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Abstract—Estimation of a conditional distribution is a building 

block of a variety of statistical procedures used in the modern 

economics. This estimation is especially difficult in case of an 

economic data stream, i.e., when data are generated by the 

multidimensional non-stationary process of unknown form 

which may contain outliers. In this paper we propose a novel 

approach for robust monitoring conditional and unconditional 

distributions in the data streams. Our proposals are based on 

the idea of adjusted Nadaraya-Watson estimator proposed in 

[6] and they appeal to the so called data depth concept. We 

show very promising statistical properties of our proposals in 

cases of selected linear and nonlinear data streams models.  
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I.  INTRODUCTION  

An economic data stream could be informally defined as 

a random sequence of observations of an undetermined 

length – see [21], [16]. We should notice that in case of 

stochastic process analysis, say { }tX , we assume a fixed 

interval of time, say [0,T]. All our calculations concern this 

interval, so we infer on base of information consisted in this 

interval – see [4], [10], [15]. In case of the data stream 

analysis we do not fix any interval. Each consecutive while 

denotes a new stochastic process analysis. The terminology 

originates from the Informatics, where the data streams were 

considered at first. In the Economics, we use by default 

stochastic methodological framework appealing to a 

nonlinear time series theory and generally consider different 

research tasks than in the Informatics – see [3], [4], [16]. 

We can indicate several specific features of the economic 

data stream analysis: 1. Data are generated by a process 

exhibiting a nonlinear structure of dependence between the 

observations. 2. Data streams usually exhibit several 

regimes. 3. Data stream analysis is performed on base of a 

constantly updated sample – on base of a sliding window or 

windows (the windows may differ with respect to their 

length or probing frequency for purposes related to a 

different time scales). 4. The streams usually consist of a 

huge amount of multivariate observations containing 

outliers, which is not stored in computer memory. 5. A 

signal carried by the stream is observed at irregularly spaced 

time points and has to be processed on-line. By the signal 

we mean a relation between numerical characteristics of the 

stream rather than a result of removal a noise from the 

stream. Let 1 2, ,...x x  be an observed economic data stream. 

A window 
,i nW  denotes the sequence of points ending at 

ix  of size n , i.e., , 1( ,..., )i n i n i W x x . Many approaches to 

data stream analysis is based on a monitoring various 

distance measures between distributions estimated from two 

or more windows – see [1], [12], [13]. In this paper, we 

study certain aspects of robust monitoring of a one-

dimensional economic data stream using a moving window 

of a fixed length.  We consider the following problems:  

 PROBLEM 1: We monitor a one-dimensional stream

1 2, ,...XX , and our aim is to detect changes in unconditional 

distribution of the iX , on base of the moving window ,i nW , 

1,2,...i  , i.e., changes of ( )iP X A , A , 1,2,...i  .  

PROBLEM 2: We monitor a one-dimensional stream

1 2, ,...XX , and our aim is to detect changes in a conditional 

distribution of the 1iX  , conditioned on the observed 

window ,i nW , 1,2,...i  , i.e., changes of 

1 ,( | )i i nP X A  W x , A , 1,2,...i  .  

In order to solve the above problems we focus our 

attention on the adjusted Nadaraya–Watson estimator of the 

conditional distribution proposed in [6]. The authors 

assumed that data are available in the form of strictly 

stationary stochastic process{( , )}i iY X , where iY  is a scalar 

and iX  is a d-dimensional vector. They proposed two 

estimators for estimating the conditional distribution 

function ( | ) ( | )i iF y P Y y  x X x , local logistic method 

and adjusted Nadaraya-Watson estimator, which have better 

statistical properties then known local and/or nonparametric 

approaches. Their proposals however are not robust. In the 

economic time series context, iX  typically denotes a vector 

of lagged values of a phenomenon iY , in which case ( | )F  x

is the predictive distribution of iY , given i X x representing 

the past. Let ( )i ip p x , for 1 i n  , denote weights 

(functions of the data 1,..., nx x  as well as of x ) with the 

property that each 0ip  , 
1

1
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In a spirit of ideas presented in [6] we can define following 

estimators of the unconditional and conditional densities  
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where K is a kernel function (e.g., Gaussian), 
1( ) ( / )hK h K h   , 1

hK  is one-dimensional Kernel, 
hK

denotes d-dimensional kernel, 2d   (e.g., a product kernel 

or a kernel based on a norm of x ), h denotes a bandwidth.  

 It is well known that a crucial issue concerning the 

kernel density estimation involves an appropriate choice of 

the bandwidth h (i.e., providing a balance between 

unbiasedness, dispersion and computational complexity). In 

this paper, we “robustify” the above approach by the choice 

of weights ( )ip x using adjusted sample depth function.  

 

II. ROBUST DATA STREAM ANALYSIS 

We understand the robustness of our proposals in a spirit 

of an approach presented in [5]. According to the authors a 

crucial property of an estimator is that it takes different 

values for different sample realizations. If a continuum of 

sample realizations is possible and the estimator is 

continuous in the sample, we expect a continuum of 

possible values for the estimator. We can look for the 

fraction of contamination for which this property is lost. In 

particular, we look for the fraction of outliers such that the 

estimator, or more specifically the measure of badness, can 

take only a finite number of different values despite a 

continuum of possible uncontaminated sample realizations. 

