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Abstract—Deep Neural Networks (DNNs) are widely used for
complex applications, such as image and voice processing. Two
varieties of DNNs, namely Convolutional Neuronal Networks
(CNNs) and Recurrent Neuronal Networks (RNNs), are particu-
larly popular regarding recent success for industrial applications.
While CNNs are typically used for computer vision applications
like object recognition, RNNs are well suited for time variant
problems due to their recursive structure. Even though CNNs and
RNNs belong to the family of DNNs, their implementation shows
substantial differences. Besides more common Central Processing
Unit (CPU) and Graphic processing Unit (GPU) implementations,
Field Programmable Gate Array (FPGA) implementations offer
great potential. Recent evaluations have shown significant benefits
of FPGA implementations of DNNs over CPUs and GPUs. In this
paper, we compare current FPGA implementations of CNNs and
RNNs and analyze their optimizations. With this, we provide
insights regarding the specific benefits and drawbacks of recent
FPGA implementations of DNNs.

Keywords–deep learning, convolutional, recurrent, neural net-
work.

I. INTRODUCTION

Deep learning is a powerful method for supervised learn-
ing without the need of feature engineering. The resulting
Deep Neural Networks (DNN) can represent functions of
high complexity due to the size of the network depending
on the number of hidden layers and neurons or units inside
each layer [1]. Two varieties of DNNs, Convolutional Neural
Networks (CNNs) and Recursive Neural Networks (RNNs),
have especially shown great potential to real-life applications.
While CNNs are typically used for imagery classification
[2][3], RNNs are suitable for time-variant problems like speech
recognition [4] due to their recursive structure.

A. Convolutional Neural Networks
CNNs are a type of feed-forward artificial neural network

[1]. Figure 1 shows a diagram of a simple CNN. CNNs
usually consists of the following components: convolution,
evaluation of a non-linear activation function, pooling or sub
sampling and classification or regression. The convolution
component extracts features from the input image with a set of
learnable filters or kernels called feature maps. The convolution
computation is done through a dot product between the entries
of the kernel and the input section of same size across the entire
input frame. The output of the dot-product is forwarded to an
activation function, typically sigmoid(), ReLU() or tanh(),
which increases the nonlinear properties of the CNN. Then,
the pooling component reduces the dimensionality of each
feature map and keeps the most important information for the
classification component. In modern CNNs, like ImageNet [5],
these three stages alternate several times. At the next stage of
the feed-forward path, one or more fully-connected layers are

applied to extract the classification or regression information
with the help of logistic or linear regression. The training of
CNNs is done via gradient-based backpropagation algorithm.

B. Recurrent Neural Networks
RNNs extend the concept of conventional feed-forward

neural networks by having a hidden recurrent state. The
activation of the hidden recurrent state depends on the previous
activations [6]. Thus, unlike conventional neuronal networks,
they can include timing information in the processing, which
is important for instance for speech recognition [7].

One of the first approaches in the direction of today’s RNNs
was done by Jain et al. They developed a partially RNN to
learn character strings [8]. The feedback connection enables
RNNs to represent previous inputs as activation [9]. According
to Jain et al. [8] the architecture of RNN can be anything
between a fully interconnected network and a partially inter-
connected network. In fully interconnected networks, every
neuron is connected to every other neuron, as well as itself
via feedback connections, allowing to transfer states during-run
time. This is depicted in Fig. 2, where the unfolded structure at
the bottom shows the behavior of a self-feedback connection.
However, in contrast to Fig. 2, for a fully interconnected RNN,
there are no distinct input and output layers.

In the 90s, there have been difficulties to train RNNs
for applications, whose data includes dependencies over long
temporal intervals. The first contribution to a network to
overcome the issue of learning long-term dependencies was
made by Hochreiter and Schmidhuber [9]. They proposed a
new recurrent network architecture, together with a gradient-
based learning algorithm, called Long Short-Term Memory
networks (LSTM). These networks can be categorized as a
sub-group of RNNs. The network architecture LSTM cells is
depicted in Fig. 3.

