
Evolvability Evaluation of Conceptual-Level Inheritance Implementation Patterns

Marek Suchánek and Robert Pergl

Faculty of Information Technology
Czech Technical University in Prague

Prague, Czech Republic
Email: marek.suchanek,robert.pergl@fit.cvut.cz

Abstract—Inheritance is a well-known construct in conceptual
modelling, as well as in the object-oriented programming, where
it is often used to enable reusability and to modularize com-
plex applications. While it helps in conceptual modelling and
understanding of complex domains, it usually results in evolv-
ability issues in software implementations. This paper discusses
problems caused by single and multiple inheritance with respect
to increasing accidental complexity of a model and evaluates
various patterns that can be used to transform conceptual-level
inheritance into implementation with respect to code evolvability.
The points are illustrated on the transformation of an example
ontological conceptual model in OntoUML into various software
implementation models.

Keywords–Inheritance; Generalization; UML; OntoUML;
Evolvability; Normalized Systems.

I. INTRODUCTION

Software engineering uses conceptual notions of inheri-
tance, generalization, or subtyping for decades in an analysis
of a problem domain as well as in design and implementation
of applications [1]. It captures a very essential and natural
property of something being a special case of something more
generic. Inheritance is one of the abstractions that we can
use to describe and model real-world concepts based on our
cognition principles. On the other hand, in software implemen-
tations, inheritance is often abused and used inappropriately
causing ripple effects and thus negatively affecting software
evolvability [2]. This worsens obviously when it comes to
multiple inheritance, which is, however, again natural in the
real world but complicated and sometimes even unsupported
in software implementations.

Evolvability problems caused by inheritance in Object-
Oriented Programming (OOP) are well-known and it is often
suggested to follow composite reuse principle clause “compo-
sition over inheritance” [3]. Majority of OOP design patterns
use composition together with generic interfaces instead of
class generalizations. Our goal here is to explore, describe, and
evaluate patterns for translating conceptual-level inheritance
into combinatorial effect-free (CE-free) implementation and
discuss its suitable use cases. The result should help to reduce
the accidental complexity of models that is introduced due to
technical reasons – as opposed to domain-given and irreducible
essential complexity.

In Section III, we summarize the related terminology and
the current state of the art in solving the problem of inheritance
in the software engineering domain. Then, in Section IV we
use this knowledge to discuss and evaluate the evolvability
of various solutions in the form of patterns. Evaluation is
summarized and all patterns are compared in Subsection IV-E.

Finally, we propose possible next steps in this work and
describe related research questions in Section V.

II. METHODOLOGY
For the conceptual ontological models, we use the On-

toUML language and for the object-oriented models, we use
UML. OntoUML is an ontology-driven conceptual modelling
language based on terms from Unified Foundational On-
tology (UFO) [4] focused on producing expressive, highly
ontologically-relevant models. The Unified Modeling Lan-
guage (UML) by OMG [5] is probably not necessary to
introduce. Its difference to OntoUML in our context is mainly
its historical focus on depicting object-oriented programmes
rather than ontological committment.

The core of this paper are proposals of model transforma-
tion patterns. As such, we suppose generation of code from
the models and then customizations in the style of model-
driven development [6] or Normalized Systems Expanders [7].
In descriptions of models, we strictly distinguish between an
entity on the conceptual level and a class in UML and a related
OOP implementation since there is a significant semantic
difference between these two – a (UML) class is an OOP
representation of (possibly more) OntoUML entities, as we
show later. To avoid misunderstanding we also respectively
use instance of entity or class instead of word object.

We discuss the evolvability issues with the respect to
a “user”, being an end user of a software application im-
plementing CRUD operations related to a discussed model
and also with the respect to “programmer” being a pro-
grammer developing customizations of the generated code.
These customizations are considered to be any piece of code
that enhances or otherwise changes the functionality of the
generated code.

