
Evolvability Analysis of Multiple Inheritance
and Method Resolution Order in Python

Marek Suchánek and Robert Pergl

Faculty of Information Technology
Czech Technical University in Prague

Prague, Czech Republic
Email: marek.suchanek,robert.pergl@fit.cvut.cz

Abstract—Inheritance as a relation for expressing generalisations
and specialisations or taxonomies is natural for conceptual
modelling, but causes evolvability problems in software imple-
mentations. Each inheritance relation represents a tight coupling
between a superclass and a subclass. Coupling in this case leads
to a combinatorial effect or even combinatorial explosion in
case of complex hierarchies. This paper analyses how multiple
inheritance and method resolution order affect these problems in
the Python programming language. The analysis is based on the
design of inheritance implementation patterns from our previous
work. Thanks to the flexibility of Python, it shows that inheritance
can be implemented with minimisation of combinatorial effect
using the patterns. Nevertheless, it is crucial to generate helper
constructs related to the patterns from the model automatically
for the sake of evolvability, including potential future in the
patterns themselves.

Keywords–Multiple Inheritance; Python 3; Evolvability; Method
Resolution Order; Composition Over Inheritance.

I. INTRODUCTION
Inheritance in software engineering is a widely used term

and technique in both system analysis and software develop-
ment. During analysis, where we want to capture a specific
domain, inheritance serves for refining more generic entities
into more specific ones, e.g., an employee as a specialisation
of a person. It is natural to have multiple inheritance, e.g.,
a wooden chair is a seatable physical object and is also a
flammable object. On the other hand, in Object-Oriented Pro-
gramming (OOP), inheritance can be used or even misused for
various purposes, including re-use of methods and attributes.
In OOP, it causes so-called ripple effects violating evolvability
of software [1]–[3].

The Python programming language is (according to [4]) the
most popular multi-paradigm and general-purpose program-
ming language. It is dynamically typed, but allows multiple
inheritance and also type hints [5]. Sometimes, Python is
also referred as “executable pseudocode” thanks to its easy-
to-read syntax and versatility [6]. For the implementation of
conceptual-level inheritance in OOP, there are several patterns
suggested in [2]. Although the patterns are compared and
evaluated, implementation examples and empirical proofs are
missing.

In this paper, we want to design implementation of the
conceptual-level inheritance patterns in Python using its spe-
cific constructs to allow easy use of the patterns instead of
traditional OOP inheritance that causes ripple effects. The
prototype implementation is design to serve for comparison
and demonstration of complexity added in terms of additional

constructs versus complexity caused by combinatorial effects.
First, Section II acquaints the reader with terminology and
the overall context. Then in Section III, we analyse how
traditional inheritance work in Python and then describe the
design and implementation of each pattern. Finally, Section IV
evaluates the implementations, as well as the traditional Python
inheritance and suggests possible future research.

II. RELATED WORK AND TERMINOLOGY
In this section, we briefly introduce the related research

and terminology required for our approach. It refers to vital
sources related to software evolvability, both conceptual-level
and OOP inheritance, and Python programming languages.

A. Normalized Systems Theory
Normalized Systems Theory [1] (NST) explains how to de-

sign systems that are evolvable using the fine-grained modular
structure and elimination of combinatorial effects, i.e., size of
change impact is proportional to the size of the system. The
book [1] also describes how to build such software systems
based on four elementary principles: Separation of Concerns,
Data Version Transparency, Action Version Transparency, and
Separation of States. Violation of any of these principles
leads to combinatorial effects. A code generation techniques
producing skeletons from the NS model and custom code
fragments are applied to make the development of evolvable
information systems possible and efficient.

The theory [1] states that the traditional OOP inheri-
tance inherently causes combinatorial effects. Without mul-
tiple inheritance, it even leads to the so-called “combinatorial
explosion”, as you need a new class for each and every
combination of all related classes to make an instance that
inherits different things from multiple classes, e.g., a class
JuniorBelgianEmployeeInsuredPerson. But even
with multiple inheritance, the generalisation/specialisation re-
lation is special and carries potential obstacles to evolvability.
First, the coupling between subclasses and superclasses with
the propagation of non-private attributes and methods is ev-
ident. Also, persisting the objects in traditional databases is
challenging [1] [2] [7].