C. CNN and RNN Implementations
There have been several approaches to accelerate the train-

ing and the feed-forward path of CNNs and RNNs. Within the
scope of this paper, we focus on the forward-path implemen-
tation on different platforms: Aplication Specific Integrated
(ASIC),Fiel Programmable Gate Array (FPGA) and Graphic
Processing Unit (GPU). These platforms distinguish in terms
of performance, flexibility and energy consumption.

The use of CNNs and GPUs as accelerators has turn
common, achieving significant speedups and better scalability
in comparison with a general-purpose processor [10]. The
possibility to train DNNs with the help of GPUs is one of
the main reasons of their recent success, due to the high-
performance speedup caused by the utilization of massive
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Figure 1. Common processing flow of a convolutional neural network [1].

Figure 2. Principle of RNNs, layers are connected to their predecessors via
feedback connections.

Figure 3. LSTM architecture with four gated units. The S denotes the
Sigmoid function [7].

parallelism and batch processing. However, also ASIC and
FPGA implementations can be beneficial. The acceleration of
the feed-forward or inference path of DNNs on FPGAs offers
benefits like a better utilization of fine-grained or heterogenous
parallelism, as well as a higher energy-efficiency and flexibil-
ity. These advantages are especially interesting with respect
to the application of DNNs on embedded devices. In this
paper, we focus on analyzing different hardware architectures,

mainly FPGA implementations, for accelerating CNNs and
RNNs. The structure of our paper is as follows: Section I
briefly introduces our paper with a description of CNNs,
RNNs and their implementation platforms. Section II presents
an overview of the recent implementations of CNNs. Next,
Section III describes an analysis on the implementation of
CNNs on FPGAs boards. Similarly, Section IV presents an
analysis of recent implementations of RNNs on FPGA boards.
Finally, Section V presents the concluding remarks of our
work.

II. OVERVIEW OF CONVOLUTIONAL NEURAL NETWORKS
IMPLEMENTATIONS

Within this section, we give an overview about multiple
CNN implementations. The following Section III discusses
FPGA implementations in more detail.

A. ASIC-based Implementations
ASIC-based approaches offer great performance and low

power capabilities; however, they lack flexibility and have
a larger design flow process. The approaches based on this
platform are highly customized for an application. Under this
category, Chen et al. [11] introduced Eyeriss, accelerator for
deep CNNs that aims for energy efficiency. The accelerator
consists of a Static Random-Access Memory (SRAM) buffer
that stores input image data, filter weights and partial sums
to allow fast reuse of loaded data. This data is streamed
to a spatial array of 14x12 Processing Engines (PE), which
compute inner products between the image and filter weights.
Each PE consists of a pipeline of three stages that computes the
inner product of the input image and filter weights of a single
row of the filter. The PE also contains local scratch pads that
allow temporal reuse of the input image and filter weights to
save energy. There is also another scratch pad in charge of
storing partial sums generated for different images, channels
or filters, also with the aim of reusing data and saving energy.
To optimize data movement, the authors also propose a set
of input Network on Chips (NoC), for filter, image and partial
sum values, where a single buffer read is used by multiple PEs.
This approach was implemented in a 65nm CMOS, achieving
a frame rate 44.8fps and a core frequency of 250MHz.

Korekado et al. [12] propose an analog-digital hybrid
architecture for CNNs for image recognition applications,
focusing on high performance at low power consumption. The
architecture consists of a pulse-width modulation circuit to
compute the most common operations of a CNN and a digital
memory to store intermediate results, making use of a time-
sharing technique to execute the operations required by all
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the connections of the network with the restricted number
of processing circuits available in the chip. This architecture
was implemented in a 0.35µm CMOS. The paper reports an
execution time of 5ms for a network with 81 neurons and 1620
synapses, an operation performance of 2 Giga Operations Per
Second (GOPS) and a power consumption of 20mW for the
Pules Width Modulation (PWM) neuron circuits and 190mW
for the digital circuit block.