III. RELATED WORK AND TERMINOLOGY
In this section, we very briefly review necessary termi-

nology for understanding various notions and use cases of
inheritance on conceptual-level and its counterparts in imple-
mentation. Then, we also shortly describe existing and related
solutions that affect our evaluation.

A. Generalization Typology
The notion of inheritance may mean semantically different

things and such differences are unfortunately often ignored; a
thorough discussion of various types of inheritance in software
engineering is provided by Taivalsaari in [1]. When we talk
about conceptual-level inheritance, we speak about general-
ization and specialization, or is-a relationship. It reflects our
cognitive resolution of an entity being related to a different

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

entity in a way that all instances of the first are also instances
of the second, but in some specific aspects differ.

For inheritance in implementation, the terminology is a
bit more complicated. The term subclassing describes using
inheritance to reuse code, which is also called “accidental” use
of inheritance. This sort of inheritance causes misunderstand-
ing because it is used mainly for maintaining Do-not-Repeat-
Yourself (DRY) code even though it creates combinatorial ef-
fects and there is no semantic foundation of such relation. The
designation “essential” use of inheritance is used for subtyping
that ensures substitutability in terms of the Liskov substitution
principle [8]. [1] states that subtyping ensures specialization,
but of course it can be again used inappropriately without
alignment to the real world.

B. Is-a Hierarchies
The simplest way of modelling inheritance is the so-called

is-a hierarchy, where two concepts are connected with is-a
relationship as a subclass and a superclass of subsumption,
e.g., Student is a Person. This started to appear widely
in Extended Entity-Relationship (EER) models that can be
considered as the predecessor of today’s widely used object-
oriented modelling languages, such as UML or Object-role
modeling (ORM) [9]. Although such representation of inheri-
tance is simplified, it is well-defined and allows straightforward
mathematical reasoning [10].

C. OntoUML Conceptual-Level Inheritance
Generalization and specialization are essential in On-

toUML; we use it to demonstrate conceptual-level inheritance.
An instance in OntoUML can be an instance of multiple
entities, however it must obey the single identity principle
(given by <<kind>> or <<subkind>>), as depicted in
Figure 1. This notion of multi-class instances is natural at
the ontological level, however, as we discuss further, it is not
typical in OOP and as such in standard UML. To bridge the
ontological level with implementation, a research has been
performed of transformation of OntoUML into UML and
relational model [11]–[15], summarized in [16]. We evaluate
here some of the patterns described in this work.

{disjoint}
...

instance of

{disjoint,
complete}

{disjoint,
complete}

Marek:Person

...

...

«RoleMixin»
Customer

«Mixin»
Insurable

«Category»
Living being

«Role»
Individual Customer

«Role»
Employee

«Phase»
Deceased

«Phase»
Alive

«Subkind»
Woman

«Subkind»
Man

«Kind»
Person

Figure 1. An excerpt of an OntoUML diagram showing inheritance and
instantiation in OntoUML

D. Generalization Sets
Unified Modelling Language (UML) [5] defines a gener-

alization set as an element whose instances define collections
of subsets of generalization relationships. The purpose of such
elements is to tell more about multiple generalizations via meta
attributes. For example, a generalization set can be used to
express that an instance of entity Person is either an instance
of entity Alive Person or Deceased Person with meta attributes
disjoint and complete.

E. Object-Oriented Inheritance
In OOP, inheritance is very often used as an enabler

of well-known DRY and the mentioned Liskov substitution
principle, one from SOLID principles recommended by Robert
C. Martin [17]. A subclass can easily extend its superclass(es)
by adding or changing attributes and methods. Deletion or
cancellation of methods or attributes is often possible only
by throwing an exception if called on a subclass. We take into
further considerations only OOP where an object is an instance
of exactly one class since the most widely used languages
(Java, C#, C++, Python, etc.) do not support making instances
of several classes [8]. Other languages that allow duck-typing
and prototyping deal with some inheritance problems but
creating other, usually leading to runtime errors caused by
weak type system [18].

