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Abstract—RDF data are being described by ontologies (OWL
or RDFS) to state the meaning and promote interoperability
or so-called machine-readability. However, there are many over-
lapping ontologies that one can use for a single dataset. To
overcome this issue, mappings between ontologies are made to
capture the relations forming the overlaps. Such mappings can
be used with inference and reasoning tools, but rewriting rules
must be applied to transform the dataset. This work proposes
a new way of transformations builds on top of the SPARQL
query language. It uses defined RDF patterns representing
modules that can be interrelated. Our method’s primary focus is
for larger-scale transformations where existing methods require
hard-to-maintain, i.e., non-evolvable mapping definitions. A brief
demonstration, as well as a comparison with other transformation
languages, is provided.

Index Terms—ontology, transformation, RDF, OWL, versatility,
evolvability

I. INTRODUCTION

The technologies around the Resource Description Frame-
work (RDF), including the Web Ontology Language (OWL),
are more and more used in various domains and setups. It is
a versatile instrument for capturing any knowledge. As RDF
is the keystone of Semantic Web and Linked Data, it helps to
form interoperable metadata and data. The OWL ontologies
and RDF schemas help to describe the internal structure and
meaning of related RDF data. Without such descriptions, the
RDF data are just a set of triples. On the other hand, with a
used ontology, it is possible to make assumptions about types,
properties, and even infer new data from existing.

Therefore, more and more ontologies are introduced to
different domains, projects, and purposes. Sometimes those
ontologies are just in the form of dictionaries, where specific
terms are defined for referring to them. In contrast, others
are full-fledged ontologies with a definition of properties and
special relations, such as subclassing. The overlaps between
the ontologies are inevitable just as it needs to evolve over
time. Again, the principles of linked data can help with that.
Two ontologies can be easily linked together, for example, to
define equality of terms just as any other relation.

Issues arise when the underlying RDF data needs to be
transformed between such ontologies based on the mapping.
The first issue is with the evolvability of the transformation
itself, i.e., how to handle changes from the linked ontologies.

Then, there are issues with possibilities of executing the
transformation over datasets that might contain non-mapped
entries. Finally, the consistency between the original and the
transformed RDF dataset is also an important issue. There
are different approaches to the RDF transformations that we
will review and evaluate in this paper, mainly regarding the
evolvability.

Section II briefly describes the necessary terminology and
existing solutions for transforming RDF data that we use
as a source of valuable information and experience. The
proposed method for pattern-based ontological transformations
if presented in Section III. In Section V, we summarize and
discuss the results and outline possible future steps to enhance
RDF transformation’s evolvability.

II. RELATED WORK

In this section, we briefly introduce important terminology
and provide an overview of the current possibilities for RDF
data transformations.

A. RDF, RDFS, and OWL

RDF is a set of specifications based on a simple idea that
everything can be described using so-called semantic triples
or triplets – subject, predicate, object [1]. Such triplets can
also be expressed as a graph; therefore, we use also terms
as knowledge graph or graph database when talking about
RDF data. As it was initially intended as a metadata model,
the triples consist of identifier, more specifically Uniform
Resource Identifiers (URI), to specific resources and possibly
literals on the object position. RDF Schema (RDFS) [2] or
the Web Ontology Language (OWL) [3] can be used to
define classes, properties, or constraints to bring structure
into otherwise unstructured RDF data. Although the OWL
capabilities in terms of expressiveness and versatility are much
higher than RDFS, both are expressed again as RDF data using
triplets. Nowadays, RDF technologies are used widely in many
activities and for many kinds of data [2]. RDF, RDFS, and
OWL are the basis of Semantic Web and Linked Data but are
also used in data-intensive research (e.g., biology or chemistry)
or in conceptual modelling for specifying dictionaries and
taxonomies [4].
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RDF provides versatility in capturing any information
both as data and related metadata. For example, there are
various well-defined ways of capturing versions of data.
Dublin Core [5] defines hasVersion, isVersionOf,
or valid terms for annotating the data. There are even
more elaborated vocabularies, such as Changeset [6], that
allows annotating data with a changelog. However, for
OWL ontologies, the version information is usually in-
cluded both in metadata but also as part of URIs, e.g.,
http://purl.org/dc/elements/1.1/date that is a
persistent snapshot, and without version part, the identifier
targets the latest, which can change over time. Moreover,
OWL provides additional properties for versioning, such as
versionInfo or incompatibleWith.

