
A Compositional Safety Specification
Using a Contract-Based Design Methodology

Markus Oertel∗, Peter Battram†,
Omar Kacimi‡ and Sebastian Gerwinn§

OFFIS – Institute for Information Technology,
Escherweg 2, 26121 Oldenburg, Germany

Email: ∗oertel@offis.de, †battram@offis.de,
‡kacimi@offis.de, §gerwinn@offis.de

Achim Rettberg
Carl von Ossietzky University Oldenburg
Escherweg 2, 26121 Oldenburg, Germany

Email: rettberg@iess.org

Abstract—Model-based design methodologies have become the
standard approach to develop safety critical systems. Therefore,
many approaches exist to model faults, failures and their prop-
agation. Nevertheless, due to the frequent use of off-the-shelf
components as well as the need to react efficiently on changes, the
importance of modular and compositional techniques is gaining
constantly. Here, we present an approach for compositional rea-
soning on safety specifications that supports multiple abstraction
levels in the design process. Especially in the safety domain,
it is obvious that a safety concept is just valid under certain
conditions, e.g. that only a limited amount of components may fail
at the same time. Therefore, we extend existing safety specification
methods based on contracts, which explicitly distinguish between
assumptions and guarantees, building a well-founded framework
for compositional reasoning. Our formalization method can be
used to develop a safety specification starting from the top level
system component and refine it until the lower hardware and
software layers while preserving the validity of early performed
analyzes. On a practical level, we further describe how safety
specifications can be formalized into a model checking problem
and analyzed using existing tools.

Keywords–Safety Critical Systems, Safety Contracts, Contract-
based Design, Model-based Design, Fault Modeling, Model Check-
ing, Formal Methods

I. INTRODUCTION

Safety relevant systems are characterized by a high amount
of required verification and validation activities necessary for
qualification or certification. Changes in the system often cause
a tremendous re-verification effort. Fenn et al. [1] described
the experience of industrial partners in which the costs for re-
certification are related to the size of the system and not to
the size of the change. Also, Espinoza et al. [2] discovered
that the monolitic and process oriented structure of the safety
cases required by nearly all domain-specific safety standards
may require an entire re-certification of the system after
changes. Therefore, recent work has focused on establishing
modular specifications and processes aiming at preserving the
safety properties even in the presence of changes [3][4][5].
Additionally, from a computational perspective, modular and
decomposable specifications are highly desirable as the overall
computational load can also be substantially reduced. That is,
the analysis of the whole system in one state-space may not

be feasible, while those of sub-parts are expected to be still in
an acceptable performance corridor.

To obtain a compositional safety aspect, a specification
language is needed that can describe the fault propagation and
mitigation of a component, as well as a theory for compos-
ing components and comparing their specifications. Existing
approaches to specify safety properties in a modular way
(see Section II for an overview) either lack expressiveness, or
compositionality as defined by Hungar [6] and Peng [7]: there
exists a separation between the specification of a component
and its actual behavior. If a component is replaced by another
component meeting its original specification, the correct func-
tional behavior of the composed system is maintained.

The main contribution of this paper is to add support
of abstraction techniques to safety specifications to enable a
top down design process. Requirements on higher abstraction
levels leave room for many implementation possibilities (there-
fore also many different fault propagations), e.g. requiring
the absence of single point of failures, which are specialized
on lower levels of abstraction. The correct break-down of
requirements can be automatically analyzed. The benefit of
our specification is that the analysis results on higher level
are not compromised if the system is further refined. Another
benefit of such an approach is the possibility to automatically
compare the assumed fault propagation with the behavior
implemented [8]. Our work is based on the design by contract
principle, which has a well-founded semantic framework for
composing components and argue on the correctness of their
refinement. As a language, we extend the already existing
safety contracts with compositional aspects.

The paper is organized as follows. We briefly review
the contract-based approach in Section III together with the
existing safety contracts. We describe in Section IV how
we can abstract from concrete component failures on higher
abstraction levels and we propose a mapping to a linear
temporal logic (LTL) based model checking problem (see
Section V). Finally, we apply the approach to an example use-
case (Section VI) and conclude our work in Section VII.

II. RELATED WORK

We briefly present the already existing approaches, which
provide a modular or hierarchical safety specification for

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-401-5

PESARO 2015 : The Fifth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

embedded systems.