B. Conceptual-Level Inheritance
Inheritance in terms of generalisation and specialisation

relation is ontologically aligned with real-world modelling. It is
tightly related to ontological refinements, where some concept
is further specified in higher detail. It forms a taxonomy – a
classification of things or concepts. For example, an employee
is a special type of a person, or every bird is an animal. In

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

conceptual modelling, inheritance is widely used to capture
taxonomies and refine concepts under certain conditions. Al-
though it is named differently in various languages, e.g., is-
a hierarchy, generalisation, inheritance, all usually work with
the ontological refinements. As shown in [8] different views on
inheritance can be made with respect to implementation, where
it can be (mis)used for reuse of classes without a relevant
conceptual sense [2] [9].

C. Object-Oriented Programming and Inheritance
When talking about inheritance in OOP, it is crucial to

distinguish between class-based and prototype-based style. In
prototype-based languages, objects inherit directly from other
objects through a prototype property. Basically, it is based on
cloning and refining objects using specially prepared objects
called prototypes [10]. On the other hand, a more traditional
and widespread class-based programming creates a new object
through a class’s constructor function that reserves memory
for the object and eventually initialises its attributes. In both
cases, inheritance is used for polymorphism by substituting su-
perclass instance by subclass instance with eventually different
behaviour [8] [11].

Both single and multiple inheritance can be used for
reuse of source code. In [8], a clear explanation between
essential and accidental (i.e., purely for reuse) use of inheri-
tance is made. Moreover, [12] shows how multiple inheritance
leverages reuse of code in OOP, including its consequences.
According to [13], Python programs use widely (multiple)
inheritance and it is comparable to use of inheritance in Java
programs of the similar sample set.

D. The Python Programming Language
Python is a high-level and general-purpose programming

language that supports (among others) the object-oriented
paradigm with multiple inheritance. It allows redefinition of
almost all language constructs including operators, implicit
conversions, class declarations, or descriptors for accessing and
changing attributes of objects and classes. Both methods and
constants for such redefinitions start and end with a double
underscore and are commonly called “magic”, e.g., magic
method __add__ for addition operator. The syntax is clean
as it uses indentation for code blocks and limits the use of
brackets. Python can be used for all kinds of application from
simple utilities and microservices to complex web application
and data analysis [5] [13].

Often, Python is used for prototyping, and then the
production-ready system is built in different technologies such
as Java EE or .NET for enterprise applications and C/C++
or Rust for space/time optimisation. Another essential aspect
that makes Python a suitable language for prototyping is its
dynamic type system that allows duck typing [14], however
static typing is supported using annotations since version 3.5.
A Python application can be then checked using type checkers
or linters similarly to compilers, while preserving a flexibility
of dynamic typing [5] [15].

“The diamond problem” related to multiple inheritance is
solved using “Method Resolution Order” (MRO) that is based
on the C3 superclass linearisation algorithm. Normally, a class
in Python has method mro that lists the linearised superclasses.
It can also be redefined using metaclasses, i.e., classes that
have classes as its instances. By default, a class is a subclass
of class object and an instance of metaclass type. Class
object has no superclass and it is an instance of type. Class

type is a subclass of object and is an instance of itself [5]
[11].

III. PYTHON INHERITANCE ANALYSIS
In this section, we analyse how conceptual-level inheri-

tance implementation patterns proposed in [2] can be used in
Python. We discuss the implementation options with respect
to evolvability and ease of use, i.e., the impact of the pattern
on the potential code base.

For demonstration, we use a conceptual model depicted in
Figure 1 using OntoUML [9]. We use monospaced names of
class and object names in the following text, e.g., Person.
We strive to design the implementation of such a model where
object marek is an instance of multiple classes with minimal
development effort but also minimal combinatorial effects. Our
model also contains the potential diamond problem, i.e., class
AlivePerson inherits from Locatable via Insurable
but also via LivingBeing and Person. Overriding is also
included using derived attributes, as we avoid methods for the
sake of clarity; however, it would work equivalently.