B. Ontology Mapping

OWL itself defines a fundamental way of mapping. Again,
due to the versatility of RDF and the fact that OWL ontologies
are captured as RDF data, the mapping can be done using
well-defined properties. Using the core principles of RDF, it
is possible to import two (or more) ontologies and create a
mapping between them or create an extension build on top of
them.

For capturing that two individuals have the same identity,
owl:sameAs can be used. It is essential to mention here that
even OWL Classes are themselves individuals, so the property
can be used to express class equality on the identity level.
For just stating that two classes are equivalent (but not nec-
essarily have the same identity), owl:equivalentClass
is appropriate. There are many more standard properties to
define different relations of (in)equality. As it is still just RDF
with given meaning to property, one can define own mapping
properties but need to explain the purpose and determine how
it should be implemented.

C. STTL: SPARQL-Based Transformation

The approach of [7] is based on the SPARQL Protocol
and RDF Query Language. As SQL is well-known and
used for querying relational data, SPARQL works simi-
larly (even in terms of syntax) for RDF data, i.e., seman-
tic triples. The SPARQL-Based Transformation (STTL) uses
SPARQL extension TEMPLATE with additional functions,
such as st:apply-templates. The transformation allows
to query and prepare data for a template using a standard
SELECT query. Then, it applies a template by the additional
functions. Output can be practically any textual format as a
template is just a string with marks where place specific data
as shown in Figure 1. The authors present examples, including
RDF-to-HTML or RDF-to-RDF/Turtle.

Nevertheless, for just RDF-to-RDF transformations, the
standard CONSTRUCT query can be used. It avoids installing
the extension, yet it provides a simple way of a mapping
definition. The RDF Data are prepared using the WHERE
clause and then used to build new triples. One can see
such a SPARQL query also as a text; therefore, it can be

synthesized using another tool or script and even executed
programmatically.

TEMPLATE {
"The triple is: " ?x ", " ?p ", " ?y "!"

}
WHERE {

?x ?p ?y
}
ORDER BY ?x ?p ?y

Fig. 1. Example of STTL template query

D. RML: RDF Mapping Language

The RDF Mapping Language (RML) [8] is a generic
mapping language, based on and extending R2RML. Although
it is still in state of unofficial draft, it captures interesting and
novel ideas related to RDF mapping. The main focus is on
transforming data from textual formats, such as CSV, XML, or
JSON into RDF. The mappings in RML are captured as RDF
triples as shown in Figure 2. First, there is a definition of a data
source, such as CSV file. Then, there are several mappings for
subjects, predicates, and objects that capture what classes and
properties are used and how the data are queried from the data
source [9] [10].

<#PersonHobbyMapping>
rml:logicalSource [

rml:source "http://ex.com/people.json";
rml:referenceFormulation ql:JSONPath;
rml:iterator "$.person.hobby.[*]"

];

rr:subjectMap [
rr:template "http://ex.com/{Hobby_ID}";
rr:class ex:Hobby

].

Fig. 2. Example of RML mapping for JSON source

E. TRIPLE Language

A Query, Inference, and Transformation Language for the
Semantic Web (TRIPLE) [11] is an older representative of
RDF transformation language. In contrast to the previous two
approaches, TRIPLE has its foundations in mathematics and
logics. It can be expressed both through RDF (e.g. RDF/XML)
and mathematical syntax as it is an extension of Horn logic
similar to F-Logic. The models (i.e. sets of triples) are first
class citizens in TRIPLE. It has several useful functions for
defining the transformations, such as reification of statements
or path expressions. Unfortunately the tooling support is
not easily available but it has been also used for business
agents [12].

III. TRANSFORMING RDF DATA USING PATTERNS AND
SPARQL

In this section, we describe our design of the pattern-based
ontological transformations for RDF data using SPARQL as
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well as a prototype implementation. The advantages of our
approach when compared to using plain SPARQL or other
solutions are discussed in Section V. First, we outline set the
problem statement and related requirements. Then, steps of
our method are explained in the subsequent subsections.