A. HipHops
Hip-Hops [9] is a failure logic modeling-based ap-

proach [10] that aims at automating the generation of safety
analysis artifacts such as Fault Trees and Failure Mode and
Effect Analysis tables (FMEA). To this end, design models,
e.g., SIMULINK models [11], are annotated with a fault prop-
agation specification, which states for a component possible
input and internal faults as well as how they influence the
output. The deviations from the nominal behavior considered
by Hip-Hops follow HAZOP [12] guidelines and include, for
example, HAZOP guidewords omission, too late, and value.
The atomic faults can be annotated with probabilities of
occurrence, which in turn can be used along the structure of
the generated fault tree to calculate the overall probability of
a failure at top level. The popularity of the approach is based
on the seamless integration in existing safety processes, since
automation support is added to well-known analyses.

Our approach is more requirement-oriented. We directly
formalize safety requirements and address the correctness
of their refinement. Although the stated fault propagation
relationships are similar, there is no need to generate a set
of fault trees for each failure and their manual interpretation.
As we are focusing on safety requirements and proving the
correctness of their break-down, we do not need to compare
fault trees with requirements.

B. Fault Propagation and Transformation Calculus
The fault propagation and transformation calculus

(FPTC) [13] is addressing the problem of a modular safety
specification. The architectural design is expressed using Real-
Time Networks (RTN) to model the communication channels.
The calculus itself is based on direct propagation notations
using failure modes in accordance to HAZOP guidewords.
The approach claims to be modular or compositional by
providing a fixed-point algorithm to calculate the set of all
possible occurring input and output faults for every component
in the system. In contrast to the solution presented in this
paper, the FPTC approach does not provide any support for
multiple abstraction levels, i.e., specifying a component, then
designing the subcomponents, and prove the correctness of
the refinement.

Additionally, within FPTC it is not possible to state
temporal properties in the propagation of faults (e.g. that a
fault is going to be detected after some time). Furthermore,
in case of multiple input and output ports, the notation of
positive propagation is more complicated than the negative
fault containment properties stated within safety contracts.
Also, the order of the evaluation of the FPTC requirements
matters, which is not the case for the invariant safety patterns.
A minor drawback of FPTC is also the necessity of an RTN
model, while safety contracts can be attached to any port-based
component model.

C. Cause Effect Graphs
Kaiser et al. [14] address the problem that the typical struc-

ture of a fault tree is related to the hierarchy of the influences

of a failure, but not to the hierarchy of the system. Therefore,
they extend fault trees to be directed acyclic graphs, which
they call Cause Effect Graphs (CEGs). This representation has
the benefit of uniquely representing repeated events (identical
causes used in multiple sub-trees) in fault trees. The CEGs
allow to create a direct mapping of parts of the fault tree
to components in the architecture, making these elements re-
usable. A tool called UWG3 has been developed to evaluate
the approach.

Kaiser et al. address compositionality and re-useability in
their approach, but do not integrate abstraction. At the time of
the analysis the model still needs to be complete and cannot
be refined later without the need of a full re-evaluation. The
same limitations with respect to the interpretation of fault trees
as they have been stated for Hip-Hops (see Section II-A) also
apply to this approach.

D. Previous work on safety contracts

Boede et al. [15] presented an approach for hierarchi-
cal safety specifications using safety contracts. They in-
troduced patterns to describe the hierarchy of faults, the
hierarchy of functions, and the relation between faults
and functions, e.g.: function <function-name> can
be impacted by <failure-list>. Although the ap-
proach is based on contracts, the stated patterns do not fully
exploit the contract notation as assumptions are neglected, a
major principle of contracts.

While stating the need for a hierarchical failure specifica-
tion language, the semantics for the presented patterns are not
precisely given. Hence, it is hard to estimate if the proposed
analysis can be automated.

Oertel et. al [16] presented an approach for expressing
safety properties in a contract-based fashion providing formally
defined semantics and application guidelines. The presented
approach, however, did not consider abstraction techniques to
refine safety concepts suitable for a top-down design. Since
the approach presented in this paper is extending the work
of Oertel et. al [16], the main contract templates and their
semantics are briefly presented in Section III-B.