The statistical procedures, statistical decision rules, 

considered in this paper are functions of the estimators 

calculated on base of a moving window from the stream. In 

our proposals we use a very promising methodological 

approach of the multivariate analysis called data depth 

concept – see [14], [19], [23].  

A data depth is a way to measure the “depth” or 

“outlyingness” of a given point with respect to a 

multivariate data cloud or its underlying distribution. A data 

depth function provides an order of the multivariate 

observations on base of their departure from the center. This 

ordering enables us for quantifying many complex 

multivariate features of the underlying distribution, 

including location, quantiles, scale, skewness and kurtosis. 

There are a variety of statistical depth functions known in 

the literature and implemented in the statistical software – 

see [2]. For the technical convenience purposes (vanishing 

value of the depth outside the convex hull of a sample) we 

further use so called simplicial or Liu depth – see [14], [19].   

Let 1{ ,..., }n

nX X X be a random sample from the 

distribution ( )G  in
d

, 1d  . Let ( )I  be the indicator 

function, that is, ( ) 1I A   if A  occurs and ( ) 0I A   

otherwise. Given the sample n
X  , the sample simplicial 

depth of dx  is defined as 

       
1 1
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where (*) runs over all possible subsets of n
X  of size 1d  ,  

1 1
[ ,..., ]

di is


X X is closed simplex with vertices 
1 1
,...,

di i 
X X . 

When the distribution G  is known, then the simplicial 

depth of x with respect to G  is defined as 

1 1( , ) { [ ,..., ]}G dD G P s  x x X X , where 
1 1,..., dX X  are 

1d   random observations from G . This depth is affine 

invariant and ( , )nD x X converges uniformly and strongly to 

( , )D Gx . The affine invariance ensures that our proposed 

inference methods are coordinate–free, and the convergence 

of ( , )nD x X  to ( , )D Gx  allows us to approximate ( , )D Gx

by ( , )nD x X when G is unknown.  For our purposes it is 

useful to consider a rescaled version of the sample depth 

               
1

( , ) ( , ) ( , )
nn n n

ii
D D D


 x X x X x X .          (5) 

III. PROPOSALS 

There is a long tradition in applying nonparametric 

methods in time series analysis involving nonparametric 

regression, runs tests for randomness, permutation tests or 

certain rank tests. However nonparametric and robust 

analysis of a non-stationary time series still seems to be a 

great challenge for the statistical and econometrical 

community – see [4], [9]. Our proposals concern decision 

making process basing on the stream and they aimed at 

detecting changes in certain very important for the decision 

makers properties of the stream – its unconditional and 

conditional distributions.  

PROPOSAL 1: Let , { ,..., }j n j n jW x x ,  denotes a 

window from the stream of length n  in a time point 

,...j l , and let g denotes a certain fixed reference density. 

In order to monitor the unconditional distribution of the 

stream, determined by density f , monitor Hellinger distance 

                               
( , )j jd f g , ,...j l ,                             (6) 

where  

                 
,

1

1
( ) ( ) ( , )

n

j h ij j n

i

f x K x x D x W
n 

  ,                   (7) 

is the adjusted kernel density estimate and K is a kernel 

function, 
1( ) ( / ),hK h K h   ,( , )j nD x W  denote the adjusted 

sample depth (5) of x , ,ij j nx W , 1,...,i n  , ,...j l . 

PROPOSAL 2: Let , { ,..., }j N n j N n j NW x x    ,…, 

1, 1 1{ ,..., }j n j n jW x x    , , { ,..., }j n j n jW x x denote N

windows from the stream each of length n , ,...j l ,  
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,k N , N k and let g denotes a fixed reference 

density. Let 1{ ,..., , }N

j j N j jY x x x 
1{ ,..., }j j

Ny y , 
N

j X   

1 1 1{( ,..., ),..., ( ,..., )}j k N j N j k jx x x x      
1{ ,..., }j j

N x x . 

In order to monitor the conditional distribution of jX

determined by density
jf , given the small section of the past 

such as 1( ,..., )j j kX X  , 2,3k  , we propose to monitor the 

Hellinger distance between the densities 

                             
( , )j jd f g , ,...j l ,                               (8) 

where  
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is the adjusted kernel density estimate of jf  and ( )K  is  

univariate or multivariate kernel, 1( ) ( / )h h h  K K  , ( , )D    

is the adjusted sample depth (5).  

For the both proposals, in order to choose the 

bandwidths h  we presently use a variant of cross-validation 

from [7] applied to the most central points in the window 

with respect to the reference sample, e.g.,

{ : ( , ) }N g

jy Y D y Y   , where gY denote the reference 

sample. In (7) and (9) we propose to use adjusted simplicial 

depth, however it is possible to make use of other “more 

smoothly trimming” depth function, e.g., projection depth. 

