
Using Normalized Systems to Explore the Possibility of

Creating an Evolvable Firewall Rule Base

Geert Haerens

Faculty of Business and Economics
University of Antwerp, Belgium
and Engie IT — Dir. Architecture

Email: geert.haerens@engie.be

Peter De Bruyn

Department of Management Information Systems
Faculty of Business and Economics

University of Antwerp, Belgium
Email: peter.debruyn@uantwerp.be

Abstract—A firewall is an essential network security component.
The firewall rule base, the list of filters to be applied on network
traffic, can have significant evolvability issues in a context where
companies consider their firewall as complex. Whereas sufficient
literature exists on how to analyze a rule base which is running
out of control, little research is available on how to properly
construct a rule base upfront, preventing the evolvability issues to
occur. Normalized Systems (NS) theory provides proven guidance
on how to create evolvable systems. In this paper, NS is used
to study the combinatorics involved when creating a firewall
rule base. Based on those combinatorics, an artifact (method)
is proposed to create a firewall rule base which has evolvability
in its design.

Keywords–Normalized Systems; Firewall; Rule base

I. INTRODUCTION

Firewalls are an essential component of network security.
They have been protecting network connected resources for
over 25 years and will continue to do so for the next decades
[14] [15]. Initially, firewalls were used to protect a company
against threats coming from the outside (i.e., the “evil Inter-
net”). This is referred to as filtering North-South traffic [20].
But security breaches are not only caused by access through
the Internet. A significant portion of security breaches are
caused from within the company network [18] where hacks
have become more sophisticated. Getting a foothold on one
resource on the internal network and from there on hopping
between resources, is a known hacking strategy against which
filtering North-South traffic offers no protection. For this rea-
son, protecting the network connected resources from internal
traffic, referred to as East-West traffic [20], is gaining ground.

Networks are becoming more and more complex: they
often contain multiple firewalls, which protect multiple net-
work segments. The rule base of those firewalls (i.e., the
definitions of which traffic is allowed or not) is becoming
equally complex, up to the point where it becomes almost
unmanageable. In a survey organized by Firemon [13], 73 %
of survey participants stated that their firewall ranges from
“somewhat complex” to “out of control”. Further, complexity
is the challenge which was ranked the highest for firewall
management [14] [15].

The firewall rule base is a classic example of a system
that needs to evolve over time. It starts with one firewall, and
two network segments and filtering rules between them. As
the network grows, the number of resources connected to the
network grows, the number of services offered on the network

grows and the number of security threats grows. The resulting
firewall rule base will enlarge dramatically. This evolution will
at some point result in a rule base where normal changes
(i.e., the addition of a rule or the removal of a rule) result
in unforeseen side effects. Those effects are proportional to
the size of the rule base: the bigger the system (rule base), the
worse it gets [14].

Normalized Systems (NS) theory [23]–[27] studies combi-
natorics in modular systems and provides a set of theorems to
design modular systems exhibiting ex-ante proven evolvability.
Here, the goal is to avoid so-called combinatorial effects (CE).
CE’s are impacts which are proportional to the type of change
as well as the size of the system to which the change is applied.
When all modules of a system respect the NS theorems, the
system will be free of such CE’s. At that point, the system
can be considered stable under change with respect to a set of
anticipated changes (such as adding and removing components
from the system).

There are multiple vendors which sell tools to analyze a
firewall rule base and can even be used to simplify it (e.g.,
Firemon, Tufin, Algosec). Some academic research on such
analyses is available as well. Both industry and academics
seem to focus on improving existing rule bases. However,
a more ambitious objective would be to avoid this type of
problems upfront through the deliberate design of the rule base
and incorporate evolvability by design.

This paper will study the combinatorics involved in the
firewall rule base. We will propose an artifact (a method),
which translates the general NS theorems into a set of firewall
rule base principles. When applied, this will result in an ex-
ante proven evolvable (free of CE) rule base with respect to
the addition and removal of rules to the firewall rule base.

The paper uses a Design Science approach [28] [29].
Therefore, Section 2 starts with explaining some firewall basics
and explains the evolvability issues of a firewall rule base.
In Section 3, the artifact goals and design are described.
Different changes will be applied on a rule base created with
the artifact to demonstrate the evolvability in Section 4. In
Section 5, the artifact is evaluated based on the demonstration.
Section 6 includes a literature review to link the newly created
artifact with existing work, and points out the weaknesses of
the artifact which also includes some suggestions for future
research. Finally, our conclusions are offered in Section 7.

This paper elaborates on earlier research [27], where the

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

applicability of NS for IT infrastructure systems was being
explored. The current paper focuses on a practical case where
NS and domain specific knowledge on firewalls are combined
resulting in a design strategy for an evolvable firewall rule
base.

II. GENERAL BACKGROUND AND PROBLEM DESCRIPTION

In this section, some fundamental concepts about firewalls
will be explained, followed by a summary of the issues
regarding the evolvability of a firewall rule base. The section
continues with explaining the notion of firewall group objects,
their value and related issues, and finishes with a brief expla-
nation of the “Zero Trust” concept, which is one of the design
objectives of the envisioned artifact.

A. Firewall concepts
An IPV4 TCP/IP based firewall can filter traffic between

TCP/IP network connected resources based on Layer 3 (IP ad-
dresses) and 4 (TCP/UDP ports) information of those resources
[21] [22]. The firewall must be in the network path between
the resources. Filtering happens by making use of rules. A
rule is a tuple containing the following elements: <Source IP,
Destination IP, Destination Port, Protocol, Action>. IP stands
for IP address and is a 32 bit number which uniquely identifies
a networked resource on a TCP/IP based network. The rule
is evaluated by the firewall, meaning that when it sees traffic
coming from a resource with IP address =<Source IP>, going
to resource =<Destination IP>, addressing a service listening
on Port = <Destination port>, using Protocol = <Protocol>,
then the firewall will perform an action = <Action>. The
action can be “Allow” or “Deny”.