III. BACKGROUND

A. Overview Contract-based Approach

Contracts [17][18] separate a requirement into an assump-
tion, which describes the expected properties of the environ-
ment, and a guarantee, which describes the desired behavior
of the component under analysis, provided the assumption
is met by the operational context, i.e., the environment. This
separation allows for building a sound theory thereby per-
mitting to reason in a formal way about the composition of
systems. Contracts, belonging to the class of assume-guarantee
reasoning techniques [19], are a widely adopted approach for
compositional verification [20][7].

Contract semantics for reactive and embedded systems are
defined over traces of systems [6][18]. Components, in the
following denoted with M, are characterized by ports (P), that
are either defined as input or as output ports. A trace assigns a
value V out of the value domain V to each of the ports at any

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-401-5

PESARO 2015 : The Fifth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

given point in time t ∈ T . Therefore, a trace is of the form
[T → [P → V]]. The traces of a component M are denoted
[[M]]. This set comprises all possible behaviors of a component
(implementation), even in case of unacceptable inputs due to a
general requirement of input openness, i.e., requiring systems
to never confine or otherwise refuse input. The (semantically
concurrent) composition of multiple sub-components M1 . . .Mn

to a component M is defined [18] as the set of traces accepted
by all components:

[[M]] =

[[
n×

i=1

Mi

]]
=

n⋂
i=1

[[Mi]]

In some modelling languages it is possible to name the port-
ends of delegation- and assembly-connectors differently. For
the same of simplicity we do not foresee such a behavior and
assume to have identical port names if they are connected.

A contract is a tuple C = (A,G) describing a set of traces
using the assumption A and the guarantee G:

[[C]] = [[A]]−1 ∪ [[G]]

with (.)−1 denoting the complement of a set. Although not
formally required by the definition of contracts, assumptions
typically only specify constraints on the input, whereas guar-
antees reflect the input/output relation and therefore contain
restrictions of allowed outputs while being input-open. We
assume all contracts to be stated in the canonical form [21],
which allows some simplifications in the following definitions
of the operators and relations. A contract is said to be in
canonical form if [[G]] at least contains [[A]]−1.

In order to reason about the correctness of the composition
of a system, a set of basic relations and operators are defined
on contracts and implementations.

Definition 1 (Satisfaction). A component M
satisfies [18][22][21] a contract C = (A,G), denoted
M |= (A,G), iff all its traces are permitted by the contract,
i.e., [[M]] ⊆ [[C]], and its inputs and outputs coincide to those
underlying the contract. Consequently,

M |= (A,G)⇔ [[M]] ∩ [[A]] ⊆ [[G]]

Refinement is a relation between two contracts, stating that
the refined contract is a valid concretisation of the other, i.e.,
the refining contract is a valid replacement in all possible oper-
ational contexts satisfying all (and maybe more) requirements
satisfied by the refined contract.

Definition 2 (Refinement). According to [17] and [22] a
contract C1 refines C2 iff it has the same signature, i.e., same
input and output ports, yet imposes relaxed assumptions and
more precise guarantees:

C1 � C2 ⇔ A1 ⊇ A2 ∧G1 ⊆ G2

Parallel composition (⊗) is used to combine multiple
contracts into a new contract that represents the behavior of
(concurrently) composed components each of which satisfies
their individual contracts.

Definition 3 (Parallel Composition). For two contracts C1 and
C2, the parallel composition C1 ⊗ C2 is defined as:

((A1 ∩A2) ∪ ¬(G1 ∩G2), (G1 ∩G2))

B. Overview of Safety Contracts

The assumption and the guarantee of a contract can be
described using various languages depending on the analysis
target. In case of safety requirements we use a formal, pattern-
based language, called safety patterns [16], which can be
translated to many other suitable target languages, such as LTL
or timed-automata [18]. By using LTL in [16], four safety
patterns are introduced to express different safety properties
like fault propagation, safety mechanisms and transitions to a
safe-state. These patterns are depicted in TABLE I.

TABLE I. Overview of the Safety Patterns

Pa
t.

1 Structure none of {{m1,m2}, {m3,m4}} occurs
Intuition This pattern speaks about malfunction or mode (m)

combinations that are not allowed.
LTL expression (G¬m1 ∨ G¬m2) ∧ (G¬m3 ∨ G¬m4).

Pa
t.

2 Structure expr-set does not occur.
Meaning Derived from pattern 1, where just one set of malfunctions

or modes is used. Semantics are identical. Introduced for
convenience.