«mixin»
Locatable

- location

{disjoint,
complete}

{disjoint,
complete}

«subkind»
Woman

- /greeting

«kind»
Man

- /greeting

marek: Person

«relator»
Employment

- position

«role»
Employee

«mixin»
Insurable

- condition

«phase»
DeceasedPerson

- deathdate
- /isAlive

«phase»
AlivePerson

- /isAlive

«kind»
Person

- name
- /isAlive
- /greeting

«category»
Living Being

- birthdate
- /age

employed in
1 1..*

Figure 1. Diagram of OntoUML example model with instance

A. Traditional OOP Inheritance
The first of the patterns uses a default implementation of

inheritance in the underlying programming language. In case
of Python, multiple inheritance with MRO allows creating sub-
classes for combinations given by the conceptual model. We
immediately run into the combinatorial effect. First, we need
to implement classes according to the model with inheritance
and call the initializer of superclass(es) in the initializer (i.e.
__init__ method). In case of single inheritance, it can be
easily resolved using the built-in super function, but in case
of multiple inheritance, all superclasses must be named again
as call of the function super returns only the first matching

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

according to MRO as shown in Section III-A. Also notice
that all arguments of the initializer must be propagated and
repeated. A possible optimization would be to use variadic
*args and **kwargs, but in exchange for readability and
checks with respect to number (and type) of arguments passed.
Another interesting fact in our example is that EmployeeMan
does not need to define the initializer, as it inherits the one from
Employee and Man inherits it from Person. If Man has its
own attributes, then EmployeeMan would have the initializer
similarly to AlivePerson.

class LivingBeing(Locatable):

def __init__(self, birthdate, location):
super().__init__(location)
self.birthdate = birthdate

@property
def age(self):

computation of age
return result

class Man(Person):

@property
def greeting(self):

return f'Mr. {self.name}'

class AlivePerson(Person, Insurable):

def __init__(self, name, birthdate, location,
condition):↪→

Person.__init__(self, name, birthdate,
location)↪→

Insurable.__init__(self, condition)

@property
def is_alive(self):

return True

class EmployeeMan(Employee, Man):
pass # Employee __init__ inherited

marek = EmployeeMan("Marek", ...)

Figure 2. Part of the traditional inheritance implementation

After having the model classes implemented, extra classes
must be generated as an object can be instance of only
one class. For example, marek is instance of such class
EmployeeMan. For our simple case, number of extra classes
is six – Man and Woman combined with AlivePerson,
DeceasedPerson, and Employee. Adding a single new
subclass of Person, e.g., DisabledPerson, would re-
sult in doubling the number and therefore a combinatorial
explosion. The second point where a combinatorial effect
resides is the order of superclasses (bases or base classes in
Python), which influences MRO. For instance, if Person and
Insurable define the same method – in our case the one
from Person – it would be resolved for execution according
to order in list EmployeeMan.mro(). On the attribute level,
each change propagates to all subclasses, i.e., it is again a
combinatorial effect. This can be avoided using the mentioned
**kwargs and their enforcing, as shown in Section III-A.
Knowledge of superclasses for initialization can be then used
to automatically call the initializer of all the superclasses.
We implement this in helper function init_bases, where
superclasses are iteratered a initialized in the reverse order to

follow the MRO, i.e., the initializer of first listed superclass is
used as the last one to eventually override effects of others.

With implementation shown in Section III-A, all classes
with initializers can be easily generated automatically from
the model with a single exception. The order of classes – i.e.,
if AlivePerson should be a subclass of Person and then
Insurable or vice versa – is not captured in the model,
but it is crucial for MRO. The order of superclasses has to be
encoded in the model, or alternatively all permutations must be
generated, which would result in a significantly higher number
of classes that are not necessarily needed. Navigation is done
naturally thanks to MRO and Python itself, for example,
marek.greeting or marek.location.

def init_bases(obj, cls, **kwargs):
for base in reversed(cls.__bases__):

if base is not object:
base.__init__(obj, **kwargs)

class Person(LivingBeing):

def __init__(self, *, name, **kwargs):
init_bases(self, Person, **kwargs)
self.name = name

class AlivePerson(Person, Insurable):

def __init__(self, **kwargs):
init_bases(self, AlivePerson, **kwargs)

...

class EmployeeMan(Employee, Man):

def __init__(self, **kwargs):
init_bases(self, EmployeeMan, **kwargs)

marek = EmployeeMan(name="Marek", ...)