A firewall rule base is a collection of order-sensitive rules.
The firewall will evaluate all inbound traffic against the ordered
rule base, starting at the top of the rule base untill it encounters
the first rule that matches the criteria (Source, Destination,
Destination Port, Protocol) of the traffic, and perform the
action as specified in the rule it hits. In a firewall rule, <Source
IP>, <Destination IP>, <Destination Port> and <Protocol>
can be one value or a range of values. Protocol can be TCP
or UDP. In the remainder of this document, the notion of
protocol is omitted as it can be included in the Port variable
(for example TCP port 58 or UDP port 58).

B. Firewall evolvability issues
A typical firewall rule base might become complex over

time and consist of many different rules that can have different
types of relations with regard to each other. In [2], the
following relations are defined between rules:
• Disjoint: Two rules R1 and R2 are disjoint, if they

have at least one criterion (source, destination, port,
action) for which they have completely disjoint values
(= no overlap or match).

• Exactly Matching: Two rules R1 and R2 are exactly
matched, if each criterion (source, destination, port,
action) of the rules match exactly.

• Inclusively Matching: A rule R1 is a subset, or
inclusively matched to another rule R2, if there exists
at least one criterion (source, destination, port, action)
for which R1’s value is a subset of R2’s value and for
the remaining attributes, R1’s value is equal to R2’s
value

• Correlated: Two rules R1 and R2 are correlated, if R1
and R2 are not disjoint, but neither is a subset of the
other.

Exactly matching, inclusively matching and correlated rules
can result in the following firewall anomalies [2]:
• Shadowing Anomaly: A rule R1 is shadowed by an-

other rule R2 if R2 precedes R1 in the policy, and R2
can match all the packets matched by R1. The result
is that R1 is never activated.

• Correlation Anomaly: Two rules R1 and R2 are cor-
related if they have different filtering actions and R1
matches some packets that match R2 and R2 matches
some packets that R1 matches.

• Redundancy Anomaly: A redundant rule R1 performs
the same action on the same packets as another rule
R2 so that if R1 is removed the security policy will
not be affected.

A fully consistent rule base should only contain disjoint rules,
as in that case, the order of the rules in the rule base is of
no importance and the anomalies described above will not
occur [2] [8]–[12]). However, due to a number of reasons
such as unclear requirements, a faulty change process, lack
of organization, manual interventions and system complexity
[13], the rule base will include correlated, exactly matching
and inclusively matching rules. Combined with the order-
sensitivity of the rule base, changes to the rule base (the
addition or removal of a rule) can result in unforeseen side
effects. To be confident that a change will not introduce
unforeseen side effects, the whole rule base needs to be
analyzed. Therefore, the effect of the change is proportional
to the change and the size of the system, being the complete
rule base. According to NS, this is a CE. As a result, a firewall
rule base containing rules other than disjoint rules, is unstable
under change.

C. Firewall group objects
A rule base which is made up of IP’s as Source/Destination

and port numbers is difficult to interpret by humans. It is just a
bunch of numbers. Modern firewalls allow the usage of firewall
objects, called groups, to give a logical name to a source, a
destination or a port, which is more human friendly. Groups
are then populated with IP addresses or ports. Groups can be
nested.
Although it should improve the manageability of the firewall,
using groups can easily result in the introduction of exactly
matching, inclusively matching or correlated rules.
Example:
“Group Windows APP” and “Group Windows APPS” could
be two groups with each contain the IP addresses of all Win-
dows Application Servers. The second group may have been
created without knowledge of the existence of the other [13],
introducing exactly matching rules. The group memberships
may start to deviate from each other, introducing correlated or
inclusively matching rules, which could lead to anomalies in
the rule base. The group structure must be well designed to
avoid this.

D. Zero Trust
In [18] [19] [20] Forrester advocates the usage of a Zero

Trust model:
• Ensure all resources are accessed securely, regardless

of location and hosting model,

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

• Adapt a “least privilege” strategy and strictly enforce
access control,

• Inspect and log all traffic for suspicious activity.
The working assumption in the case of protecting network

connected resources, is that all traffic towards those resources
is considered a threat and must be inspected and secured. A
network connected resource should only expose those services
via the network which are minimally required and each net-
work connected resource should only be allowed access to
what it really needs.

III. CREATING AN ARTIFACT FOR AN EVOLVABLE RULE
BASE

Based on the analysis of the problem space in the previous
section, the objective is:
• To create a rule base compliant with the “Zero Trust”

concept.
• To create a rule base which only contains disjoint

rules.
• To create a rule base making use of firewall group

objects to improve readability and manageability.
• To create a rule base which is evolvable with respect

to the following anticipated changes: the addition and
removal of rules.

NS will be used to structure this evolvable rule base.
In order to obtain this goal, this section starts with the

investigation of the modular structure of a firewall rule base
and is followed by a discussion of the issues which surface
when the modular structure is instantiated. The section con-
tinues with a set of formal definitions of the firewall rule base
components, from which the combinatorics are derived when
creating a firewall rule base. Based on these combinatorics,
the design rules for the evolvable rule base are distilled and
translated into the actual artifact.

A. Modular structure of the rule base
A rule base is the aggregation of rules. A rule is the aggre-

gation of: Source, Destination, Service and Action. Source is
the aggregation of Clients requiring services. Destination is the
aggregation of Hosts offering services. Service is the aggrega-
tion of Ports (combination of port number and protocol) which
compose a service. Figure 1 represents the implicit modular
data structure of a rule base in a firewall. Implicit because
firewall vendors do not publish the internal data structure they
use, but based on the input one needs to enter a rule in the
rule base. Therefore, we assume that the model is a sufficient
representation of a firewall rule base. In NS terms, the modular
structure would be considered as evolvable when “Separation
of Concern” is respected, as the theorems “Separation of State”
and “Data and Action Version Transparency” are not relevant.
As each of the mentioned modules seems to be focused on
one concern, one tends to conclude that the design of a rule
base can be considered as stable under change.