Pa
t.

3 Structure m1 only followed by m2

Intuition It is proposed to restrict the occurrence of m1. The pattern
is typically used to define consecutive modes.

LTL expression G(m1 → (m1Wm2)).

Pa
t.

4 Structure m1 only after m2

Intuition It is proposed to restrict the occurrences of malfunctions
or modes. This pattern is typically used to express that a
safety mechanism shall only be activated after the fault
occurrence.

LTL expression ¬m1 ∧G((Xm1)→ (m1 ∨m2))

Pattern 1 and its derived Pattern 2 state that only system
runs (traces) are accepted in which the combination of mal-
functions (as stated in the expression sets) is absent. Pattern 3
and Pattern 4 are used to order malfunctions or modes of the
system.

Oertel et. al [16] presented several contract templates that
proved to be useful for automotive safety concepts. We are
focusing here on a subset of them, since the others can be
handled identically. The basic template is depicted in contract
C1 and describes the robustness of the output of a component
against internal faults. More precisely, the contract explicitly
mentions all combinations Mf of malfunctions on the inputs
(Inpmf) or internal malfunctions (Intmf) of an component
that could cause the output to fail (out_fail). Therefore,
Mf ⊆ P(Inpf ∪ Intf) and the corresponding safety contract
consisting of assumptions A and guarantees G can be written
as:

C1
A: none of {Mf} occurs.
G: {out_fail} does not occur.

In order to fulfill the requirements of the ISO 26262, safety
contracts are able to express the degradation of a system,
i.e., switching to a safe-state. This safe-state is expressed in
functional terms (e.g., functional variables need to be in a
defined range), and is therefore just considered as an identifier

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-401-5

PESARO 2015 : The Fifth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

C_top

C_1

C_2

C_1.2

C_1.1

C_1.1_fault C_1.2_fault C_2_fault

in1

in2

In1_fail

In2_fail

out1 out1_fail

out2

out2_fail

out

out_fail

out_safe

Figure 1. All internal faults were “externalized” using fault activation ports.
Blue ports are considered as functional ports, while red ports describe the

failure modes of the functional ports.

in safety contracts. Contract template C2 is using this mecha-
nisms to state that a system is either operating normally or that
it is in a safe-state, if the assumption is met. The assumption
is violated if one of the stated combinations of malfunctions
occurs.

C2

A: none of {Mf} occurs.
G: {out_fail and !out_safe} does not

occur.

In Oertel et al. [16], the top level contract talks about
all non-desired atomic fault combinations, even if the atomic
faults correspond to components of a more detailed abstraction
level. Figure 1 illustrates that all faults in the most detailed
(lowest abstraction level) components need to be made avail-
able to the containing components by use of fault ports. I.e.,
that the designer needs to know all possible internal faults
while specifing the top-level component. This approach is not
compositional, since changes on internal components directly
cause changes on the containing component. Furthermore, a
top-down design is impossible, since it is assumed that all
components and their faults are known in advance.

IV. COMPOSITIONAL FAULTS & FAULT ABSTRACTION

Every component is only safe under certain conditions.
For example, a dual-channel architecture is only safe as long
as at least one channel is working correctly. In a contract-
based approach these assumptions are explicitly stated for
each requirement. Therefore, the contract assigned to the top
level component guarantees the correctness or “safeness” of
an output while assuming only a limited set of combinations
of particular internal faults to occur in the system.

The assumptions that restrict the correctness of an output
signal can in many cases be abstracted to restrict only the
number of faults within the system. Using this technique
we are still able to express the absence of single-points of
failure, as required by the ISO 26262, but do not need to state
all particular faults individually. Thereby this generalization
enables a top-down design approach.