Figure 3. Implementation of initializers and extra classes with use of
keyword arguments and helper function for model-driven development

B. The Union Pattern
The Union pattern basically merges an inheritance hier-

archy into a single class. In our case, the “core” class of
hierarchy can be naturally selected as Person. All subclasses
are uniquely merged into Person and Person merges also
all superclasses as shown in Section III-B. For example, if there
is another subclass of Insurable, it would not be merged
into Person. On the other hand, for example, a new subclass
of Man would be merged. This pattern is inspired closely by
the “single-table inheritance” used in relational databases, but
it immediately runs into problems once behaviour should be
implemented.

According to the pattern, each decision on generalisation
set of subclasses must be captured in the class that unions the
hierarchy. In our case, we need three discriminators – for Man
and Woman, for AlivePerson and DeceasedPerson,
and for Employee. Value of each discriminator described
what subclass(es) are “virtually” instantiated. All of these
generalisation sets are disjoint and complete with the exception
of the one with Employee that is not complete (i.e., not all
alive persons must be employees). If there is a non-disjoint
generalisation set, it would be solved using enumeration of all
possibilities for the discriminator. For example, if Man/Woman
is not disjoint nor complete, there would be four possible

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

options (no, just man, just woman, both) instead of current
two (just man or woman).

To allow polymorphism without branching and checking
the discriminator value and taking a decision on behaviour with
combinatorial effect, we use directly classes for delegation as
values for discriminators, similarly to the well-known “State
pattern”. With this implementation, it incorporates separation
of concerns and improves re-usability. It is crucial that all
attributes, i.e., data, are encapsulated in the single object that
is passed during the calls. Section III-B shows Delegation
descriptor for secure delegation of behaviour to separate
classes that even do not need to be instantiated; therefore,
static methods are used, and an instance of the union class
is passed.

class Man:

@staticmethod
def greeting(person):

return f'Mr. {person.name}'

class Delegation:

def __init__(self, discriminator, attr):
self.discriminator = discriminator
self.attr = attr

def __get__(self, instance, owner):
d = getattr(instance, self.discriminator)
a = getattr(d, self.attr) if d else None
return a(instance) if callable(a) else a

class Person:

greeting = Delegation('_d_man_woman',
'greeting')↪→

is_alive = Delegation('_d_alive_deceased',
'is_alive')↪→

age = Delegation('_x_living_being', 'age')

def __init__(self, name, birthdate, location,
condition):↪→

self.location = location
self.condition = condition
self.birthdate = birthdate
self.name = name
optional-subclass attributes
self.employment = None
self.deathdate = None
discriminators
self._d_man_woman = None
self._d_alive_deceased = None
self._d_employee = None
superclasses with behaviour
self._x_living_being = LivingBeing

def d_set_man(self):
self._d_man_woman = Man

def d_set_employee(self, employment):
self._d_employee = Employee
self.employment = employment

...

Figure 4. Part of union pattern implementation

It is essential to point out that this solution may reduce
the number of classes, but only of purely data classes without
behaviour. Union classes can be then easily generated from
a conceptual model. The detection of the “core” class is a
matter of the model – if OntoUML is used, naturally all

identity providers (e.g., with stereotype Kind) are suitable.
In modelling languages that have no such explicit indication,
a special flag has to be encoded in the model. Classes encapsu-
lating behaviour can also be easily generated from the model
and related to data class using the explained Delegation
descriptor. There is one problem with this pattern implemen-
tation – it does not support isinstance checks. When
avoiding inheritance, the only possible solution lies in special
metaclass that would override __instancecheck__. This
would also require to forbid instantiation of behaviour classes,
so it is unambiguous if the object is an instance of a data or
a behaviour class.

C. Composition Pattern
The composition pattern follows the well-known precept

from OOP – “composition over inheritance”. Similarly to
union pattern, a “core” class per hierarchy in the model must
be identified. Classes are then connected using association is-
a instead of inheritance. The Union pattern basically merges
an inheritance hierarchy into a single class. For the original
subclass, it is required to have a link to its superclass(es), but
the other direction is optional unless the generalization set is
complete or the superclass is abstract.