B. Module instantiation
If the modular structure of the rule base seems to be stable

under change, then where does the problem of non-evolvable
rule bases come from? In this respect, it is important to be
aware of the fact that a firewall rule base is an order-sensitive
system. More specifically, each instantiation of a rule must be
given the correct place in the rule base or the rule will have
an impact on existing rules (see Section II). Due to this, there

Figure 1. Modular Structure of a rule base

are evolvability issues at the level of the instantiations of the
modular structure. Indeed, it seems that —in some specific
situations— certain evolvability issues of a modular structure
only show up at runtime. Therefore, it is interesting to look at
the application of the NS theorems at this instantiation level as
well. In the context of this research, this would mean that we
need to look whether the addition or removal of instantiations
(of rules) can result in CE’s and thus evolvability issues making
an operational system unmanageable. Here, eliminating the
order-sensitivity of the rule base is the key to the problem.
In order to do this, the rule base can only contain disjoint
rules. Disjoint rules have no coupling with other rules, and are
thus compliant with the “Separation of Concern” theorem of
NS.

C. Formal definitions of rule base components
Let N represent a Layer 4 TCP/IP based network, in which

2 groups of network connected resources can be defined:
• The hosts, providing network services via TCP/IP

ports.
• The clients, requiring access to the services offered by

the host.
The network contains a firewall with configuration F, which
is configured in a way that only certain clients have access to
certain services on certain hosts. The “Zero Trust” principle
should be applied, meaning that clients have only access to
those services on hosts to which they have been given explicit
access.

Let Port represent a Layer 4 TCP/IP defined port.
• Port.name = the name of the port.
• Port.protocol = the layer 4 TCP/IP protocol, being one

of the following two values: TCP or UDP.
• Port.number = the number of the port, represented as

an integer ranging from 1 to 216.

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

Let P represent the list of Ports, of length = pj .
• P[1] ... P[pj].
• P[j] contains a Port.
• 1 ≤ j ≤ pj.

Let Service represent a network service accessible via a list
of layer 4 TCP/IP ports.
• Service.name = name of the service.
• Service.ports = list of ports = P.

Let S represent a list of Services, of length = sj.
• S[1] ... S[sj].
• S[i] contains a Service.
• 1 ≤ i ≤ sj.

Let Host represent a network host which provides services.
• Host.name = the Fully Qualified Domain Name

(FQDN) of the network host.
• Host.IP = the IP address of the network host.

Let H represent a list of Hosts, of length = hj. The length of
H is a function of the network N.
• H[1] ... H[hj].
• H[k] contains a Host.
• 1 ≤ k ≤ hj.
• hj = fh(N)

Let Client represent a network client that requires access to
hosted services.
• Client.name = the FQDN of the network client.
• Client.IP = the IP address of the network client.

Let C represent a list of Clients, of length = cj. The length of
C is a function of the network N.
• C[1] ... C[cj].
• C[l] contains a Client.
• 1 ≤ l ≤ cj.
• cj = fc(N)

Let R represent a firewall rule.
• R.Source = a list of Clients Cs of length = csj, where

◦ 1 ≤ csj≤ cj
◦ Cs ⊂ C

• R.Destination = a list of Hosts Hd of length = hdj,
where
◦ 1 ≤ hdj≤ hj.
◦ Hd ⊂ H.

• R.Ports = a list of Ports = a Service Sp
◦ where Sp ∈ S[sj].

• R.Action = either “Allow” of “Deny”.
Let F, representing a list of rules R of length = fj, be the
ordered firewall rule base F
• F[1] ... F[fj]
• F[m] contains a firewall rule R
• 1 ≤ m ≤ fj

F is order-sensitive. If Rx is a firewall rule at location y in
F, then the behavior of the firewall can be different if Rx is
located at position z instead of y, where z:1→ fj and z 6= y.
Whether or not the behavior is different depends on the relation
Rx has with the other rules of F.

D. Combinatorics
1) Ports: Port numbers are represented by 16 bit binary

number and thus go from 1 to 216. Assuming that only TCP
and UDP protocols are considered for OSI Layer 4 filtering,
the possible number of values for Ports is equal to 2.216 = 217.

2) Services: S is the list of all possible services delivered
via all ports exposed on the network N.
Smax is the largest possible list of services, with length = sjmax,
in which all possible combinations of possible Ports are being
used, where

sjmax =

217∑
k=1

(
217

k

)
(1)

3) Hosts: The size of the list H, hj, is function of the
network N and expressed as hj = fh(N).
Hmax is the list of all possible lists of hosts which are part of
H. The length of this list is hjmax, where

hjmax =

hj∑
a=1

(
hj

a

)
(2)

and where hj = fh(N).
4) Services on Host: The maximum number of

Hosts/Services combinations = hjmax.sjmax =

hjmax.sjmax =

(
hj∑
a=1

(
hj

a

))
.

 217∑
k=1

(
217

k

) (3)

where hj = fh(N).
5) Clients: The size of the list C, cj, is a function of the

network N. and expressed as cj = fc(N).
Cmax is the list of all possible lists of clients which are part
of C. The length of this list is cjmax where

cjmax =

cj∑
a=1

(
cj

a

)
(4)

where cj = fc(N).

6) Rules and rule base: In a rule R,
• R.Source can contain any element of Cmax.
• R.Destination can contain any element of Hmax.
• R.Ports can contain any element of Smax.
• R.Action is the maximum number of action combina-

tions, which is 2 (“Allow” or “Deny”)
The firewall rule base Fmax contains all possible rules

which can be made with Cmax, Hmax and Smax

fjmax = cjmax.hjmax.sjmax.2 (5)

fjmax = 2.

(
cj∑

a=1

(
cj

a

))
.

(
hj∑
a=1

(
hj

a

))
.