C_top

C_1

C_2

C_1.2

C_1.1

Top_#internal_faults

in1

in2

In1_fail

In2_fail

out1 out1_fail

out2

out2_fail

out

out_fail

__splitter

__splitter

C_1_#internal_faults

C_1.1_fault

C_1.2_fault

C_1.2_fault

out_safe

Figure 2. Count ports are introduced and fault-splitter components, that
ensure that not more faults are passed to internal components as specified

Therefore, since traces are based on values on ports, we
introduce fault count ports representing how many internal
faults are present in a component (see Figure 2). Again, blue
ports represent actual functional values that are used in the
implementation of that component and red ports represent
failure modes assigned to these ports. Notice, that more than
one failure mode can be assigned to a functional port, as it
is the case the out port. Using fault count ports, only at
the most detailed abstraction level, i.e., the implementation,
the particular faults that might occur in a component need
to be specified. The fault count ports are of type Integer and
belong to the safety aspect of a system only. From a functional
point of view, these ports are virtual and do not occur in
any generated code. Additionally, we also introduce virtual
splitter components to create a connection between the fault
count port on the higher component and the fault ports (or
also fault count ports) on the sublevel components. They are
called virtual, since they are not necessary for the specification,
they are just necessary to still be compliant to the contract
based design methodology and can therefore be generated
automatically. The splitters distribute the maximum number
of faults of the surrounding component to its subcomponents.
Consequently, they allow multiple possibilities of how to
distribute the number of allowed faults. On the one extreme,
they could be just assigned to one single component and
all the other subcomponents are assumed to be fault free
or, on the other extreme, they could be evenly distributed
aross all subcomponents. Under all of these possibilities the
component needs to be safe. In terms of trace semantics, these
splitters only allow traces that do respect the number of faults.
For n subcomponents, the contract associated to the splitter
component can also be characterized by the following contract:

C3
A: true
G: out1 + ... + outn < #internal_faults

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-401-5

PESARO 2015 : The Fifth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

The guarantee creates a relation between the input port of
the splitter (#internal faults) and the output ports (outn). If
the assumption of a component states that x internal faults do
not occur, this contract ensures that only less than x faults are
activated on the subcomponents.

As the components are still characterized by input and
output ports contracts are still applicable to the safety aspect
using traces (see Section III) on fault-count ports and all def-
initions and analyses from contracts (refinement, etc.) remain
valid. Fault count ports are only used for the internal faults
of an component, fault that occur at the input ports are not
affected since these faults can be easily passed to an additional
subcomponents, which are introduced in a refinement step,
without violating compositionality.

Intermediate and top level component’s safety requirements
can be specified using these counting fault ports. The most
common usage for the top level assumption is to state that
only one or two faults occur in the system. For example, a
specification for the component C 1 in Figure 2 could be stated
as follows:

C4

A: none of {{in1_fail, in2_fail},
{C_1_#internal_faults=1, in1_fail},
{C_1_#internal_faults=1, in2_fail},
{C_1_#internal_faults=2} } occurs.

G: {out2_fail AND !out2_safe} does not
occur.

This specification defines that the component shall be
robust against one arbitrary fault, which may occur at one
of the inputs or internally. Another useful scenario is, that the
inputs are assumed to be correct and only internal faults are
considered. Such a contract can be stated as follows:

C5

A: none of {{C_1_#internal_faults=2},
{in1_fail}, {in2_fail} } occurs.

G: {out2_fail AND !out2_safe} does not
occur.

The specification of an atomic component (like C 1.2
in Figure 2), for which the internal faults are known, uses
the known internal faults, since no abstraction by using a
fault count is necessary. The internal faults are represented as
individual fault ports (see C 1.2 fault on component C 1.2 in
Figure 2) and are directly connected to the splitter components.
This ensures, that the specification of the atomic component
can still be done accordingly to the guidelines presented by
Oertel et al. [16], however one can additionally restrict the
total number of different individual faults occurring simulta-
neously (in the same trace) on a more abstract level.

V. SEMANTICS AND VERIFICATION OF FAULT
ABSTRACTION

To be able to automatically check our specification and to
provide precise semantics, we provide a mapping to boolean
LTL. [23]. This decision is based on the availability of fast
LTL model checkers and the benefit of relying on the same
formalism used for the safety patterns itself (see Section III-B).
Furthermore, assumption including an internal faults count
bigger than 3 is not expected. Therefore, we cannot use the

C_top

splitter

0_faults_Ctop

1_faults_Ctop

2_faults_Ctop

C_1

C_2

0_faults_C1

1_faults_C1

2_faults_C1

splitter

splitter

0_faults_C2

1_faults_C2

2_faults_C2

Figure 3. Explicitly represent the counting with boolean logic for LTL
implementation. In this example a fault port with the value 2 is represented.

fault-count ports as integers, but need to create a mapping to
boolean logic. Still, from a users perspective the workflow
does not change, the specification should be written using
the integer fault ports, the mapping is performed completely
automatically.