Andri et al. [13] present Y odann, an ASIC architecture for
ultra-low power binary-weight CNN acceleration. In this work,
a binary-weight CNN is chosen for implementation because
limiting a CNN’s weights to only two values (+1/-1) avoids
the need of expensive operations such as multiplications,
which can be replaced by simpler complement operations and
multiplexers, thus reducing weight storage requirements. This
also has the advantage of reducing I/O operations. Moreover,
this approach implements also a latch-based standard cell
memory (SCM) architecture with clock-gating, which provide
better voltage scalability and energy efficiency than SRAMs,
at the cost of a higher area consumption. The architecture
was implemented using UMC 65nm standard cells using a
voltage range of 0.6V − 1.2V . The article reports a maximum
frequency of 480MHz at 1.2V and 27.5MHz at 0.6V and
an area of 1.3 Million Gate Equivalent (MGE).

B. GPU-based Implementations
Recently, GPUs have been used as an implementation

platform for highly parallelizable algorithms. While they offer
more flexibility than the ASICs, they are more limited than the
FPGAs in terms of customization capabilities. Ciresan et al.
[14] presents a parameterizable GPU implementation for CNN
variants. This implementation enables the user to configure
several structural CNN parameters such as: input image size,
number of hidden layers, number of maps per layer, kernel
sizes, skipping factors and connection tables. Regarding the
architecture, this implementation consists of three main CUDA
kernels: Forward Propagation (FP), Backward Propagation
(BP) and Adjusting Weights (AW). In the FP and BP kernels,
each map of a CNN that has to be computed is assigned a
different thread block to allow parallelization. The AW kernel
is implemented as a 1D grid, with one block located between
each connection between two maps, where each block is a
2D grid, with a corresponding thread for every kernel weight.
This approach was evaluated with a set of benchmarks for
different applications in the domain of object recognition: digit
recognition (MNIST), 3D object recognition (NORB [15]) and
natural images (CIFAR10 [16]). The authors report a speedup
of 10 to 60 in comparison with a compiler optimized CPU.
Moreover, this approach has been used to implement deep
neural networks for traffic sign classification, which achieved
a better-than-human recognition rate [17] and for automatic
segmentation of neuronal structures from stacks of Electron
Microscopy (EM) images [18]. Furthermore, in order to ease
the implementation of deep learning approaches on GPUs,
some frameworks and libraries have been proposed as well.

C. FPGA-based Implementations
FPGA-based approaches take advantage of the flexibility

and rapid-prototyping capabilities that this platform offers.
However, FPGAs are still more power hungry than ASICs. A
highly cited deep learning approach implemented on an FPGA

is the one of Farabet et al. [19], a hardware architecture to
accelerate CNNs for synthetic vision systems. The architecture
consists of a control unit, several parallel ALUs/Streaming
operators and a memory interface streaming engine. The ALUs
implement operators required by bio-inspired CNNs, such as
2D convolver, dot products between a vector and multiple 2D
planes, spatial pooling, arbitrary non-linear mappings, element-
wise multiplication of a vector by another one. This approach
was implemented in a CPU, an FPGA (a Xilinx Virtex-4 SX35)
and was also simulated for an ASIC.

Chakradhar et al. [20] propose a co-processor configurable
architecture to accelerate CNNs. The authors show evidence
of how different workloads and different number of inputs and
outputs need different network architectures to yield optimal
performance. Thus, they propose an architecture that analyses
workloads, can configure the number of convolvers in a
computational element and also, the number of computational
elements in the whole network to match the types of paral-
lelism of every workload. The architecture was implemented
on a Virtex 5 SX240T FPGA and was compared against the
best fixed architecture for a set of benchmark applications.