F. Inheritance in Normalized Systems
The Normalized System (NS) theory [2] deals with evolv-

ability of systems in general and declares fine-grade modular-
ization based on four main principles: Separation of Concerns,
Separation of States, Data Version Transparency, and Action
Version Transparency. Using those principles leads to a system
with eliminated or at least controlled combinatorial effects
(CE) – effectively being a measure of evolvability over time.
Software systems are the core domain of NS theory application
in practice [7].

In the NS theory, inheritance is criticized for causing
CEs in software systems [2]. It is important to stress that
CEs are caused by inheritance in OOP, not inheritance at
the conceptual-level, as it may be transformed into a CE-
free implementation, as will be discussed further. For the
transformation of models in our work, the Separation of
Concerns principle is crucial. Nevertheless, the remaining three
principles are relevant for the implementation even though they
are not applied directly in the transformation.

IV. EVALUATION OF INHERITANCE PATTERNS
The main part of this work is the description, evalua-

tion, and summarization of various ways of implementing
a conceptual-level inheritance in various use cases. For a
demonstration of different patterns, we use Figure 1 as a con-
ceptual model that should be implemented. We first introduce
a simple approach with traditional inheritance implementation
and discuss its problems. Then, we explore three patterns from
the least to the most complex, their possible combinations and
summarize their comparison. Those patterns are based on [9]
[16], and can be found in many other software engineering
resources. Our focus is not just directed on a generation of CE-
free implementation of conceptual-level inheritance, but also
on its impact on usability for both the user and the programmer.

We observe and discuss mainly the following measures
that we quantify if possible to support our evaluation of the
patterns:

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

• Total number of classes needed for implementation,
composed of conceptual-level entity and additional
classes.

• How many steps it takes to navigate to superclass or
subclass.

• Change boundary, i.e., how many classes need to be
changed when one changes in the conceptual model.

A. Traditional OOP Inheritance
A straightforward way how to implement conceptual-

level inheritance is using subtyping. First, inheritance from
conceptual model remains as is; the only change is that
OntoUML’s stereotypes are stripped off and some of the
classes are made abstract to forbid their instantiation, as can
be seen in Figure 2. Then, for each possible and instantiatable
combination of conceptual entities, an empty concrete class
is generated if needed using multiple inheritance depicted in
gray. A generated concrete class is a subclass of appropriate
abstract classes that implement entities. If there is a case that
single inheritance is used (a class matches an entity 1 : 1),
such generated class can be removed and the superclass turned
into a concrete one; in other cases, the accidental complexity
grows and we must generate 1 class mixing n > 1 entities.
In our model, instead of generating trivial classes with single
inheritance Man and Woman, we just turn them from abstract
to concrete resulting into 6 generated classes instead of 8.

Individual
Customer
Employee
Woman

Individual
Customer
Employee

Man

{disjoint,
complete}

Individual
Customer

Man

Employee
Woman

Individual
Customer
Woman

Employee
Man

Customer

Individual
CustomerEmployeeWomanMan

Insurable

Person

LivingBeing

Figure 2. Traditional (multiple) inheritance pattern

Problem with this approach is that a language that sup-
ports multiple inheritance is needed, but more importantly,
the introduced combinatorial effect is huge. A class instance
implements a single or multiple conceptual entity instances.
Therefore, there will be

(
n
0

)
+
(
n
1

)
+ . . .+

(
n
n

)
= 2n generated

classes, where n + 1 is the number of entities that can be
instantiated (if there is just one entity, n = 0). For example,
if we want to incorporate subclasses Alive and Deceased as
in Figure 1, we need to completely change everything. There
would be 16 generated classes in total and none of them would
be the same as in the previous situation with 8 classes, which
means a potential breaking change.