Since all numbers are explicitly stated, and we do not
consider unbounded variables, the integer ports can be ex-
pressed in a combinatorial fashion. Hence, a fault count port is
split up in individual boolean ports (explicit fault count ports)
representing each a valid value of this port (see Figure 3). If a
contract assumes that not more than n faults occur, all numbers
of faults smaller than n are valid values. It needs to be stated,
that only one of these ports can be active at a time. This is
an assumption that needs to be added to all contracts that are
attached to the component, e.g., for Ctop:

C6

A: none of {
{0_faults_Ctop, 1_faults_Ctop},
{1_faults_Ctop, 2_faults_Ctop},
{0_faults_Ctop, 2_faults_Ctop}
} occurs.

G: ...

Furthermore, we need a separate splitter component for
each explicit-fault-number port. These splitters allow all logi-
cal combinations of ports that sum up to the defined number of
faults. For n internal faults and m subcomponents the splitter
contract restricts the set of all possible occurring malfunctions
M = P({X0 faults C0, . . . , Xn faults Cm}) to Mf :

C7
A: true
G: none of {Mf } occurs.

with Mf = {{xi faults Cy} ⊆M :
∑(n+1)·m

i=1 xi ≥ n}.
For the purpose of a single refinement analysis we can

simplify the translation, since at analysis time splitters are
not needed and can be replaced by all combinations of faults
of the subcomponents directly. For a given set of internal
faults I , the fault-count port #internal_faults=n in the
assumption resolves to all sets of faults of length n of the
powerset P(I). The refinement check is then implemented as

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-401-5

PESARO 2015 : The Fifth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

a satisfaction check on the LTL properties of the contracts
(see Section III-A). Rozier and Vardi [24], as well as Li et
al. [25] suggested to use a generic model, allowing all possible
behavior, to check the property against to reduce the problem
to a classical model checking problem.

VI. EXAMPLE

We model a fail-safe temperature sensor as an example
(see Figure 4) to apply the top-down design process for safety
contracts. The main safety requirement for the temperature
sensor is to still deliver a correct or at least safe result under
the assumption that there is at most one fault present within
the system:

C8

A: none of {{#sensor_faults=2}} occurs.
G: {temp_out_fail AND !temp_out_safe}

does not occur.

The safe-state of the temperature sensor is to output the
maximum temperature. This is a valid safe state if the temper-
ature sensor is used in a cooling system, where overheating
should be prevented.

A realization of this requirement can be a design with two
simple but redundant temperature sensors in addition to a logic,
which provides a voting mechanism. The sensors themselves
do not provide any safety mechanisms and hence can fail
immediately as a result of a single internal failure. Therefore,
the safety contract for the temperature sensors 1 is (temperature
Sensor 2 is specified in an identical manner):

C9
A: none of {{temp1_fail}} occurs.
G: {temp1_out_fail} does not occur.

The logic component shall react to faults of the tempera-
ture. As the internal structure has not yet been decided, the
requirement states, that even if one of the inputs fails or an
internal fault occurs the result should at least be safe. Such a
requirement can be expressed using a safety contract:

C10

A: none of {
{temp1_out_fail, temp2_out_fail},
{#logic_faults=1, temp1_out_fail},
{#logic_faults=1, temp2_out_fail},
{#logic_faults=2}
} occurs.

G: {temp_out_fail AND !temp_out_safe}
does not occur.

In the refinement step of the logic component, two in-
dependent analog/digital converters are used to digitize the
temperature signal. Both converters do not provide safety
mechanisms and fail immediately:

C11
A: none of {{ad1_fail}} occurs.
G: {ad1_out_fail} does not occur.

Again, the second converter is specified similarly. The
signals are processed by an overwrite component, which com-
pares the results and sets the safe-state if the values differ. The
override component is not expected to fail in the lifetime of
the device. It is a common assumption in voting architectures

to assign a very small functionality to a component that is
formally verified and produced in a more robust way than
the rest of the system or replaced in a regular manner during
service intervals. The safety contract is therefore specified only
in terms of input faults:

C12

A: none of {
{ad1_out_fail, ad2_out_fail}
} occurs.

G: {temp_out_fail AND !temp_out_safe}
does not occur.