The final implementation of this pattern is based on the
improved traditional OOP inheritance. Instead of inheritance,
i.e., specification of superclasses, all superclasses from the
conceptual model are instantiated during the object initializa-
tion. During this step, a bidirectional link must be made to
allow navigation from both superclass and subclass instances.
The “core” class must be again chosen to allow creation of
composed object using multiple subclasses, e.g., an instance
of Person that is also an Employee and a Man.

class Delegation:

def __init__(self, p_name, a_name):
self.p_name = p_name
self.a_name = a_name

def __get__(self, instance, owner):
p = getattr(instance, f'{self.p_name}')
a = getattr(p, self.a_name) if p else None
return a(instance) if callable(a) else a

def __set__(self, instance, value):
p = getattr(instance, f'{self.p_name}')
setattr(p, self.a_name, value)

class LivingBeing:

location = Delegation('_p_locatable',
'location')↪→

def __init__(self, *, birthdate, _c_person=None,
_p_locatable=None, **kwargs):↪→

self._p_locatable = _p_locatable or
Locatable(_c_living_being=self,
**kwargs)

↪→

↪→

self._c_person = _c_person
self.birthdate = birthdate

...

Figure 5. Part of composition pattern implementation

The example in Section III-C shows that we also incorpo-
rated a Delegation descriptor. Although it results in repetition
when defining where to delegate, it clearly describes the origin

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

of a method or an attribute, and it can be generated easily.
With the fact that these parts can be generated, combinatorial
effects related to renaming or other changes of methods and
attributes used for delegation are mitigated. The diamond
problem is solved directly by passing child and parent class
objects as optional arguments during initialisations. It could
also be solved using metaclasses, but as this code can be
generated, it allows higher flexibility and eventual overriding.

As the built-in MRO is not used, the resolution must be
made manually on the model level similarly to the Union
pattern, i.e., to decide what overrides and what is overridden.
By replacing inheritance with bidirectional links, we managed
to significantly limit combinatorial effects, but in exchange
for the price in requiring additional logic and moving the
MRO into the model itself. Unfortunately, this implementation
needs also to incorporate model-consistency checks, as we do
not enforce multiplicity in child-parent links according to the
pattern design.

D. Generalisation Set Pattern
This pattern enhances the Composition pattern by adding

particular constructs that encapsulate logic regarding gener-
alisation sets. Inheritance relation is not transformed into is-a
association but into connection via a special entity that handles
related rules, such as complete or disjoint constraints and
cardinality. As we present in Section III-D this helps to remove
shortcomings of the Composition pattern and its difficult links
and composed-object instantiation. Instead of multiple child
links, there is just one per Generalisation Set (GS), and parent
links are changed accordingly. An object of GS class maintains
the inheritance and ensures the bi-directionality of links.

class Delegation:

...

def __get__(self, instance, owner):
gs = getattr(instance, f'{self.gs_name}')
p = getattr(gs, f'{self.p_name}')
a = getattr(p, self.a_name) if p else None
return a(instance) if callable(a) else a

...

class GS_ManWoman:

_gs_name = '_gs_man_woman'

disjoint = True
complete = True

def __init__(self, person, man=None,
woman=None):↪→

self.person = person
self.man = man
self.woman = woman
self.update_links()

def update_links(self):
setattr(self.person, self._gs_name, self)
if self.man is not None:

setattr(self.man, self._gs_name, self)
if self.woman is not None:

setattr(self.woman, self._gs_name, self)

...

Figure 6. Generalisation Set implementation example

Introduction of an intermediate object to encapsulate inher-
itance and related constraints adds complexity in two aspects.
First, the diamond problems must be still treated by sharing
superclass objects in the hierarchy for eventual reuse. Second,
the delegation must operate with the intermediary object when
accessing the target child (or parent) object. However, solutions
to these issues can be also generated directly from the model
and in principle – despite their complexity – they do not hinder
evolvability.

Finally, this solution (if entirely generated from a model)
is the most suitable, since it limits combinatorial effects and
allows to efficiently check consistency with the model in terms
of inheritance and generalisation set constraints. Although in
some cases, the GS object is not adding any value (e.g., a single
child and a single parent case), implementing a combination of
a generalisation set and composition patterns would make the
software code harder to understand. Unity in implementation
of conceptual-level inheritance is crucial here.

IV. IMPLEMENTATION SUMMARY AND FUTURE
RESEARCH

In this section, we summarize and evaluate achievements of
our research. Based on our observations and implementation of
inheritance using patterns, we evaluate inheritance in Python.
The patterns and its key aspects are compared in Table I. Then,
we also describe the future steps that we plan to do as follow-
up research and projects based on outputs described in this
paper.