Another problem is caused by the rigidity of
this design. When you want to turn an instance
of class AliveEmployeeWoman into instance of
DeceasedEmployeeWoman, a transformation procedure
must be implemented – making system more complex
internally, as well as for the user, as new forms are
required. Last, programming customizations would be very

difficult since, as shown, adding or removing classes at
the conceptual level leads into significant changes in code
that can make customizations invalid. Imagine that there
is a customization for CustomerWoman, but then there
is no such class only two AliveCustomerWoman and
DeceasedCustomerWoman – a decision how to apply the
customization on those would need to be made. As result, the
only advantage is direct inheritance without any necessary
navigation steps.

B. The Union Pattern
This new pattern we introduce here is very close to Single

Table Inheritance (in some frameworks also referred as Table-
Per-Hierarchy) that is used widely in relational databases.
Basically, it is a class that unions all properties from the class
and its subclasses – thus we call it union pattern. For each core
class (identity provider entity in OntoUML) and its inheritance
tree including all abstract superclasses and all subclasses, a
union class is made as in Figure 3. Every subclass decision
is covered by so-called discriminator that can be generated
as an attribute and it tells which subclass(es) subset of every
generalization sets is picked (e.g., dManOrWoman) or which
single subtype is used (e.g., dEmployee).

Person

insurableProps: T[1]
livingBeingProps: T[1]
dManOrWoman: String[1]
manProps: T[0..1]
womanProps: T[0..1]
dEmployee: Bool[1]
employeeProps: T[0..1]
dIndividualCustomer: Bool[1]
customerProps: T[0..1]
indivCustomerProps: T[0..1]

Figure 3. Union pattern

A significant disadvantage can be seen in the massive
complexity of a single class and violating the Separation
of Concerns principle. Adding a new subclass results in a
definition of a new discriminator value and new fields in
an existing class. It acts as a single complex data element
with optional properties based on some other attributes. With
this pattern, checks of actual subtypes must be implemented
manually if needed, for instance, if there is a need to create a
relationship only with Employee. Even more problems emerge
where the hierarchy of subclasses is deeper. However, a user
can be fully shielded from this implementation by having a
single form with picking what is needed. For a programmer,
this may result in tedious work (meaning time-consuming and
error-prone) to handle all cases of complex class with multiple
discriminators and many optional properties.

From the perspective of observed measures, there are
precisely 0 of additional classes and one whole hierarchy from
conceptual model is merged into one class. For navigation to
subclass a single step of discriminator comparison has to be
made (when relying on the integrity checks). Although this
pattern is simple and seems to solve evolvability issues, it is
practically a conceptual anti-pattern.

C. Composition Pattern
We call this pattern after the already-mentioned advice

composition over inheritance. It is similar to the previous
Union Pattern, but instead of merging all properties into one

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

class, a composition is used. Thanks to that, no discriminator is
needed and also no subclassing is needed as shown in Figure 4.
All generalization relations are replaced by bidirectional is-
a associations that are always mandatory for a subclass, but
can be optional for superclass if the used generalization set is
not complete. For disjoint sets or more complex constraints,
additional checks, such as xor, must be implemented and a
mere multiplicity setting is not sufficient.

Individual
Customer

Customer

Employee

LivingBeingInsurable

Person
Man

Woman

◄is a
0..1

1

◄is a
0..11

is a►
1

1

◄is a
1

1

◄is a
1

1

is a►
0..1 1

is a►
0..1 1

Figure 4. Composition pattern

An important change against the original conceptual model
is that every abstract class is turned into concrete in order to
be instantiated and such instance must be related (transitively)
to exactly one instance of a core class. Transformation of
generalizations into is-a associations can be also done fully
automatically including integrity checks (for instance, that
Person is Woman or Man, but never both). It is possible
again to fully shield the implementation from the user as it
works from this point of view similar to union pattern, just
with special associations. Instead of additional comparison of
discriminator value for navigation to subclass, the relation is
checked and used if is realised. There is the same number of
classes as in the conceptual model.