Farabet et al. [21] introduce NeuF low, which is a re-
configurable dataflow processor for vision algorithms. The
architecture of this processor consists of a 2D grid of
ProcessingT iles (PT). Each PT can be configured to carry
out operations on a stream of data, from unary operations
to complex nested operations. The grid is connected to a
SmartDMA, which is connected to an Off-chip memory.
The SmartDMA allows the control unit to configure the
grid and the DMA ports for each operation and to carry the
data from the grid to the off-chip memory in parallel. To
configure the processor for a particular algorithm, a compiler
called LuaF low was developed. This compiler takes a tree or
a graph structure that represents the algorithm and parses it to
determine the parallelism of the algorithm that the processor
can take advantage of. This approach was implemented on
a Xilinx Virtex 6 ML605 FPGA board at 200MHz using
10x10 grids. At its peak performance, the design achieved 80
billion connections per second. Furthermore, a CNN for street
scene parsing was implemented on this platform, achieving a
performance of 12fps.

It is hard, if not impossible, to generate a fair comparison
among all the described approaches, because they were either
designed for different applications with different constraints
and objectives or they were implemented using different de-
vices with different configurations. Table I shows a summary
of these values, categorized by the three main implementation
platforms. Furthermore, the following section will stablish a
comparison between approaches from the year 2016 against
that of 2011.

III. ANALYSIS OF CNN IMPLEMENTATION FPGAS

The selected baseline FPGU implementation of Farabet et
al. is presented in [21] and [24]. The modules are implemented
on the processing tiles according to the operators contained in
each of them, for instance, those with multiply-accumulate op-
erators can be used to execute a 2D convolution (Convolutional
module) while those with the tanh operator are dedicated to
the non-linear module.

For the pooling layer, it is possible to use the same
processing tiles mentioned before for the convolution module.
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TABLE I. COMPARISON OF CNN IMPLEMENTATION APPROACHES

Platform Approach Device Core Power FPS Performance Area
Frequency

ASIC Eyeriss [11] 65nm CMOS 100 - 250MHz 278 mW at 1V 44.8 16.8 - 42 GOPS 1852 kGates
[12] 0.36µm CMOS 20mW PWM circuit 2 GOPS

+ 190 mW digital core
Yodann [13] 65nm UMC 27.5MHz-480MHz 895µW 11 - 16.8 1.5 TOPS 1.3 MGE
[19] ASIC Simulation 400MHz 1W >30

FPGA [19] Xilinx Virtex-4 SX35 200MHz 15W > 30
[20] Virtex 5 SX240T 120MHz <14W 25 - 30
NeuFlow[21] Virtex 6 ML605 200MHz 10W 12 160 GOPS
[22] Altera Stratix 130MHz 1600 409.622 GOPS
[23] Xilinx Kintex-7 <4W 247 GOPS

GPU [14] 1 CPU: Core i7-920, 2.66 GHz (CPU) 10-60 speedup
4 GPU: 2 x GTX 480, vs CPU
2 x GTX 580

Here is also stated that it is advantageous to use a 16Bit format
instead of a 32, then, even though a loss of precision is caused,
this is not a relevant loss. The results on each of the processing
tiles is also pipelined to obtain a result for each clock cycle.

This approach was tested on the datasets NORB[?],
MNISt[25] and UMASS[26] obtaining correct classification
between 85% and 98% depending on the dataset.

The next step is to present 2 papers published 5 years later,
in 2016, claiming to have encountered a novel and performant
implementation.

On the one hand, Li et al. [22] focus on High-speed image
classification, mentioning that the implementation presented
can be useful if implemented in a rear-end collision avoidance
system. On the other hand, Dundar et al. [23] warrant that
the approach supports different configurations of deep CNNs,
disregarding layers depth, filter quantity or others, and it is
stated that the a perfect scenario for its application is the
generic image processing. The former utilizes an Altera Stratix
V 5SGSMD5K2F40C2 FPGA while the latter a Xilinx Kintex-
7 XC7K325T.

