimensions, is visualized in Figure 3.

First, as represented at the top of the figure, the modeler
should select the model he or she wants to expand. Such a
model is technology agnostic (i.e., defined without without any
reference to a particular technology that should be used) and
represented by a blue puzzle (i.e., each puzzle piece represents
a defined element, with the columns corresponding to data,
task, flow, trigger and connector elements). Such a model can
have multiple versions throughout time (e.g., being updated
or complemented) or concurrently (e.g., choosing between a
more extensive or summarized version). As a consequence, the
figure contains multiple blue puzzles that are put behind each
other and the chosen model represents a variability dimension
(represented by the green bidirectional arrow).

Second, the expanders (represented by the trapezoid in the
figure) generate (boiler plate) source code by taking the spe-
cifications in the chosen model as its arguments. For instance,
for a data element Person, a set of java classes PersonBean,
Personlocal, PersonRemote, PersonDetails, etcetera will be
generated. This code can be called boiler plate code as it
provides a set of standard functionalities for each of the
elements within the model. Nevertheless, one could argue that
this set of standard functionalities is already quite decent as it
contains the possibilities to provide standard finders, master-
detail (waterfall) screens, certain display options, document
upload/download functionality, child relations, etcetera. The
expanders themselves evolve throughout time. Typically, in
each new version, a set of bugs of the previous one are
solved and additional features (e.g., creation of a status graph)
are provided. It should be remarked that, given the fact that
the application model is completely technology agnostic and
can be used as argument for any version of the expanders,
these bug fixes and additional features become available for
all versions of all application models (only a re-expansion
or “rejuvenation” is required). As a consequence, the figure
contains multiple trapezoids that are put behind each other
and the expander version represents a variability dimension
(represented by the green bidirectional arrow).

Third, in the middle left of the figure, a set of infrastruc-
tural options are displayed by means of different rectangular
blocks. These consist of global options (e.g., determining the
build automation framework), presentation settings (determi-
ning the graphical user framework), business logic settings
(determining the database used) and technical infrastructure
(e.g., determining the background technology). For each of
these infrastructural options, the modeler can choose out of
a set of possibilities (e.g., different user interface frameworks
for which the associated code can be generated), which will
be used by the expanders as their parameters. That is, given

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

a chosen application model version and expander version,
different variants of boiler plate code can be generated, depen-
ding on the choices regarding the infrastructural options. As a
consequence, the figure contains multiple infrastructural option
block sets that are put behind each other and the infrastructural
options represent a variability dimension (represented by the
green bidirectional arrow).

Fourth, craftings (“custom code”) can be applied to the
generated source code. These craftings are represented in the
lower left of the figure by means of red clouds as they enrich
(are put upon) the earlier generated boiler plate code and can
be harvested into a separate repository before regenerating the
software application (after which they can again be applied).
This includes extensions (e.g., additional classes added to the
generated code base) as well as insertions (i.e., additional
lines of code added between the foreseen anchors within the
code). Craftings can have multiple versions throughout time
(e.g., being updated or complemented) or concurrently (e.g.,
choosing between a more advanced or simplified version).
These craftings should contain as little technological specific
statements within their source code (apart from the chosen
background technology). Indeed, craftings referring to (for
instance) a specific GUI framework will only be reusable
as long as this particular GUI framework is selected during
the generation of the application. In contrast, craftings perfor-
ming certain validations but not containing any EJB specific
statements will be able to be reused when applying other
versions or choices regarding such framework. Craftings not
dependent on the technology framework of a specific layer
can be included in the “common” directory structure, whereas
technology-dependent craftings need to reside in the directory
structure specified for that technology (e.g., EJB for the logic
layer, JPA for the data layer, Struts2 for the control layer).
As a consequence, the figure contains multiple crafting planes
that are put behind each other and the chosen set of craftings
represents a variability dimension (represented by the green
bidirectional arrow).