A programmer should have easier work than in the previ-
ously described patterns thanks to Separation of Concerns and
possibility to use the power of a type system when passing
subclass or superclass instances. Implementation and support
mechanisms of is-a should allow a programmer to easily
navigate to superclass instances, check if subclass instances are
set and if so, navigate to it. When the inheritance hierarchy is
changed within the model, some of the previous is-a links can
be removed or edited causing incompatibility of customization.
However, it is the same sort of ripple effect as for the union
pattern, only the change is not encapsulated within a single
(but huge) class but in a limited number of classes within a
single hierarchy.

D. Generalization Set Pattern
The main weakness of the composition pattern is the need

of handling generalization set constraints by implementing or
generating constraints, and it can still make a problem when
accessing instances of subclasses. We introduce this pattern
to solve this problem and also to avoid having multiple is-a
links attached directly to the instance together with all integrity
checks – we want to separate this concern out. As depicted in
Figure 5, for each class that has subclass(es), a special class for
generalization sets (marked by «GS» stereotype) is generated.
If there are other specialized generalization sets for an entity in
the conceptual model (such as the one for Man and Woman),
an extra generalization set class is generated and linked from
the core one.

«GS»
CustomerGS

«GS»
PersonGS

«GS»
ManWomanGS

disjoint=true
complete=true

«GS»
LivingBeingGS

«GS»
InsurableGS

Individual
Customer

Customer

Employee

LivingBeingInsurable

Person

Man Woman

1

0..1

1

0..1

11

1

0..1

1

0..1

0..1

1

0..1

1

1

1

1

1

1

1

1

1

1
1

Figure 5. Generalization set pattern

Each «GS» class can be defined with class attributes
such as complete and disjoint that can adjust the behaviour
of generalization set including integrity checks or default
form generation. Moreover, new attributes can be introduced
to enhance functionality in the future without breaking the
existing model. For a programmer, the work is simplified
by cleaner data classes and «GS» encapsulating necessary
utility for implementing the inheritance in exchange for extra
navigation per a single generalization set (A ↔ GS ↔ B
instead of directly A ↔ B). An end user is again shielded
and thanks to the generated «GS», the user interface can
be generated easily and universally thanks to straightforward
reuse and composition of simpler parts.

The significant negative issue with this pattern comes in
form of overhead caused by a number of extra classes and
extension of the generation tool by a new and non-trivial con-
cept. Sometimes the «GS» class is unnecessary, for example,
if there is no other LivingBeing than Person in the model.
In such cases, extra «GS» class could be omitted but then a
customization would use direct navigation. However, such a
simplification leads to an increased impact of changes when
a new subclass is added and generalization set is additionally
created.

E. Comparison of Inheritance Patterns
We showed benefits of the discussed three patterns above in

terms of evolvability compared to traditional OOP inheritance.
We deliberately introduced the patterns in order so that the fol-
lowing removes the most significant problems of the previous.
Unfortunately but naturally, it is never “for free” and each
solution has its own problems, mainly in terms of additional
complexity, which is, however, not an issue when we talk about
automatically generated code. A summary of the discussion is
provided in Table I.

We evaluated the generalization set pattern as generally the
most suitable from those covered in this paper, however, there
are use cases where some of the others may be better appli-
cable. Below, we make such discussion from the conceptual
point. In cases where time and/or space complexity needs to
be optimised, conclusions about patterns suitability may differ.

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

TABLE I. COMPARISON OF INHERITANCE PATTERNS EVOLVABILITY

Evolvablity aspect Traditional inheritance Union pattern Composition pattern GS pattern
Number of additional classes 2n 0 0 1 per GS
Multiple-inheritance support yes (if the PL supports) causing CE with constraints yes
Customizations evolvability breaking changes SoC violated OK OK
Accessing superclass by the PL used discriminator association associations
UI uniformity obstacles migrations, repetition repetition constraints no
Hierarchy change impact whole hierarchy class association(s) association(s), GS class(es)

The union pattern, when compared to the generalization set
pattern, is suitable when the inheritance hierarchy is not deep
but shallow with a single or very low number of generalization
sets. In such case, multi-valued discriminator and optional
fields will be used and handling a single instance will be
very simple. On the other hand, if there are more levels
of inheritance, it is too complex to use. The first option
is that a superclass is merged into subclass(es) resulting in
repetition (e.g., Insurable for Person but also Building). The
second option is to merge at the top level, which causes a
serious problem of a too complex class including non-related
properties. The last serious problem is that this pattern cannot
be used without repetition for multiple inheritance.