On the filter layer, [22] utilizes 3D convolvers for each
filter. These are composed of multiple 2D convolvers that
calculate one channel of the filter. The 2D convolvers contain
the so called Processing Elements (PE) connected under a
First-In First-Out (FIFO) queue. The PE are, at their time,
composed f multipliers and adders, like the processing tiles
presented before, plus a register of one word length.

For [23] the convolution on this layer is done with trained
filters to obtain remarking features from the images. The
weights are represented as 4D filters.

For the non-linear module, both researches employ
Rectified-Linear Units (ReLU) since it is said to be more
suitable to implement in Hardware.

There are, again, some differences in the pooling layer,
where [22] considers an approach closer to the one presented
in [24] where the pooling and filter bank layer are executed
in a similar fashion, even if with some minor modifications.
These differences are, for example, that the PEs compare two
different values and return only the higher value, reducing the
output and energy consumption, this is not present in [19].
For [23] however, the approach is similar. The input images
of the layer are divided in smaller squares, windows, and in
a comparable manner to the previously explained, only the
maximum value of the resulting set is to be outputted, this is

a mode of non-linear down-sampling, and the factor of down-
sampling is equal to the size of the windows.

As a novel idea for improving the performance of the
system, [22] presents the Global Summation, designed to
minimize resource consumption on the latest layers in favor
of the overall performance. In contrast, [23] presents several
techniques to improve the control method of the process,
among several improvements. For instance, it is important
to mention the input reuse and the concatenation of data.
The Input reuse, consists of extending the information to
convolution modules even though if the amount of available
ports is smaller than that of free convolution modules. Those
convolution modules that have access to the port can share the
information to those who are idle. The concatenation of data
profits of the Q8.8 format. The Q8.8 format uses 16 bits in a
32 stream, so that 2 different data words can be transmitted in
a unique stream

Finally, these implementations were tested on datasets, in
the case of [22], this was done over two different datasets, the
first consisting of several images from the datasets CIFAR[16],
CBCL[27] and Caltech Cars [28]. The second one consisted of
edited images from Caltech Cars and CBCL car dataset. They
achieved 94.5% in the first case and 98.4% in the second. The
system is said to be performant at 1,600 frames per second
and according to estimations of the authors, they obtain 409,62
GOPS.

[23] on the contrary, was tested on an own dataset utilizing
videos and sets of images from these videos. Their work was
compared to a GPU NVIDIA K40, a Zynq ARM Cortex A9 at
667MHz, an Intel Core i7 at 2.5GHz and a naı̈ve implemen-
tation of a hardware accelerator. Regarding performance per
second, the GPU turned to be victorious with a huge advantage
over the others, however, when calculating the performance
per Watt, the implementation presented was more performant
than the others. The authors mentioned to have a peak in the
performance at 247 GOPS.

Both approaches present FPGAs as a tool for accelerating
deep CNNs and both belong to the newest researches on this
field. The improvement on the performance of each implemen-
tation is notable when compared to an implementation 5 years
older. However, the core idea of the accelerator presented in
2011 is still present in these two newer papers.

When comparing the three CNN modules, the approaches
shared similarities, as for example, the use of ReLU for the
activation layer, instead a sigmoid function or a tanh operation.
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Another important similarity is to be found in the pooling
layer, where only the higher value of the resulting set is to
be outputted.

The difference between these approaches lies in the imple-
mentation of the convolutional layer, where the representation
of the filters is very different for each of them.

Another small but very important similarity is the usage of
the number format Q8.8, of 16 bits. [23] goes further and takes
advantage of this by sending two different words in a single
bitstream. Important is also to notice that [22] used well known
datasets, CIFAR, Caltech cars, to test this approach, while [23]
used their own dataset. When comparing the value of GOPS,
[22] has a value that almost doubles the highest peak of [23].
However this value is obtained from a simulation of the model
while the value on [23] is an output design.