 217∑
k=1

(
217

k

)
(6)

where cj = fc(N) and hj = fh(N)

The possible design space for a rule base is phenomenal.
Multiple rules can deliver one particular required functionality.
Choosing the right rule is a real challenge. As the network
grows and fc(N) and fh(N) grow, choosing the right firewall
rule from the design space becomes even more challenging. To
gain control over the design space, it needs to be consciously
reduced.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

E. Designing an evolvable rule base
A rule will be made up of:
• Cs representing the Source, where Cs⊂ C.
• Hd representing the Destination, where Hd⊂ H.
• Sp representing the Ports, where Sp ∈ S.
• Action is to be “Allow” as each rule in the rule

base explicitly provides access to allowed services on
allowed hosts.

• R = (Cs, Hd, Sp, “Allow’)
Note that the last rule in the rule base F, F[fj] has to be
the default deny rule (Rdefault deny) as, when no rule explicitly
provides access to a service on a host, the traffic needs to be
explicitly blocked.
• Rdefault deny.Source = ANY,
• Rdefault deny.Destination=ANY,
• Rdefault deny.Port= ANY,
• Rdefault deny.Action = “Deny”.

From Section II-B, it is known that:
• A Firewall rule base is order-sensitive.
• Different types of relations/coupling can exist between

rules.
• If all rules are disjoint from each other, there is no

coupling between the rules.
• If all rules are disjoint, the rule base is no longer order-

sensitive.
• If a new rule which is added to the rule base is disjoint

with all existing rules, the location of the rule in the
rule base is not important.

If the whole firewall rule base needs to be checked to see
if the a rule is disjoint to all existing rules, a CE is being
introduced. Introducing a new rule to, or removing a rule from
the system should result in work which is proportional to the
newly required functionality and not into work which has no
logical link to the required functionality and which requires
searching throughout the whole system (being the entire rule
base). Or as NS formulates it: the impact of the change should
be proportional to the nature of the change itself, and not
proportional to the system to which the change is applied.
Disjoint rules have no overlap in source or destination or ports.
This gives the following combinations:
• No overlap in sources - don’t care about destination

and port overlaps.
• No overlap in destinations - don’t care about source

and port overlaps.
• No overlap in ports - don’t care about source and

destination overlap.
• No overlap in source-destination combination, don’t

care about ports.
• No overlap in source-ports combinations, don’t care

about destinations.
• No overlap in destination-ports combinations, don’t

care about sources.
• No overlap in source-destination-port combination.

Cs is fc(N) and Hd is fh(N). The network is an uncontrollable
variable. Trying to find a way to structure Cs and Hd to
allow for disjoint rules starting from this variable, will not
yield to anything useful. On the other hand, S represents the
ports and is bound: the nature of TCP/IP limits the amount of
possible ports and thus all port combinations. It thus makes
sense to look for a way to guarantee that there is no overlap
at port/service level.

Let us consciously restrict S to Su, so that Su only contains
unique values.
∃!Su[m] in Su.
Su[u] ∩ Su[v] = ∅, where u, v:1→suj, and u 6= v

If each service is represented by 1 port, Su will contain 217

elements, which is the max size of Su in this restricted case.
The service Su[m] can be delivered by many hosts.
Let HdSu[m] represent the list of hosts which offer service
Su[m].
HdSu[m] ⊂ Hd and HdSu[m][x] contains a single host.
HdS[m] contains unique and disjoint elements.

Combining hosts and services gives, (HdSu[m][x],Su[m])
where x:1→hdmj, a list of tuples which are disjoint. This
hold for all m:1→hdmj. At his point, all services and hosts
who deliver the services, form tuples which are disjoint and
can thus be used as a basis for creating an order independent
firewall rule base. CsHdSu[m][x] is the list of clients which have
access to service Su[m], defined on host HdSu[m][x].
By using :
• Su[m] where m:1→suj, with suj=number of disjoint

services offered on the network, for defining R.Port
• HdSu[m][x], x:→hdmj, with hdmj=number of hosts

offering Su[m], for defining R.Destination
• CsHdSu[m][x] being the list of clients requiring access to

service Su[m] on host HdSu[m][x], of length = cjs, for
defining R.Source

• “Allow”, for R.action
disjoint rules are being created, usable for an evolvable firewall
rule base.

F. The artifact
What has been discussed in the previous section needs

to be transformed into a solution usable in a real firewall.
As discussed in Section II-C, firewalls work with groups.
Groups can be used to represent the concepts discussed in the
previous sections.

1) Starting from an empty firewall rule base F. Add as
first rule the default deny rule F[1]= Rdefault deny with
• Rdefault deny.Source = ANY,
• Rdefault deny.Destination=ANY,
• Rdefault deny.Port= ANY,
• Rdefault deny.Action = “Deny”.

2) For each service offered on the network, create a
group. All service groups need to be completely
disjoint from each other: the intersection between
groups must be empty.
Naming convention to follow:
• S service.name,
• with service.name as the name of the service.

3) For each host offering the service defined in the
previous step, a group must be created containing
only one item (being the host offering that specific
service).
Naming convention to follow:
• H host.name S service.name,
• with host.name as the name of the host offer-

ing the service

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

4) For each host offering the service from the first step, a
client group must be created. That group will contain
all clients requiring access to the specific service on
the specific host.
Naming convention to follow:
• C H host.name S service.name

5) For each S service.name,H host.name S service.name
combination, create a rule R with:
• R.Source =C H host.name S service.name
• R.Destination =

H host.name S service.name
• R.Port= S service.name
• R.Action = “Allow”

Add those rules to the firewall rule base F.
The default rule Rdefault should always be at the end
of the rule base.

By using the artifact’s design principles, group objects are
created which form the building blocks for an evolvable rule
base. Each building brocks addresses one concern.
If each service of Su is made up of only one Port, then the Su
will contain maximum 217 elements, resulting in maximum
217 service groups S service.name being created. For each
host, maximum 217 services can be defined, expressed in
H host.name S service.name destination groups. According
to the artifact, one rule per host and per service, must be
created. This reduced the rule base solution space from

2.

(
cj∑

a=1

(
cj

a

))
.

(
hj∑
a=1

(
hj

a

))
.