A. The Problem and Requirements

Our work aims to design a transformation method that
takes a set of triples as input together, and using a set of
transformation rules produces a new set of triples. Although
SPARQL CONSTRUCT query allows defining such rules, it
does not provide re-usability of definitions nor modularization.
Our solutions must promote evolvability by design as a fine-
grained modular structure concerning the Normalized Systems
Theory [13], especially the Separation of Concerns and Data
Version Transparency principles. However, SPARQL already
provides a fair way of querying RDF data that should be re-
used for defining the transformation patterns as visualized in
Figure 3.

{
  (s', p', o'),
   ...
}

Trasformation

{
  (s, p, o),
   ...
}

Input
pattern

Match & Bind Construct

Output
pattern

Map

Fig. 3. Architecture of the pattern-based RDF transformation

B. Patterns Mapping Definition

In our method, each transformation pattern is formed by two
sets of triples – input and output. The principle and syntax are
the same as in SPARQL; the input pattern can bind variables
in any position (subject, predicate, object). Then, the output
triples can contain those variables multiple times. RDF data
are traversed, and the input pattern is filled, i.e., variables
are substituted by values. When the whole input pattern is
matched, the output pattern is populated with the values for
variables and RDF data are added to the result dataset. For
defining both input and output patterns, standard RDF prefix
definitions might be necessary (but separately for each). So
far, the operation is the same as with a set of SPARQL
CONSTRUCT queries.

To introduce a fine-grained modular structure from trivial
cases, each pattern has separated input and output parts, as
shown in Figure 4 and Figure 5. The variable names from the
input part are exposed, and the output part can use them. It
must be defined what input is used (cases with multiple input
parts are explained further). Using variables in this way can
be seen as a coupling inside the module.

C. Pattern Modules and Submodules

The definition of input pattern must take into account that
RDF/OWL works with open-world assumptions. For example,

Input pattern

prefix abc: http://...
prefix xyz: http://...

?name abc:name ?x
?x xyz:eq ?value

Output pattern

prefix rst: http://...
prefix xyz: http://...

?name rst:name ?value
?name xyz:is xyz:Example

uses

Fig. 4. Concept of relating input and output patterns

uses
Input pattern

prefix ...

S P O ...

Output pattern

prefix ...

S P O ...

Output pattern

prefix ...

S P O ...
Input pattern

prefix ...

S P O ...

Input pattern

prefix ...

S P O ...

uses

uses

negates

Fig. 5. Combining input patterns for output patterns

if the second pattern should be used only if the first one is
not matched, it must include negating the first input triples.
To do this efficiently, the input triples must be shareable
across patterns. By importing triples, one must comply with
its defined variable names or rename them. In a similar way,
it can serve to separate the concerns when the same input
produces multiple different outputs for a single dataset, e.g.,
a name of a person is turned into the name of the personal
folder at HR and the name on a cup in a shared kitchen.

We call a set of related patterns in this way a patterns
module and each of its part is a submodule. In a trivial case
without any shared part, a pattern forms itself (input and output
triples with prefix definitions) a module. As input can re-use
multiple other inputs (with renaming the variables), the output
can also define various input definitions to be used, as shown
in Figure 5.
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D. Generating and Executing SPARQL CONSTRUCT

The pattern definitions and modules capture the knowl-
edge of what inputs should be used for producing what
outputs. With that, it is possible to generate a set of SPARQL
CONSTRUCT queries to be executed in arbitrary order over an
input RDF dataset. There are several steps to this procedure
for each patterns module:

1) Resolve imports in all input definitions, including vari-
able renaming.

2) For each output definition, import input definition(s)
including variable renaming.

3) Merge used prefixes and use renaming mechanism for
conflicts (when name and URI do not match).

4) Generate SPARQL CONSTRUCT query with input part
in WHERE clause.

5) Execute the query over the input dataset and add result
into output dataset.