In summary, each part in Figure 3 with green bidirectional
arrows is a variability dimension in an NST context. It is clear
that talking about the “version” of an NST application (as is
traditionally for software systems) in such context becomes
rather pointless. Indeed, the eventual software application (the
grey puzzle at the bottom of the figure) is the result of a
specific version of an application model, expander version,
infrastructural options and set of craftings. Put differently,
with M, E, I and C referring to the number of available
application model versions, the number of expander versions,
the number of infrastructural option combinations and crafting
sets respectively, the total set of possible versions V of a
particular NST application becomes equal to:

V=MxExIxC

Remark that the number of infrastructural option combinations
is equally a product:

I=GxPxBxT

Where G represents the number of available global option
settings, P the number of presentation settings, B the number
of business logic settings and 7' the number of technical infra-
structure settings. This general idea in terms of combinatorics
corresponds to the overall goal of NST: enabling evolvability

49

PATTERNS 2018 : The Tenth International Conference on Pervasive Patterns and Applications

| global options

resentation settings

business logic settings

Ltechnical infrastructure

==

—

Figure 3. A graphical representation of four variability dimensions within a Normalized Systems application.

and variability by leveraging the law of exponential variation
gains by means of the thorough decoupling of concerns and
the facilitation of their recombination potential [4].

VI. CONCLUSION

This paper presented a case study of an NST software
application in an educational context and analyzed the different
dimensions in which it could evolve. Based on this, 4 general
variability dimensions were proposed.

This paper is believed to make several contributions. From
a theoretical side, inductive reasoning based on our case
allowed the formulation and illustration of 4 variability di-
mensions, might be the (or at least a subset of the) orthogonal
dimensions along which a typical NST application can evolve.
At the same time, these variability dimensions clarifies that the
concept of an overall application “version” is not applicable for
NST applications as a specifically deployed application is the
result of a combination of choices for each of the variability
dimensions. For practitioners, this paper contributes to the set
of case studies available on NST, which might provide them
with a better insight regarding the application potential of the
theory in practice.

Next to these contributions, it is clear that this paper is
also subject to a set of limitations. That is, we proposed
the set of variability dimensions based on one case study,
which was limited in size and complexity. This limits the
generalizability of our findings. Therefore, future research
should be directed towards the analysis of additional cases,
including information systems being larger, more complex and
executed within other application areas than the educational
industry. These additional cases might confirm, and possibly
extend, the variability dimensions proposed in this paper.

REFERENCES

[1]1 R. Agarwal and A. Tiwana, “Editorialevolvable systems: Through the
looking glass of is,” Information Systems Research, vol. 26, no. 3, 2015,
pp. 473-479.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-612-5

(2]

(3]

(4]

(51

(6]

(71

(8]

[9]

[10]

H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210-1222, special Issue on Software Evolution, Adaptability
and Variability.

——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89-116.

H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

M. Op’t Land, M. Krouwel, E. Van Dipten, and J. Verelst, “Exploring
normalized systems potential for dutch mods agility: A proof of concept
on flexibility, time-to-market, productivity and quality,” in Proceedings
of the 3rd Practice-driven Research on Enterprise Transformation
(PRET) working conference, Luxemburg, Luxemburg, September 2011,
pp. 110-121.

G. Oorts, P. Huysmans, P. De Bruyn, H. Mannaert, J. Verelst, and
A. Oost, “Building evolvable software using normalized systems theory
: a case study,” in Proceedings of the 47th annual Hawaii international
conference on system sciences (HICSS), Waikoloa, Hawaii, USA, 2014,
pp. 4760—4769.

P. Huysmans, P. De Bruyn, G. Oorts, J. Verelst, D. van der Linden,
and H. Mannaert, “Analyzing the evolvability of modular structures
: a longitudinal normalized systems case study,” in Proceedings of
the Tenth International Conference on Software Engineering Advances
(ICSEA), Barcelona, Spain, November 2015, pp. 319-325.

P. Huysmans, J. Verelst, H. Mannaert, and A. Oost, “Integrating infor-
mation systems using normalized systems theory : four case studies,”
in Proceedings of the 17th IEEE Conference on Business Informatics
(CBI), Lisbon, Portugal, July 2015, pp. 173-180.

P. De Bruyn, P. Huysmans, and J. Verelst, “Tailoring an analysis
approach for developing evolvable software systems : experiences from
three case studies,” in Proceedings of the 18th IEEE Conference on
Business Informatics (CBI), Paris, France, August-September 2016, pp.
208-217.

M. Lehman, “Programs, life cycles, and laws of software evolution,” in
Proceedings of the IEEE, vol. 68, 1980, pp. 1060-1076.

50