IV. ANALYSIS OF RNN IMPLEMENTATIONS ON FPGAS

In general, two possibilities exist to increase the overall
performance of RNNs regarding the inference phase on FP-
GAs. On one hand the computations which must be done
while passing the input through the network can be opti-
mized. This includes adjusting the level of parallelism due to
the hardware constraints, the choice of hardware accelerator
module and approximations of computation, in case of an
acceptable minimal loss of precision. On the other hand,
the data communication, which includes weight parameters
and inputs, between the FPGA and an external memory, like
Dynamic Random Access Memory (DRAM), can be optimized
to improve the throughput. This is necessary because typically
the FPGA on-chip-memory, like Block RAM (BRAM) or
distributed memory, is too small to store all parameters of
real-life RNNs. Thus, the developer of FPGA accelerators for
RNNs have to consider both optimization paths. Moreover, to
increase the overall performance both optimizations paths must
collaborate to avoid bottlenecks.

Guan et al. [7] faced both optimization paths. After profil-
ing a typical RNN inference structure they found out that the
main bottleneck is caused by the computations, which mainly
include floating point multiplication and addition, inside each
LSTM gate. Therefore, they separate the computation scheme
(Fig.3) into four LSTM gate modules, which output the input,
forget, cell and output gate vector executed in parallel, and
a LSTM Functional Logic, which includes the following
computations. Inside each gate the multiplications of input and
parameter vector are also done in parallel and summed up
through an addition tree. The activation function at the end of
each gate module and the LSTM functional logic are replaced
with a piecewise linear approximation of sigmoid and tanh,
which was originally introduced by Amin et al. [29]. As a
result, resource and performance inefficient computations are
substituted with simpler and more hardware efficient addition
and shifting operations with a minimal loss of accuracy.
Furthermore, two input and output ping-pong buffer groups are
improving the communication performance. The parameters
are stored in an external DRAM and reshaped offline so that
the data access can be done in a sequential manner. Moreover,
a data dispatcher is used to interface the DRAM with full burst
size of the AXI4 bus. The Accelerator is designed with a High-
Level Synthesis tool (HLS), Vivado HLS from Xilinx [30] and
the system is implemented on a XILINX VC707 device with

a Virtex7 FPGA chip. The evaluation shows that the system
achieves a maximum performance of 7.26 GFLOP/S.

A different architecture is proposed by Chang et al. [31].
Like in the previous architecture, they use two different
hardware accelerator modules, to separate gating and LSTM-
logic computations. Another similarity is the simplification
of the nonlinear activation function through piecewise linear
approximation. In contrast to the previous design Chang et
al. [31] use fixed point 16-bit operations for MAC (Multiply
Accumulate) operations resulting in 32 bit values for further
operations. While fixed-point computations are far more ef-
ficient for hardware implementations, a loss of accuracy has
to be considered what was denoted as a maximum of 7.1.
Furthermore, the gating computations are separated into two
sequential steps. The input and cell gate computations are done
in parallel as well as the output and forget gate computations.
As a result, the output of the LSTM module is provided after
3 sequential steps. Thus, the course grained parallelism is not
fully exploded. For communication optimization, the authors
of [31] use a combination of memory mapping and streaming
interface. Therefore, four Direct Memory Access (DMA) are
used to access the external DRAM and reshape the data to be
forwarded through 8 AXI4-Stream, which activity depends on
the current routing, and buffered with FIFOs. In comparison
to the communication architecture presented by Guan et al. [7]
the methodology is equal but the differences in implementation
details mainly arise because of the different course grained
parallelism of the LSTM accelerator. The design is imple-
mented on a Zedboard with Zynq 7020 FPGA from Xilinx.
The hardware was tested with a two-layer LSTM including
128 hidden units running with a frequency of 142MHz. The
performance was outlined to 264.4 million operations per
second.