E. Prototype Implementation

A prototype of the method has been implemented in Python
using rdflib [14] and Jinja2 [15] templating language as a
CLI application. It takes a folder with pattern modules and
an RDF source (a file or SPARQL endpoint) and produces an
output RDF file. The project folder has a subfolders per each
module, where files are prefixed by input_ and output_.
The re-usability of definitions is realized through variables and
imports in Jinja2. Each of the modules forms a single Jinja2
environment where each output file is loaded with substituted
Jinja2 variables. The compiled transformation pattern is then
turned using an internal template into a SPARQL query and
executed over a graph imported from the input file or using
the given SPARQL endpoint.

The patterns are executed actually in alphabetical order
as that is the way the filesystem is traversed. We added
a possibility to randomize the order of transformation to
demonstrate that it is irrelevant. After all of the patterns are
successfully applied, the output file is written out. Several
issues might appear when running the transformation. For
instance, the pattern’s definition may contain a syntactic error;
in that case, the application reports where the problem is.
For the SPARQL endpoint, there might be connection issues.
Finally, there might also be a problem when output definition
is using a variable that is not defined in any of the inputs.

IV. EXAMPLE CASE: FOAF AND VCARD

To demonstrate the use of our method and prototype, we
want to transform a dataset about people created using Friend-
of-a-Friend ontology FOAF [16] into a dataset according to
the vCard ontology [17]. Some of the presented patterns are
intentionally not optimal in terms of complexity to show the
use of additional features. The examples put together related
patterns forming a single module, as explained previously.
Individual patterns are marked using comments starting with
# symbol.

A. Simple Personal Information

The first example in Figure 6 shows a trivial case where is
just a single input pattern and a single output pattern. For every
person with a name from the input dataset, a name according
to vCard is created. The used syntax is simplified RDF Turtle
with custom directives. Here @input serves to specify the
only input pattern based on its name. No variable renaming
is used. During the transformation, this case is simply turned
into a SPARQL query, i.e., prefixes are merged together (no
conflicts), the input pattern is inserted into WHERE clause, and
the output becomes the body of CONSTRUCT.

# Input pattern: input_simple_foaf
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

?person rdf:type foaf:Person .
?person foaf:name ?name .

# Output pattern: output_simple_vcard
@input: input_simple_foaf .
@prefix vcard:
<http://www.w3.org/2006/vcard/ns#> .

?person vcard:fn ?name .

Fig. 6. Trivial case for single input pattern to single output pattern

B. Negated Input Pattern

Figure 7 demonstrates a case where the second input pattern
negates the first one using @negate directive. The SPARQL
query takes the first input pattern and wraps it using NOT
EXISTS construct. This case also has a conflict in prefixes
as the second input pattern is using a different FOAF version.
During the processing, the conflicting prefixes are renamed
before turned into a SPARQL query.

# Input pattern: input_foaf_person_and_org
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

?agent rdf:type foaf:Person .
?agent rdf:type foaf:Organization .

# Input pattern: input_foaf_membership
@negate: input_foaf_person_and_org .
@prefix foaf: <http://xmlns.com/foaf/0.2/> .

?agent foaf:member ?member .

# Output pattern: output_simple_vcard
@input: input_foaf_membership .
@prefix vcard:
<http://www.w3.org/2006/vcard/ns#> .

?agent vcard:member ?member .

Fig. 7. Example of using a negated input
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C. Multiple Input Patterns

The final example Figure 8 shows multiple input patterns
used for an output pattern. It creates both person triples
and organization triples (with names). The second @input
directive is enhanced with a variable renaming dictionary to
avoid name clashes. In this case, all variables are renamed,
but it is not mandatory, and only some can be renamed. Both
input patterns use the same FOAF prefix, and thus it will be
merged without the need of solving conflicts.

# Input pattern: input_foaf_person
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

?person rdf:type foaf:Person .
?person foaf:name ?name .

# Input pattern: input_foaf_organization
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

?organization rdf:type foaf:Organization .
?organization foaf:name ?name .

# Output pattern: output_complex
@input: input_foaf_person .
@input: input_foaf_organization

{organization: org, name: orgName} .
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix vcard:
<http://www.w3.org/2006/vcard/ns#> .

?person rdf:type vcard:Individual .
?person vcard:fn ?name.