 217∑
k=1

(
217

k

) (7)

where cj = fc(N) and hj = fh(N)
to:

fj = hdj.suj = hdj.217 + 1 (8)

with hdj = number of hosts connected to the network.
hdj = fh(N). The “+1” is the default deny rule Rdefault deny

IV. DEMONSTRATE ARTIFACT

To demonstrate the artifact, we will investigate the effect
of different changes on the rule base (add/remove rule) and the
components making up the rule base (add/remove a service,
add/remove a host, add/remove a client). We also show what
happens if rules would be aggregated.

A. Add and remove a rule
Creating rules according to the artifact’s design principles,

leads to rules which are disjoint from each other. Disjoint rules
can be added and removed from the firewall rule base without
introducing CE’s.

B. Adding a new service to the network
A new service is a service which is not already defined in

Su. The new services results in a new definition of a service
being added to Su. The artifact prescribes that a new group
S service.name must be created for the new service. The group
will contain the ports required for the service. For each new
host offering the service, the artifact prescribes to create a
new group destination H host.name S service.name, and an
associated source group C H host.name S service.name. The
destination groups are populated with only one host (the host
offering the service), and the source groups are populated with
all clients requiring access to the service on specific host. All

building blocks to create the disjoint rules are now available.
For each host offering the new service, a rule must be created
using the created groups. No CE’s are being introduced during
these operations. Adding the new rules to the rule base does
not introduce CE’s (see Section IV-A).

C. Adding a new host offering existing services, to the network
A new host is a host which is not already defined in

Hd. The new host results in a new host definition be-
ing added to Hd. The artifact prescribes that a new group
H host.name S service.name must be created for each ser-
vice delivered by the host and a corresponding source group
C H hostṅame S service.name must be created as well. The
destination groups are populated by their corresponding host
and the sources groups are populated with all clients requiring
access to the service on that host. All building blocks to create
the disjoint rules are now available. For each service offered by
the new host, a rule must be created using the created groups.
No CE’s are being introduced during these operations. Adding
the new rules to the rule base does not introduce CE’s (see
sectionIV-A).

D. Adding a new host offering new services, to the network
Combining Sections IV-C and IV-B delivers what is re-

quired to complete this type of change. The artifact prescribes
that new service groups must be created for new services.
An equal amount of destination groups needs to be created
and each populated by the new host. An equal amount of
source groups needs to be created and populated by the clients
requiring access to one of the new services on the new host. All
building blocks to create the disjoint rules are now available.
For each combination (new host, new service) a rule must be
created using the created groups. No CE’s are being introduced
during these operations. Adding the new rules to the rule base
does not introduce CE’s (see Section IV-A).

E. Adding a new client to the network
Adding a new client to the network does not require the

creation of new rule building blocks or the addition of new
rules. The new client only requires to be added to those source
groups which give access to the services it requires on the hosts
it needs access to. No CE’s are being introduced during these
operations.

F. Removing a service from the network
Let sr be the service which needs to be removed from

the network. The name of the service is sr.name=sremove.
The service is part of Su. The group corresponding with sr
is S sremove. The hosts offering the service correspond with
the groups H host.name S sremove. The clients consuming
the service are defined in C H host.name S sremove. All
building blocks to identify the rules which require removing
from the rule base are now available. For each host offering
sr, the corresponding rule
• Rdefault deny.Source = C H host.name S sremove
• Rdefault deny.Destination=H host.name S sremove,
• Rdefault deny.Port= S sremove,
• Rdefault deny.Action = “Allow”.

must be removed from the rule base. No CE’s are being
introduced during these operations. Removing rules from the
rule base does not introduce CE’s (see Section IV-A). The
service sr needs to be removed from Su as well as the
corresponding group S remove in the firewall.

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

G. Removing a host from the network
Let hr be the host that needs to be removed from the

network. The name of the host is hr.name=hremove. The
host is part of Hd. There will be as much destination groups
for hr as there are services offered by hr. They are defined
by H hremove S service name. The same holds form the
source groups, defined by C H hremove S service.name. All
building blocks to identify the rules which require removal
from the rule base are available. For each service offered by
hr, the corresponding rule
• Rdefault deny.Source = C H hremove S service.name
• Rdefault deny.Destination=H hremove S service name
• Rdefault deny.Port= S service.name,
• Rdefault deny.Action = “Allow”.

must be removed from the rule base. No CE’s are being
introduced during these operations. Removing rules from the
rule base does not introduce CE’s (see Section IV-A). The host
hr needs to be removed from Hd and the corresponding groups
H remove S service.name in the firewall, must be removed as
well.

H. Removing a service from a host
Let sr be the services with sr.name=sremove, which

needs removing from host hr with hr.name = hremove. The
service is part of Su. The group corresponding with sr is
S sremove. The destination group for service sr on host hr,
is H hremove S sremove. The corresponding source group is
C H hremove S sremove. All building blocks to identify the
rule
• Rdefault deny.Source = C H hremove S sremove
• Rdefault deny.Destination=H hremove S sremove
• Rdefault deny.Port= S sremove,
• Rdefault deny.Action = “Allow”.

which require removing from the rule base are available. No
CE’s are being introduced during these operations. Removing
rules from the rule base does not introduce CE’s (see Sec-
tion IV-A). The service sr does not need to be removed from
Su and neither does the corresponding group as the service is
till offered on other hosts.

I. Removing a client from the network
Let cr be a client that needs to be removed from the

network. The client is part of Cs. Removing a client from
the network does not require removing rules from the rule
base. The client needs to be removed from the different source
groups which provide the client access to specific services on
specific hosts. If the services and hosts to which the client has
access are known, then the source group from which the client
needs to be removed, are known as well. If the services and/or
hosts are not known, then an investigation of all the source
groups is required to see if the client is part of the group or
not. If part of the group, the client needs to be removed. The
client also needs to be removed from Cs. Determining if a
client is part of a source group can be considered as a CE
as all source groups require inspection. This will further be
elaborated upon in Section VI.