In contrast to [31] and [7] the authors of [32] use a
retrained based method to reduce the word-length of the
weights. As a result, they achieve a quantification to 6 bits
per weight. Due to this fact, for the desired speech recognition
application all weight parameters can be stored on the on-chip-
memory (BRAM) on the XC7Z045 FGPA device from Xilinx
without loss of precision differences of retraining and hardware
implemented inference computation. Without the requirement
to optimize the communication from an external DRAM the
focus of this work is the accelerator module optimization.
Although the proposed LSTM accelerator module is separated
into two different modules the parallelism and task granularity
differ from those proposed in [7] and [31]. All matrix-vector
multiplications are computed inside one Processing Element
(PE) array, which consist of 512 PEs. The remaining com-
putations including evaluating activation functions are done
using an additional block called Extra Processing Unit (EPU).
The outputs of the PE array are buffered and forwarded to the
LSTM EPU. As mentioned above, the design benefits from a
high level of fine-grained parallelism. However, the architec-
ture is not comparable to the other design as no communication
bottleneck has to be handled and the authors focus on the
optimization of the whole speech recognition algorithm while
considering real-time constraints for the desired application.

Besides, Ferreira et al. [33] follow a modular extensible
architecture. They assume a similar reduction of communi-
cation complexity as assumed in [32]. In contrast to [32]
the word-length of the weights are 18 bits, which leads
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to a high utilization of the Digital Signal Processor (DSP)
DSP48E1 slices of the FPGA, and they are stored in a Look-up
RAM (LUTRAM). On the one hand, this distributed memory
represents the fastest way of accessing the weights due to the
closeness to the accelerator and the unlimited simultaneous
port access to each LUTRAM array. In contrast, BRAM
supports a maximum of two port access. On the other hand, this
method consumes a high amount of resources especially when
the implemented network has many layers and LSTM-tiles.
The architecture does not explore full parallelism in a coarse-
grained manner. The matrix-vector multiplications are done in
parallel for all four gates. Due to the negligible amount of
additional clock cycles needed for elementwise multiplication
and activation function evaluation of tanh() and sigmoid(),
which are approximated with ridge (polynomial) regression.
Each of these computations own one hardware module. The
gate outputs are forwarded to a multiplexer and further routed
to the desired hardware module. The design was implemented
on a Xilinx XC 7Z020SoC device with different amounts of
neurons per layer. The network size is not allowed to extend
31 neurons per layer due to the limited number of DSP-slices
on the device. The frequency of the hardware accelerator was
adjusted to maximum with respect to the layer size. Thus, the
design is capable of achieving 4534.8 million operation per
second, which is 17 times more than the performance reached
in [31].

V. CONCLUSION

As outlined in the previous sections, there are many pos-
sibilities to accelerate CNNs or RNNs with the help of hard-
ware modules. Each of these hardware implementations has a
significant speedup in comparison to a CPU implementation.
From our perspective, there are several reasons making a fair
comparison of all hardware architectures not possible. One of
that reasons is that the size of the networks mostly depends
on the application as well as the real-time constraints. Thus,
a good hardware implementation reduces energy and resource
consumption without validating real-time constraints.

Regarding the evolution of the implementation of CNNs
on a FPGA over five years, it is remarkable that the core
framework has not changed abruptly in this time lapse, where
the researches utilizes different FPGUs platforms. Neverthe-
less, the most important object of study are the modules.
These different approaches apply different metrics to stablish
the performance success, i.e. some use GOPS, FLOPS or
Fps, while other focus on the energy consumed, making a
direct comparison among them a very hard task. It would
be ideal if a baseline reference statistics could be defined,
so that future works compare themselves to this baseline. As
Table I shows, even though the performance between FPGA
and ASIC approaches are comparable, the reported power
consumption values of the latter are lower. This is usually
the tradeoff between FPGA and ASIC implementations, i.e.
higher flexibility but higher power consumption. However, this
can be improved by simplifying the DNN architecture with
little loss of accuracy. One nice example of this are BNNs
[13], which achieve a competitive accuracy and greatly decease
power consumption. This simplification could be also coupled
with the reconfiguration capabilities of FPGAs, such that this
tradeoff of accuracy and power consumption can be adapted
to the requirements of the application [20].
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