The composition pattern is very similar to the gener-
alization set pattern and the only advantage is a reduced
complexity by leaving out special «GS» classes. It allows
multiple inheritance with simple reuse thanks to creating
linked instances and it has no problem with deeper inheritance
hierarchies compared to the union pattern. The key problem
is with handling inheritance and generalization set constraints
inside the superclass and subclass. That is not a problem for
simple unconstrained generalizations, as already mentioned.
The violation of Separation of Concerns principle is removed
in the generalization set pattern, where it can be hidden
using various OOP design patterns (such as Proxy) even for
programmers.

F. Combinations of the Previous Patterns
For a transformation of a complex OntoUML model, it may

also be a possibility to select different patterns for different
parts of the model according to the discussion above. However,
new concerns arise:
• The uniformity of user interface (UI) and experience

user (UX) should be maintained.
• Using different patterns will necessarily result in dif-

ferent data accessing strategies (especially navigation
of subclass/superclass), which complicates the job of
the programmer and requires extra knowledge of the
various patterns and their characteristics, also during
the transformation phase.

It might seem a good idea to go for the Union pattern
in case of a simple inheritance with multiple subclasses in
one generalization set, which leads to one discriminator,
or to remove «GS» class when it is not needed, but after
considering the listed negative effects or additional needs,
sticking with the most powerful and flexible generalization set
pattern is generally recommended in spite of its higher internal
complexity.

V. FUTURE RESEARCH AND RELATED PROBLEMS
The obvious future work is implementation of the trans-

formations in an MDA-enabled CASE tool and design the

necessary transformations and code generation. The proposed
transformations should be now encoded and verified by real-
world practice on larger code bases. There are also topics for
more theoretical research on the topic.

A. Interfaces Evolvability
In this paper, we evaluated the inheritance of OOP in terms

of subclassing. Some object-oriented programming languages,
for instance, Java, comes with a construct called interface and
a relation implements. Implementing an interface is in some
aspects similar to extending a class but it is more constrained.
Although this construct is not generally used at the conceptual-
level and is tied to implementation, possible future research
could evaluate those differences and its relation to evolvability.
Similarly, there are additional constructs such as traits (e.g.,
in Pharo [19]) or mixins (e.g., in Ruby [20]) that call for
similar analysis. Their potential to serve similarly as multiple
inheritance in some respects make them interesting for this
purpose. However, as they seem not the mainstream of today’s
OOP, we did not deal with them in the first case.

B. Automatic Transformation with Pattern Selection
In Section IV-F, we sketched an idea of patterns combi-

nation. If the selection is implemented in an automatic way
and moreover, the API of the generated model is further
abstracted so that it provides a unified approach for all the
patterns, benefits of the patterns may be used without the
pointed drawbacks. However, we are aware that this is a quite
challenging task.

VI. CONCLUSION

In this paper, we briefly described and summarized ter-
minology of inheritance in software engineering and the re-
lation between inheritance on the conceptual level and its
implementation in the source code. The possible patterns
of implementing conceptual-level inheritance in OOP were
introduced, evaluated, and compared in multiple aspects of
evolvability. The implementation itself is shown to be non-
trivial and there are more options suitable for different cases.
Further verification of our contribution on real-world use cases
is desirable as follow up in this research. During the work,
we have encountered multiple related important questions and
problems and suggested future research.