A. Resulting Prototype Implementation
We demonstrated our implementation of all four previously

designed patterns. Mostly, results and related usability options
are consistent with the design. The more we minimize or
constrain combinatorial effect, the more complex and hard-to-
use (in terms of working with final objects) the implementation
gets. We were able to simplify use of objects for the price of
repetition and use of special constructs for delegation. Contrary
to the original patterns design, we were not able to efficiently
combine multiple patterns together based on various types of
inheritance used in the model. As a result, our implementation
of the most complex generalisation set pattern is suggested
as a prototype of how inheritance may be implemented if
one wants to avoid combinatorial effects while still needing
to capture inheritance in a generic way for models of any size
and complexity.

B. Evolvability of Python Inheritance
During the implementation of the patterns, it became

obvious that even high flexibility of programming language
and allowed multiple inheritance do not help in terms of
coupling and combinatorial effects caused by using class-based
inheritance. With a simple real-world conceptual model, we
were able to show how the combinatorial explosion endangers
the evolvability of software implementation. MRO algorithm
used in Python does not help with limiting combinatorial
effects. Rather it is the opposite since order in which super-
classes are enumerated significantly influences implementation
behaviour. Also, it makes harder to combine overriding from
two superclasses, for example, both class A and B implement
methods foo and bar but subclass C cannot inherit one from
A and other from B (solution is to override both and call it
from subclass manually).

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

TABLE I. COMPARISON OF THE INHERITANCE IMPLEMENTATION PROTOTYPES

Implementation Classes* Extra constructs CE-handling Issues

Traditional N + 2N 0 none initialization, order of superclasses, uncontrolled change propagation

Traditional + init_bases N + 2N init_bases function shared initialization shared attributes across hierarchy, order of superclasses, uncontrolled
change propagation

Union pattern 2 Delegation class shared class (merged) Separation of Concerns violated, maintainability, discriminators

Composition pattern N Delegation class shared initialization, delegation manual handling of GS constraints, added complexity (for humans)

GS pattern N + 1 Delegation class, GS helpers shared initialization, delegation added complexity (for humans)

(*) per single hierarchy of N classes, worst case (all combinations needed)

On the other hand, the flexibility of Python proved to
be useful while we were implementing the patterns. Thanks
to magic methods, descriptors, and metaclasses, the final
implementations allow creating easy-to-use and inheritance-
free objects even though underlying complex relations with
constraints are needed as shown in the examples. Notwith-
standing, such possibilities of Python are similar to constructs
and methods in other languages (e.g., reflection). While trying
to implement the patterns efficiently, we concluded that gener-
ating implementation from a model is crucial for evolvability
regardless of what technologies are used, as a lot of repetition
is needed.

C. Production-Ready Technology Stack
The goal of the paper was to use Python to show reference

patterns implementation prototypes. The next step may be to
leverage the lessons learned to formulate a single transfor-
mation description using production-ready technology stack,
e.g., Java EE. This final transformation of conceptual-level
inheritance should allow simple extensibility and customiza-
tions. Moreover, it should cover all possibilities with respect
to the underlying modelling language. This language does not
have to be OntoUML used in this paper; however, it must
be expressive enough to capture all the necessary details for a
correct implementation – for instance, hierarchy “core” classes.

D. Model-Driven Development
Having a final, production-ready, and well-described trans-

formation of conceptual-level inheritance into implementation,
it is not expected that it will be used to manually write source
code. An essential part would be generation of a source code
directly from the model capturing the inheritance together with
domain knowledge. Normalized Systems (NS) theory [1] and
related tooling can provide a way here using the so-called
expanders. The challenge here would be to encode inheritance
in the NS models directly or propose its extension, on the
other hand we can expect flexibility and guarantees in terms
of software evolvability.

V. CONCLUSIONS
In this paper, we analysed and demonstrated the evolvabil-

ity of inheritance in Python using already-designed implemen-
tation patterns. Although Python offers multiple inheritance
based on the method resolution order algorithm, software
written in Python that uses inheritance suffers from coupling
and related combinatorial effects similarly to software in other
languages. Nevertheless, thanks to the Python’s flexibility and
ability to redefine core constructs, we managed to implement
the conceptual-level inheritance implementation patterns easily
with minimisation of combinatorial effects, while maintaining
code readability. The suggestions for future development go
mostly in direction of generating a production-ready software

systems from conceptual models, where inheritance is used as
a natural construct used to reflect real-world domains.