J. The impact of aggregations
When following the prescriptions of the artifact, many

groups and rules will be created (see Section V for more
details). The urge to aggregate and consolidate rules into
more general rules, will be a natural inclination of firewall

administrators as a smaller rule base will be (wrongfully)
considered as a less complex rule base. However, any form
of aggregation will result in loss of information. It is because
the artifact consciously enforces fine-grained information
in the group naming and usages, that disjoint rules can be
created and the “Zero Trust” model can be enforced. If due
to aggregations it can no longer be guaranteed that rules are
disjoint, then a CE-free rule base can no longer be guaranteed
either. Aggregation will also lead to violations of the “Zero
Trust” model.

We provide 2 examples of aggregations.

Aggregation at service level: all hosts offering the same
service are aggregated into one destination group. Such an
aggregation excludes the possibility of specifying that a client
needs access to a specific service on a specific host. A client
will have access to the service on all hosts offering the
service, desired or not. In such a configuration, “Zero Trust”
can no longer be guaranteed. As long as the services on the
network are unique, so will be the port groups. Rules will
stay disjoint and the rule base CE-free. The moment that one
starts combining “Zero Trust” and non “Zero Trust” rules,
non-disjoint rule will pop-up and the rule base can no longer
be guaranteed to be CE-free.
Example: if for some reason, it cannot be allowed that a client
has access to the service on all hosts and a special service
group is being created (no longer disjoint with the existing
service group) with a special associated destination group
(no longer disjoint with existing destination groups), the rule
created with those groups is not disjoint with existing rules
in the rule base and the effect of adding this rule to the rule
base is no longer guaranteed CE-free.

Aggregation at host level: all services offered on a host,
are aggregated into one host-bound port/service group. Such
an aggregation excludes the possibility of specifying that a
client needs access to some of the services on the host. A
client will have access to all services defined on the host,
desired or not. In such a configuration, “Zero Trust” can no
longer be guaranteed. As long as the destination groups are
unique, disjoint rules can still be created. The moment that
one starts combining “Zero Trust” and non “Zero Trust” rules,
non-disjoint rule will pop-up and the rule base can not longer
be guaranteed CE-free.
Example: if for some reason, it cannot be allowed that a client
has access to all services on the host and a special service
group is being created (no longer disjoint with existing service
groups) with a special associated destination group (no longer
disjoint with existing destination group), the rule created with
those groups is not disjoint with existing rules in the rule base
and the effect of adding this rule to the rule base is no longer
guaranteed CE-free.

V. EVALUATION

The previous section demonstrates that, when applying the
artifact, the rules are guaranteed to be disjoint and adding
and removing such rules has no unwanted side effects on the
existing rule base. Such a rule base will be fine-grained (i.e.,
having many rules). One might consider this as an important
drawback from using such an approach as the idea of a fine-
grained structure is often considered as a complex one (but this

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

does not necessarily has to be the case). Some operations on
rules may indeed result in CE’s at group level, such as adding
and removing a client from the network. In Section VI, this
will further be elaborated upon.
Aggregations will violate the “Zero Trust” constraint. Com-
bining aggregation and non-aggregation based rules results in
non-disjoint rules and CE’s at rule base level.
“Zero Trust” has been defined at host level but one can imagine
a setup where “Zero Trust” is defined at another level such
as VLAN’s. A VLAN is a section of the network with a
continuous IP range (for example 10.10.10.1 till 10.10.10.254).
In such a setup, instead of “specific service on a specific host”,
the “Zero Trust” could become a “specific service on a specific
VLAN”. If in Section III, H would be replaced by V, the list
of VLAN’s, and the content of V could be used to create
destination groups V vlan.name S service.name with source
groups C V vlan.name S service.name, the building blocks
would be created for disjoint rules respecting a “Zero Trust”
at VLAN level model. The artifact would still be applicable
and the resulting rule base would be smaller (and less fine
grained). An evolvable rule base is possible as long as one
sticks to a defined level of “Zero Trust” and one does not start
mixing up different levels of “Zero Trust”. From the moment
one starts mixing different levels, evolvability can no longer
guaranteed.

VI. DISCUSSION

By means of discussion, we will cover three items. First, we
will provide a short literature review to position our research
with respect to earlier contributions found in literature. Second,
we will reflect on the nature of the CE’s which are still
present when applying our proposed artifact. And third, we
will highlight some opportunities for future research.

A. Literature review
The academic literature about firewalls can be divided into

3 groups. The first group (published roughly before the year
2000)focuses on the performance of the firewall and the hard-
ware used to perform the actual package filtering. The second
group (published roughly between 2000 and 2006) focuses on
the complexity and issues with the rule base of the firewall.
The third group (published roughly after 2006) focuses on the
firewall in a Software Define Network (SDN) context, where
distributed firewalls and software defined firewalls are used.
As this paper focuses on the complexity and issues related
to the firewall rule base, the following literature review will
only focus on the second group of papers [1]–[12]. Next to
academic papers, reports from Forrester and white papers from
industry leaders were used as well [13]–[20]. Those reports
include surveys which give information on the current state-
of-affairs. One might think that, because academic publication
about rule base issues have diminished after 2006, the problem
is solved. However, the surveys provide a different view.
Companies are still struggling with their firewall [13]–[20].
This can be due to the “knowing-doing” gap or because the
issue is not fully resolved.

Most papers start by stating that there is a problem with
the firewall rule base because of:
• Translation issues: how to convert a high level secu-

rity policy into a low-level language of firewall rules
[1]–[12] [17].

• Size of the rule base issues: a large rule base is
considered complex [3] [7] [9] [10] [13].

• Error and anomalies issues: A rule base is error-
prone due to complexity and manual interventions
[2] [3] [10], [13]–[20] and can contain firewall rule
conflicts or anomalies [1] [2] , [3] [6] [8]–[10] [12]
[13] [16].