For the computational convenience purposes we propose to 

choose the well known Hellinger or Kolmogorov distance as 

the distance between the density estimate and the reference 

density. For “regular distributions”, it seems to be sufficient 

to approximate this distance using usual pointwise distances 

between the densities in say 100 – 1000 points.  In case of a 

complete lack of the knowledge about the stream model (we 

need the reference densities) we propose to estimate the 

densities first by means of the statistics (7) or (9), eventually 

decompose the output density by means of a non 

hierarchical clustering algorithm (e.g., k-trimmed means) 

and then simulate the reference samples by means of the 

well known inverse distribution function method.     

IV. PROPERTIES OF THE PROPOSALS  

Similarly as in [6] we compared the proposed statistics 

with various estimators of the unconditional ()f and 

conditional density function ( | )f   through several 

simulated models of the data streams, involving independent 

observations, nonlinear time series and time series models 

exhibiting several regimes including TAR with trend 

(threshold autoregressive model), and CHARME 

(conditional autoregressive mixture of models) – for details 

of the models see [4] and [18]. As benchmark estimators we 

used kernel density estimator with normal kernel, k- nearest 

neighbors’ density estimator, and the adjusted Nadaraya-

Watson estimator originally proposed in [6]. For each 

simulated sample, the performance of the estimators used in 

the proposals was evaluated in terms of the mean absolute 

deviation error, integrated mean square error and visually 

by means of functional boxplot (i.e., the estimated densities 

were the observations) – see [17]. For example, in order to 

investigate finite window properties of the proposals we 500 

times generated samples, each of length 10000 observations, 

from the time series model CHARME consisted of two AR-

GARCH sub-models or consisted of three AR or SV sub-

models). We used moving window of a fixed length of 100 

obs. We considered streams with and without up to 5% of 

the additive outliers – for details see [15]. The unconditional 

and conditional densities of the sub-models, which 

comprised on the used CHARME model, were closer or 

more distant from each other according to the Hellinger 

distance. One of the densities was treated as a null 

hypothesis; subsequent densities represented the alternative 

hypotheses. Next we calculated kernel density estimates of 

the proposed statistics (8) and (9) under null and alternative 

hypotheses. Significant differences of the distributions (e.g., 

location shifts) of the proposals under null and alternative 

hypotheses indicated their good discriminative properties – 

their usefulness in the monitoring of the economic data 

stream. The estimated distributions of the statistics were 

similar for different density families of submodels – what 

give us a hope for their universal consistency (i.e., 

distributions of the statistics are independent from the 

underlying distributions). Results of the simulations were 

quite promising especially in cases of the data streams 

containing outliers. However we had to cope with the 

crucial issues of appropriate and computationally feasible 

bandwidth choice and weights calculation. In the 

simulations we used the cross-validation approach from [7] 

applied to the most central points (for which sample 

simplicial depth function takes value higher than a certain 

prefixed threshold) and an approximate depth calculation 

algorithm implemented in [2]. We presently study a 

possibility of an application new promising approaches to 

approximate calculation of the sample depth proposed 

recently in [21] and [22]. We implement our ideas in [2].  

 Fig. 1 presents a part of the results of the simulation 

studies of small samples properties of our proposals. Fig. 1 

presents the functional boxplot for 100 density estimates 

obtained on base of 100-obs. samples drawn from Student t 

distribution with 5 degree of freedom (left), and the 

functional boxplot for 100 conditional density estimates 

obtained on base of 100-obs. samples drawn from bivariate 

normal distribution with mean vector (0,0) and covariance 

matrix consisted of rows (10,3) and (3,2) – conditional 

density of the first coordinate under the condition that 

second coordinate equals 1 (right). Each of the samples 

consisted of up to 5% additive outliers. The estimates 

obtained by means our proposals were not affected by the 
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outliers – we therefore conclude that they are quite 

promising in the context of robust analysis of the economic 

stream. The proposals need further studies of the issues 

concerning the bandwidth choice and tuning the depth based 

weights adjusting the kernel estimates (7) and (9).   

V. CONCLUSIONS 

We proposed two depth based statistics for the robust 

monitoring of unconditional and conditional distributions of 

the data stream. Results obtained so far are quite promising 

in the context of robust analysis of the data stream.  They 

are robust to outliers being sensitive to the major changes of 

the stream at the same time. Most of the robust and 

nonparametric multivariate statistical procedures are 

computationally very intensive and has to cope with so 

called “curse of dimensionality” (i.e., sparsity of the data in 

many dimensions). We actually intensively study the 

possibility to overcome these substantial difficulties.   
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Figure 1.   Functional boxplots for 100 density estimates obtained on base of 100-obs. samples drawn from Student t with 5 degree of freedom consisted of 

5% outliers (left), and for 100 conditional density estimates obtained on base of 100-obs. samples drawn from bivariate normal distribution with mean vector 
(0,0) and covariance matrix consisted of rows (10,3) and (3,2) (right). Each sample consisted of 5% outliers. Our own calculations using {fda} R package. 
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