?org rdf:type vcard:Organization .
?org vcard:title ?orgName.

Fig. 8. Example with multiple inputs and renaming variables

V. DISCUSSION

This section summarizes the advantages of our approach
and confronts it with the other existing solutions introduced
in Section II. The planned future steps are outline as well.

A. Evolvability and Maintainability

Our solution is designed to allow the definition of inter-
linked patterns for transformations. Each pattern relates an
input set of triples where some variables are bound, and the
output set of triples is used. If the patterns are not related to
each other, there are no ripple effects internally. Also, thanks to
the declarative approach of RDF, the order of triples and, thus,
an order of transformation execution is irrelevant. To mitigate
ripple effects of relating the patterns through sharing (or negat-
ing) input triples, we introduced pattern modules where if an
input set is changed, it requires a change in submodules but not
other modules. To allow transformation with intermediate layer
of temporary triples, our solution can be used in a pipeline,
e.g., first, transform input to some intermediary triples and

then transform intermediary triples to output. The order of
such transformations is, of course, necessary, but internally the
order of executing a transformation pattern is still irrelevant,
i.e., there are no dependencies.

As for the practical maintainability of the transformation
defined as a set of patterns, the key is the overall solution’s
simplicity. Each pattern can be defined as a standalone file
with input and output or re-use other definition on input.
When there is an update of some of the imports (e.g. a
target ontology changes), it spreads over patterns as a cross-
cutting concern. However, only patterns related to the target
ontology are required to be updated, which cannot be avoided.
Versioning of a set of patterns (a project) can be done easily
through standard VCS tools, including branching or version
tagging.

B. Comparison to Existing Solutions

When compared to the solutions mentioned in Section II,
our approach has a different focus. RML [8] targets trans-
forming any data to RDF. To use it for our purpose, we
would need to define a mechanism for using RDF as a data
source and navigating through it, which would be additional
overhead. Moreover, mappings’ definitions do not provide
such maintainability as in our case, despite other similarities.
STTL [7] allows us to query RDF data and transform it
into any textual format, which would again cause additional
overhead here as we would need to synthesize RDF. This
functionality is supported directly by SPARQL CONSTRUCT.

Mappings on the OWL-level, such as owl:sameAs, can
be used together with our method as is shown in Section IV.
It provides a generalized way of executing transformations
based on those mappings (and others defined in transformation
patterns). Finally, TRIPLE [11] has a concept of models as
the building block, whereas we similarly use patterns. Our
solution can be in mathematical terminology seen as a set of
functions (each realizing a pattern transformation). It takes a
set of triples and gives a set of triples. On the contrary to this
last method, we also implemented the prototype actually to
execute the transformations.

C. Future Steps

The presented approach, together with the prototype im-
plementation, can be already used for executing the trans-
formations, as shown in Section IV. However, we plan to
enhance the ease of writing the transformation patterns as
well as executing the transformation over various kinds of data
sources (e.g. local files or SPARQL endpoints). The first of the
use cases that will be taking advantage of our transformation
solution is working with different conceptual models encoded
in RDF. The ultimate goal here is to develop mappings
between metamodels so the models can be integrated and
transformed on the semantical level. As we expect non-trivial
sets of transformations patterns required to achieve the goal, it
will also serve as a verification and a good source of potential
enhancements to our method. Finally, we plan to continue
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in this effort to create a user-friendly editor for specifying,
testing, and executing the pattern transformations.

VI. CONCLUSION

This paper proposed and demonstrated a new approach for
transforming RDF data using patterns specified for SPARQL
CONSTRUCT queries. It was shown that our solution’s evolu-
tion and maintainability is improved as the core principles of
Normalized Systems were taken into account. When compared
to other existing methods for transforming RDF data, the
primary focus is slightly different. Whereas other targets
transform other data formats into RDF or vice versa, our
contribution is supporting the transformation of RDF data
between different ontologies where basic mapping predicated
from OWL is not sufficient. Moreover, our approach’s advan-
tages are the most visible when used with more complex use
cases where many and overlapping transformation patterns are
needed. Finally, we plan to continue in this effort to create
a user-friendly editor for specifying and testing the pattern
transformations.
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