The corresponding splitter component, the connection of
the splitter to the faults of the subcomponents as well as
the contract for the splitter component can be generated
automatically and do not need to be specified separately.

Refinement can now be checked on both levels of abstrac-
tion.

(C7 ⊗ C8 ⊗ C9) � C6

as well as
(C10 ⊗ C11 ⊗ C12) � C9

VII. CONCLUSION

Since the verification and validation of safety-critical sys-
tems consume up to 40% of the development costs, it is
even highly undesirable if changes in a system require a re-
verification of the whole system. Modular safety cases are
expected to reduce these costs by enabling a determination of
the area of the system affected by the incorporated changes.
In this paper, we presented an approach to enable black-
box safety specifications using safety contracts. In contrast
to other approaches contracts provide a means of abstraction
thereby allowing to develop a system in a top-down manner,
i.e., to refine the specification by introducing the possible
architecture of the sub-components. Being able to analyze the
correctness of a refinement in an LTL-based model checking
tool, we are now able to determine if a change in safety
requirements needs further adaptations of the system to be
compliant to that change. Although this approach is expressive
in its specification, it is still intuitively to use.

The currently used LTL-backend does not allow to analyze
big system. For some examples with complex specifications,
we were not able to check more than 10 contracts in one
refinement analysis. Alternatively, an automaton-based repre-
sentation together with a bounded model checking technique
could be a promising candidate for improving the efficiency.
Furthermore, it seems to be possible to annotate the faults
with probabilities of their occurrence to extend the scope of
possible requirements to upper bounds in probabilities that a
system may fail, rather than the number of faults.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment n◦269335 (MBAT) and the German Federal Ministry
of Education and Research (BMBF) as well as 01IS12005M
(SPES XT).

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-401-5

PESARO 2015 : The Fifth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Fail Safe Temp Sensor

Temp Sensor 1

Temp Sensor 2

Logic

A/D 1

A/D 2

Overridesplitter splitter

env_temp

env_temp

#sensor_faults

temp1_fail

temp2_fail

temp1_out_fail

temp2_out_fail

#logic_faults

temp_out
temp_out_fail

ad1_out

ad1_out_fail

ad2_out

ad2_out_fail

ad1_fault

ad2_fault

temp_out_safe

Figure 4. Architecture of a temperature sensor required to be robust against single-points of failure

REFERENCES

[1] J. L. Fenn, R. D. Hawkins, P. Williams, T. P. Kelly, M. G. Banner, and
Y. Oakshott, “The who, where, how, why and when of modular and
incremental certification,” in System Safety, 2007 2nd Institution of
Engineering and Technology International Conference on. IET, 2007,
pp. 135–140.

[2] H. Espinoza, A. Ruiz, M. Sabetzadeh, and P. Panaroni, “Challenges for
an open and evolutionary approach to safety assurance and certification
of safety-critical systems,” in Software Certification (WoSoCER), 2011
First International Workshop on. IEEE, 2011, pp. 1–6.

[3] M. Oertel and A. Rettberg, “Reducing re-verification effort by
requirement-based change management,” in Embedded Systems: De-
sign, Analysis and Verification. Springer Berlin Heidelberg, 2013.

[4] J. Fenn, R. Hawkins, P. Williams, and T. Kelly, “Safety case composi-
tion using contracts-refinements based on feedback from an industrial
case study,” in The Safety of Systems. Springer, 2007, pp. 133–146.

[5] J. Vara, S. Nair, E. Verhulst, J. Studzizba, P. Pepek, J. Lambourg, and
M. Sabetzadeh, “Towards a model-based evolutionary chain of evidence
for compliance with safety standards,” in Computer Safety, Reliability,
and Security, ser. Lecture Notes in Computer Science, F. Ortmeier and
P. Daniel, Eds. Springer Berlin Heidelberg, 2012, vol. 7613.

[6] H. Hungar, “Compositionality with strong assumptions,” in Nordic
Workshop on Programming Theory. Mälardalen Real–Time Research
Center, November 2011, pp. 11–13.

[7] H. Peng and S. Tahar, “A survey on compositional verification,” Dep.
of Electrical & Computer Engineering, Concordia University, Canada,
Tech. Rep., 1998.