The “Translation-issue” is tackled by proposing tools
which could translate high level security concepts into low
level firewall rules. FANG [6], FIRMATO [3], LUMETA [5]
are artifacts proposed and described, which help translating
high level security requirements into a low level firewall
rule base. There are however no guarantees that these tools
deliver a small and simple firewall rule base free of anamolies
[3]. Companies such as TUFIN, ALGOSEC, FIREMON,
VMWare also deliver commercial tools which claim to help
managing the complexity of network security. The tools do not
prescribe, neither enforce how a rule base should be created
in order to be free of anomalies and exhibit evolvability.

The “Size of the rule base issue” is not treated as an issue
related to the stability of a system under change. To the best of
our knowledge, most contributions do not focus on this point,
whereas it is a corner stone of NS. The different artifacts all
start with ideas similar to “For each rule in the firewall, do
the following . . . ”. One might consider such an approach as
a CE in itself. There is attention to reducing the rule base
to a minimum list of rules, which still answer to the filtering
requirements. The motivation for this “reduction of the rule
base” is performance, although in [3] it was suggested that
the actual size of the rule base is not related to the way in
which the hardware actually applies the rules. This suggests a
decorrelation between the size of the rule base and the firewall
performance. If this would be the case, why bother about the
reduction of the size of the rule base? Further research of the
literature and real-life measurements are required to clarify this
point.
Looking at the combinatorics of Section III-D, the design space
is enormous. By applying the artifact, there is a conscious
reduction of the design space. But the size of the rule base is
still large as for each combination (host, service) a rule must
be created in the rule base.

217.hdj (9)

The maximum number of services is 217 = 131.075. However,
in reality this number will never be reached. A sample in Engie
(a multinational and world leader in energy services) on 100
servers revealed that on average 39 services are exposed. The
standard deviation in the sample is 14. It can be stated with
a statistical probability of 98% that a host exposes less then
67 services. The sample was taken from a population of 1000
servers. Those 1000 serves are currently protected by about
890 firewall rules. If the artifact would be applied, it would
mean implementing 67.000 rules. However, at Engie, a “Zero
Trust” model at host level is not applied. Instead, a “Zero
Trust” at VLAN level (see Section V) is present. If the realistic
assumption is a made that the 1000 server are spread over 20
VLAN’s, it would mean that 20 x 67 = 1340 rules are required
for an evolvability rule base. This would mean 50% more rules
to gain full evolvability.
Applying the artifact will probably imply a larger rule base and

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

there may be worries about performance. It should be noted
that a firewall vendor such as CheckPoint, suggests to put the
rules which are most frequently hit (and applied) at the top of
the firewall table. In a rule base which is order-sensitive, this
may be a real issue. In a rule base which is not order-sensitive,
one could monitor the firewall and see which rules are hit
most and move those rules around without having to worry
of the potential impact on other rules. Doing this dynamically
would even be more powerful as the firewall would be able to
reorganize his rules according to the traffic of the day.

The “Error issue” due to complexity and manual interven-
tion is recognized and confirmed in recent surveys [13]–[20].
The academic papers focus more on the technical root causes
of the errors, being the anomalies in the rule base. Over time,
the definitions of the types of anomalies, their formal definition
and proof, have evolved and resulted in a definition of how a
firewall rule base should look like in order to remain stable
under change: a firewall rule base should only include disjoint
rules ([2], [8], [9], [10], [11], [12]). Artifacts have been put
forward [2] [3], [7]–[9], [12] which allow to scan the rule base
for non-disjoint rules and make them disjoint if required. The
same artifacts allow to assess the impact of adding a new rule
and adjusting the rules in such way that the rule base only
contains disjoint rules. However, each time a rule is entered,
the whole rule base needs to be scanned to detect potential
anomalies between the existing rule base and the new rule. The
effort of making a change to the system is thus proportional
to the size of the system.

The literature review shows that the problems related to the
firewall rule base are well known and the necessary condition
to keep the rule base under control (i.e., having disjoint rules)
is also known. However, clear architectural guidance on how
to create a disjoint rule base as of the moment of conception, is
lacking. It is exactly this architectural guidance, making use of
NS, which is the main contribution of this paper. By structuring
the rules in such a way that they are always disjoint, one can
add and remove rules without having to analyze the rule base
(source of CE) or worry about unforeseen side effects of the
change.

B. Remaining CE’s
The artifact proposed in the paper is not completely free

of CE. The evaluation has shown that there is are CE’s at the
level of groups. However, these CE’s are not related to the
technical coupling within the rule base but due to the size and
topology of the network. The bigger the network, the more
objects and rules. Such CE’s are considered acceptable given
that:
• The actions leading to the CE can be automated

(search for, or through, groups)
• The CE is predictable and is the logical effect of the

change which needs to be applied (remove a client =
look in all groups where the client is present)

CE’s which cannot be automated because their impact is not
predictable are not acceptable as there is no logical link
between the change and the extra work one needs to do to
implement the change. For example, the addition of a rule
to activate a service on the network that would require the
inspection of the whole rule base to find conflicting rules (not
related to the newly activated service) would be considered
as an unacceptable CE. Remark that the proposed artifact
facilitates the removal of such unacceptable CE’s.

C. Future research
Applying the artifact to create the rule base in a manual

way, is highly inadvisable. The risk of introducing errors is too
large. NS at the software level advocates the use of expanders,
which will automate the creation of a skeleton code structure
which has ex-ante proven evolvability. A similar expander
should be built for the proposed artifact. The expander would
enforce the application of the naming conventions and the
disjoint rules, thus automatically enforcing the architectural
principles. Future efforts could be invested in building a tool
which would enforce the artifact on a firewall rule base. Like
many of the tools discussed in literature, creating a system
(with the desired configuration) which is positioned in parallel
to the existing firewalls (which can later on be pushed towards
the actual production firewall) is the most likely approach to
apply.

The artifact currently focuses on a single firewall imple-
mentation. The same concept could now be investigated in a
context where the network has multiple firewalls. How would
this affect the rule base and which part of the rule base
goes to which firewall? One could even consider a distributed
firewall in a software defined setup. For this purpose, the
concepts behind the proposed artifact should be extended
towards distributed firewalls and software defined firewalls.