ACKNOWLEDGEMENTS
This research was supported by the grant of Czech Tech-

nical University in Prague No. SGS20/209/OHK3/3T/18.

REFERENCES
[1] Herwig Mannaert, Jan Verelst, and Peter De Bruyn, Normalized Sys-

tems Theory: From Foundations for Evolvable Software Toward a
General Theory for Evolvable Design. Kermt (Belgium): Koppa, 2016.

[2] Marek Suchánek and Robert Pergl, “Evolvability Evaluation of
Conceptual-Level Inheritance Implementation Patterns,” in PATTERNS
2019, The Eleventh International Conference on Pervasive Patterns and
Applications, vol. 2019. Venice, Italy: IARIA, May 2019, pp. 1–6,
[retrieved: Aug, 2020]. [Online]. Available: https://www.thinkmind.org/
index.php?view=article&articleid=patterns_2019_1_10_78001

[3] Antero Taivalsaari, “On the Notion of Inheritance,” ACM Computing
Surveys, vol. 28, no. 3, September 1996, pp. 438–479.

[4] Pierre Carbonnelle, “PYPL: PopularitY of Programming Language,”
Feb 2020, [retrieved: Aug, 2020]. [Online]. Available: http://pypl.
github.io/PYPL.html

[5] Python Software Foundation, “Python 3.8.0 Documentation,” 2019,
[retrieved: Aug, 2020]. [Online]. Available: https://docs.python.org/3.
8/#

[6] David Hilley, “Python: Executable Pseudocode,” [retrieved: Aug, 2020].
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.211.7674&rep=rep1&type=pdf

[7] Andrei Alexandrescu, Modern C++ Design: Generic Programming and
Design Patterns Applied, ser. C++ in-depth series. Addison-Wesley,
2001.

[8] Antero Taivalsaari, “On the Notion of Inheritance,” ACM Computing
Surveys, vol. 28, no. 3, September 1996, pp. 438–479.

[9] Giancarlo Guizzardi, Ontological Foundations for Structural Conceptual
Models. Centre for Telematics and Information Technology, 2005.

[10] Alan Borning, “Classes versus prototypes in object-oriented languages.”
in FJCC, 1986, pp. 36–40.

[11] John Hunt, “Class Inheritance,” in A Beginners Guide to Python 3
Programming. Springer, 2019, pp. 211–232.

[12] Fawzi Albalooshi and Amjad Mahmood, “A Comparative Study on the
Effect of Multiple Inheritance Mechanism in Java, C++, and Python
on Complexity and Reusability of Code,” International Joutnal of
Advanced Computer Science and Applications, vol. 8, no. 6, 2017, pp.
109–116.

[13] Matteo Orru et al., “How Do Python Programs Use Inheritance? A
Replication Study,” in 2015 Asia-Pacific Software Engineering Confer-
ence (APSEC). IEEE, 2015, pp. 309–315.

[14] Ravi Chugh, Patrick M Rondon, and Ranjit Jhala, “Nested refinements:
a logic for duck typing,” ACM SIGPLAN Notices, vol. 47, no. 1, 2012,
pp. 231–244.

[15] John Hunt, Advanced Guide to Python 3 Programming, ser. Undergrad-
uate Topics in Computer Science. Springer International Publishing,
2019.

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-783-2

PATTERNS 2020 : The Twelfth International Conference on Pervasive Patterns and Applications

https://www.thinkmind.org/index.php?view=article&articleid=patterns_2019_1_10_78001
https://www.thinkmind.org/index.php?view=article&articleid=patterns_2019_1_10_78001
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://docs.python.org/3.8/#
https://docs.python.org/3.8/#
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.7674&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.7674&rep=rep1&type=pdf

	Introduction
	Related Work and Terminology
	Normalized Systems Theory
	Conceptual-Level Inheritance
	Object-Oriented Programming and Inheritance
	The Python Programming Language

	Python Inheritance Analysis
	Traditional OOP Inheritance
	The Union Pattern
	Composition Pattern
	Generalisation Set Pattern

	Implementation Summary and Future Research
	Resulting Prototype Implementation
	Evolvability of Python Inheritance
	Production-Ready Technology Stack
	Model-Driven Development

	Conclusions
	References