[8] M. Oertel, O. Kacimi, and E. Böde, “Proving compliance of implemen-
tation models to safety specifications,” in Computer Safety, Reliability,
and Security, ser. Lecture Notes in Computer Science, A. Bondavalli,
A. Ceccarelli, and F. Ortmeier, Eds. Springer International Publishing,
2014, vol. 8696, pp. 97–107.

[9] Y. Papadopoulos and J. McDermid, “Hierarchically performed hazard
origin and propagation studies,” in Computer Safety, Reliability and
Security, ser. Lecture Notes in Computer Science, M. Felici and
K. Kanoun, Eds. Springer Berlin Heidelberg, 1999, vol. 1698, pp.
139–152.

[10] O. Lisagor, J. McDermid, and D. Pumfrey, “Towards a practicable
process for automated safety analysis,” in 24th International system
safety conference, 2006, pp. 596–607.

[11] Y. Papadopoulos and M. Maruhn, “Model-based synthesis of fault trees
from matlab-simulink models,” in Dependable Systems and Networks,
2001. DSN 2001. International Conference on, 2001, pp. 77–82.

[12] J. Gould, M. Glossop, and A. Ioannides, “Review if hazard identification
techniques,” Health and Safety Laboratory, Tech. Rep., 2000.

[13] M. Wallace, “Modular architectural representation and analysis of fault
propagation and transformation,” in Proc. FESCA 2005, ENTCS 141(3),
Elsevier, 2005, pp. 53–71.

[14] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new component concept
for fault trees,” in Proceedings of the 8th Australian Workshop on Safety
Critical Systems and Software - Volume 33, ser. SCS ’03. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2003, pp. 37–
46.

[15] E. Böde, S. Gebhardt, and T. Peikenkamp, “Contract based assesment
of safety critical systems,” in Proceeding of the 7th European Systems
Engineering Conference (EuSEC 2010), 2010.

[16] M. Oertel, A. Mahdi, E. Böde, and A. Rettberg, “Contract-based safety:
Specification and application guidelines,” in Proceedings of the 1st
International Workshop on Emerging Ideas and Trends in Engineering
of Cyber-Physical Systems (EITEC 2014), 2014.

[17] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-vincentelli, W. Damm, T. Henzinger,
and K. Larsen, “Contracts for systems design,” Research Centre Rennes
- Bretagne Atlantique, Tech. Rep., 2012.

[18] A. Baumgart, E. Böde, M. Büker, W. Damm, G. Ehmen, T. Gezgin,
S. Henkler, H. Hungar, B. Josko, M. Oertel, T. Peikenkamp, P. Reinke-
meier, I. Stierand, and R. Weber, “Architecture modeling,” OFFIS, Tech.
Rep., 03 2011.

[19] T. Henzinger, S. Qadeer, and S. Rajamani, “You assume, we guarantee:
Methodology and case studies,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, A. Hu and M. Vardi, Eds. Springer
Berlin Heidelberg, 1998, vol. 1427, pp. 440–451.

[20] W.-P. de Roever, “The need for compositional proof systems: A survey,”
in Compositionality: the significant difference. Springer, 1998, pp. 1–
22.

[21] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple viewpoint contract-based specification and
design,” in Formal Methods for Components and Objects, ser. Lecture
Notes in Computer Science, F. de Boer, M. Bonsangue, S. Graf, and
W.-P. de Roever, Eds. Springer Berlin Heidelberg, 2008, vol. 5382,
pp. 200–225.

[22] B. Delahaye, B. Caillaud, and A. Legay, “Probabilistic contracts: a
compositional reasoning methodology for the design of systems with
stochastic and/or non-deterministic aspects,” Formal Methods in System
Design, vol. 38, no. 1, 2011, pp. 1–32.

[23] A. Pnueli, “The temporal logic of programs,” in Foundations of Com-
puter Science, 1977., 18th Annual Symposium on. IEEE, 1977, pp.
46–57.

[24] K. Y. Rozier and M. Y. Vardi, “Ltl satisfiability checking,” in Model
Checking Software, Proceedings of the 14th International SPIN Work-
shop. Springer, 2007, pp. 149–167.

[25] J. Li, G. Pu, L. Zhang, M. Y. Vardi, and J. He, “Fast ltl satisfiability
checking by sat solvers,” arXiv preprint arXiv:1401.5677, 2014.

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-401-5

PESARO 2015 : The Fifth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