ACKNOWLEDGEMENTS

This research was supported by the grant of Czech Tech-
nical University in Prague No. SGS17/211/OHK3/3T/18. Ini-
tial steps in this research were done during the Normalized
Systems Summer School 2018 organized by the University of
Antwerp.

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

REFERENCES
[1] A. Taivalsaari, “On the Notion of Inheritance,” ACM Computing

Surveys, vol. 28, no. 3, September 1996, pp. 438–479.
[2] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:

From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Kermt (Belgium): Koppa, 2016.

[3] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
March 1995.

[4] G. Guizzardi, Ontological Foundations for Structural Conceptual Mod-
els. CTIT, Centre for Telematics and Information Technology, 2005.

[5] B. Selic et al., “OMG Unified Modeling Language (Version 2.5),”
March 2015.

[6] A. G. Kleppe, J. Warmer, J. B. Warmer, and W. Bast, MDA Explained:
The Model Driven Architecture – Practice and Promise. Addison-
Wesley Professional, 2003.

[7] G. Oorts, P. Huysmans, P. D. Bruyn, H. Mannaert, J. Verelst, and
A. Oost, “Building Evolvable Software Using Normalized Systems
Theory: A Case Study,” in 2014 47th Hawaii International Conference
on System Sciences(HICSS), January 2014, pp. 4760–4769.

[8] R. W. Sebesta, Concepts of Programming Languages, 10th ed. Pearson,
2012.

[9] R. Elmasri and S. Navathe, Fundamentals of Database Systems. Lon-
don: Pearson, 2016.

[10] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Za-
kharyaschev, “Reasoning over Extended ER Models,” in International
Conference on Conceptual Modeling. Springer, 2007, pp. 277–292.

[11] Z. Rybola and R. Pergl, “Towards OntoUML for Software Engineer-
ing: Introduction to the Transformation of OntoUML into Relational
Databases,” in Enterprise and Organizational Modeling and Simulation,
ser. LNBIP. Ljubljana, Slovenia: Springer, June 2016.

[12] ——, “Towards OntoUML for Software Engineering: Transformation of
Rigid Sortal Types into Relational Databases,” in Proceedings of {Fed-
CSIS} 2016, ser. ACSIS, vol. 8. Gdańsk, Poland: IEEE, September
2016, pp. 1581–1591.

[13] ——, “Towards OntoUML for Software Engineering: Transformation
of Anti-Rigid Sortal Types into Relational Databases,” in Model and
Data Engineering, ser. LNCS. Aguadulce, Almería, Spain: Springer,
September 2016, pp. 1–15.

[14] ——, “Towards OntoUML for Software Engineering: Transformation
of Kinds and Subkinds into Relational Databases,” Computer Science
and Information Systems, vol. 14, no. 3, 2017, pp. 913–937.

[15] ——, “Towards OntoUML for Software Engineering: Optimizing Kinds
and Subkinds Transformed into Relational Databases,” in Enterprise and
Organizational Modeling and Simulation, ser. LNBIP. Tallinn, Estonia:
Springer, Cham, November 2018, pp. 31–45.

[16] Z. Rybola, “Towards OntoUML for Software Engineering:
Transformation of OntoUML into Relational Databases,” Ph.D.
thesis, Czech Technical University in Prague, Prague, Czech
Republic, August 2017, [retrieved: Apr, 2019]. [Online]. Available:
https://www.fit.cvut.cz/sites/default/files/PhDThesis-Rybola.pdf

[17] R. C. Martin, “Design Principles and Design Patterns,” Object Mentor,
vol. 1, no. 34, 2000, p. 597.

[18] B. C. Pierce and C. Benjamin, Types and Programming Languages.
MIT press, 2002.

[19] A. Bergel, D. Cassou, S. Ducasse, J. Laval, and J. Bergel, Deep into
Pharo. Square Bracket, 2013.

[20] D. Thomas et al., Programming Ruby: The Pragmatic Programmers’
Guide. Raleigh, NC: Pragmatic Bookshelf, 2005.

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