Because the consulted literature did not contain conclusive
information on the impact of the size of the rule base on
firewall performance, further literature review on this topic is
required.

VII. CONCLUSION

Firewall rule bases are typically non-evolvable systems.
Tools and literature exist on how to show and potentially
reduce the complexity and conflicts in firewall rule bases,
but practical guidance on how to make a rule base which
has proven evolvability by design, is lacking. Using the NS
paradigm and domain specific knowledge, we have proposed
an artifact which has the desired evolvability for a firewall rule
base. The most important drawback of the resulting rule base
could be the size due to its fine-grained structure, although this
should be further analyzed in future research efforts.

ACKNOWLEDGMENT
The authors would like to thank Prof. Dr. Herwig Mannaert

for his guidance, Stefan Thys, Frederik Leemans, Stefan Bies-
broeck for their extra input, feedback and editing, Sam Gozin
and Bruno De Becker for the Engie operational data.

REFERENCES
[1] P. Eronen and J. Zitting, “An expert system for analysing firewall rules”,

In Proceedings of the 6th Nordic Workshop on Secure IT Systems
(NordSec 2001),pp. 100–107, November 2001.

[2] M. Abedin et al., “Detection and Resolution of Anomalies in Firewall
Policy Rules”, In Proceedings of the IFIP Annual Conference Data and
Applications Security and Privacy, 2006, LNCS 4127, pp. 15–29

[3] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit”, Proceedings of the 1999 IEEE Symposium on
Security and Privacy,pp. 17-31,; Oakland, California, May 1999

[4] A. Wool, “Architecting the Lumeta firewall analyser”, In Proceedings of
the 10the USENIX Security Symposium, Washington DC, August 2001

[5] S. Hinrichs, “Policy-based management: Bridging the gap”, In Proceed-
ings of the 15th Annual Computer Security Applications Conference,
Phoenix, Arizona, December 1999, IEEE Computer Society Press.

[6] A. Mayer, A. Wool, and E. Ziskind. “Fang: A firewall analysis engine”,
In Proceedings, IEEE Symposium on Security and Privacy,pp. 177-187,
IEEE CS Press, May 2000

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

[7] S. Hazelhurst, “Algorithms for analysing firewall and router access lists”.
Technical Report TR-WitsCS-1999-5, Department of Computer Science,
University of the Witwatersrand, South Africa, July 1999

[8] E. Al-Shaer and H. Hamed, “Design and Implementation of firewall
policy advisor tools”, Technical Report CTI-techrep0801, School of
Computer Science Telecommunications and Information Systems, De-
Paul University, August 2002

[9] E. Al-Shaer and H. Hamed, “Discovery of policy anomalies in distributed
firewalls”, In Proceedings of the 23rd Conf. IEEEE Communications Soc.
(INFOCOM 2004), Vol 23, No.1,pp. 2605-2616, March 2004

[10] E. Al-Shaer and H. Hamed, “Taxonomy of conflicts in network security
policies”, IEEE Communications Magazine, 44(3), March 2006

[11] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan., “Conflict classi-
fication and analysis of distributed firewall policies”, IEEE Journal on
Selected Areas in Communications (JSAC), 23(10), October 2005

[12] A. Hari, S. Suri, and G.M. Parulkar., “Detecting and resolving packet
filter conflicts”, In INFOCOM (3),pp. 1203-1212, March 2000.

[13] Firemon whitepaper, Firewall cleanup recommendations, URL
https://www.firemon.com/resources/, [retrieved: April, 2019]

[14] Firemon whitepaper, 2017 State of the firewall , URL
https://www.firemon.com/resources/, [retrieved: April, 2019]

[15] Firemon whitepaper, 2018 State of the firewall , URL
https://www.firemon.com/resources/, [retrieved: April, 2019]

[16] Algosec whitepaper, Firewall Management: 5 challenges every company
must address, URL https://www.algosec.com/resources/ [retrieved: April,
2019]

[17] D. Monahan EMA, Research Summary: “Network Security Policy Man-
agement tools – Tying Policies to Process, Visibility, Connectivity and
Migration”, https://web.tufin.com/network-security-policy-management-
tools-ema-research, [retrieved: April, 2019]

[18] H. Shel and A. Spiliotes, “The State of Network Security: 2017 to
2018”, Forrester Research November 2017

[19] C. Cunningham and J.Pollard, “The Eight Business and Security Ben-
efits of Zero Trust”, Forrester Reseach November 2017

[20] M. Bennet, “Zero Trust Security: A CIO’s Guide to Defending Their
Business From Cyberattacks”, Forrester Research June 2017

[21] W.R. Stevens, TCP/IP Illustrated, Volume 1, the Protocols, Addison-
Wesley Publishing Company, ISBN 0-201-63346-9, 1994

[22] H. Zimmermann, and J.D. Day, “The OSI reference model - Proceedings
of the IEEE”, Volume: 71, Issue: 12, Dec 1983

[23] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design, ISBN 978-90-77160-09-1, 2016

[24] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability”, Science of Computer Programming : Volume 76,
Issue 12 pp. 1210 to 1222, 2011

[25] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability”, Software Practice and
Experience : Volume 42, Issue 1, 2012

[26] P. Huysmans, G. Oorts, P. De Bruyn, H. Mannaert, and J. Verelst.- “Po-
sitioning the normalized systems theory in a design theory framework”,
Lecture notes in business information processing, ISSN 1865-1348 - 142,
pp. 43-63, 2013

[27] G. Haerens, “Investigating the Applicability of the Normalized Systems
Theory on IT Infrastructure Systems, Enterprise and Organizational
Modeling and Simulation” - 14th International workshop (EOMAS)
2018, pp. 23-137, June 2018

[28] P. Johannesson, and E. Perjons, An Introduction to Design Science,
ISBN 9783319106311, 2014

[29] A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research”, MIS Quarterly: Volume 38, Issue 1 pp.
75-105, 2004

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-708-5

PATTERNS 2019 : The Eleventh International Conference on Pervasive Patterns and Applications

