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Abstract—Designing artificial neural networks is a challenging
task due to the vast design space. In this paper, we present
our exploration on different types of deep neural networks and
different shapes for a regression analysis task. The network
types range from simple multi-layer perceptron networks to more
complex convolutional and residual neural networks. Within the
exploration, we analyzed the behavior of the different network
shapes, when processing measurement data characteristic for
mass spectrometers. Mass spectrometers are used to determine
single substances within gaseous mixtures. By applying deep
neural networks for the measurement data processing, the behav-
ior of the measurement system can be approximated indirectly
through the learning process. In addition, we evaluate the
usage of reinforcement learning to design the neural network’s
architecture.
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I. INTRODUCTION

In traditional machine learning approaches, manually de-
signed features have to be provided for the input data. Ex-
tracting reasonable features is crucial for a successful usage of
those algorithms. Moreover, the process of feature extraction is
time consuming and requires expert knowledge regarding the
specific applications. In contrast, Artificial Neural Networks
(ANNs) are capable of automatically extracting features from
given input data, superseding manually designed features.
Furthermore, the increasing depth of Deep Neural Networks
(DNNs) allows extracting very complex and abstract features
out of several different representations with respect to prior
levels. All these features are then used to form a proper output.

However, the design of ANNs is a challenging task due
to the degrees of freedom for their architecture, such as depth
of the ANN, width and type of the layers, as well as data
flow paths. In addition, the training method has an impact on
the ANN’s performance, and has several degrees of freedom
itself, for instance the initial parameter values, the batch size,
the learning rate, and optimization algorithm.

In this paper, we present our results of the exploration of
end-to-end trained ANNs for the processing of mass spectra
measured with a miniaturized mass spectrometer [1]. Mass
spectra allow the analysis of gaseous mixtures to determine
their constituents. Within the exploration, we used a gaseous
mixture with the constituents listed in Table I. In order to
exclude any unknown effects of real measurement systems,
we created a Python module to generate noisy mass spectra
of the given mixture, based on the constituents’ characteristic
mass-to-charge ratio peaks. The noise is evenly distributed,
and explained in Figure 1 a), Figure 1 b) shows the resulting
spectra. The generated mass spectra are normalized so that the
sum of the constituents adds up to one. The noise within the
generated mass spectra and the mass spectra’s minimal and
maximal, as well as mean values are depicted in Figure 1. In

summary, our goal is to extract the constituents’ concentration
of the generated noisy mass spectra, without assuming any
pre-conditional knowledge. This type of problem definition for
machine learning is called multi-output-regression.

TABLE I. DATA SET CONCENTRATION RANGE OF CONSTITUENTS

Constituent Concentration range
H2O 0.0 % - 3.0 %
CO2 0.2 % - 5.6 %
N2 65.0 % - 80.0 %
O2 15.0 % - 21.0 %

Within the scope of the exploration, we analyzed the
structure and hyper parameters of different kinds of ANNs
suitable for this purpose, implemented with TensorFlow [2]
without manually extracting features. Due to the time-invariant
application we focus on feedforward-ANNs starting with the
traditional Multi-Layer Perceptrons (MLPs). MLPs consist of
at least three fully-connected layer, in which every neuron is
connected to every neuron in the previous layer. In order to
use spatial information in the signal and lower the number
of parameters, we included Convolutional Neural Networks
(CNNs). CNNs apply filter kernels on the input data that com-
pute the dot product, and thus combine spatial information [3].
In addition, CNNs apply pooling layers that reduce the data
dimension by down-sampling.

For every layer we apply the Rectifier Linear Unit ReLU-
activation function, due to its properties of smoothing the issue
of vanishing or exploding gradients as shown by Glorot et
al. [4]. Another important property of this activation function
applied to ANNs is the sparse activation, meaning that a
certain number of neurons within a network will never fire.
Although, this feature is desirable when designing ANNs, our
exploration results of the network size could be influenced,
due to the varying number of dead neurons. However, in order
to not further increase the exploration complexity, we assume
that this property does not influence the exploration, if the
weight initialization is uniformly distributed.

To speed-up training, smooth the issue of exploding gradi-
ents, and to avoid over-fitting we use batch normalization with
trainable scale and shift parameters. Within the scope of this
work, we relinquish further methods avoiding over-fitting like
dropout.

Although, applying batch normalization and ReLU-
activation function relieves the issue of vanishing or exploding
gradients, the problem still exists and becomes more crucial
when the network is deeper. Therefore, we extend our explo-
ration with Residual neural Networks (ResNets), and highway
networks. The distinctive property of ResNets are shortcuts.
Shortcuts implement the possibility to route the data flow
around layers, and afterwards recombine the processed and
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Figure 1. Mass spectra: area of each constituent peak varies by ≤1 %, position by ±0.5m
z

, variance by ≤5 %, and each measurement value by ≤10 %.

bypassed data [5]. In particular, the bypassing is done by an
identity shortcut connection. Thus, the original residual block
simply adds the outcome of the convolution layers with the
original input. If the dimensions do not match after applying
convolution due to stride, padding and amount of feature map
parametrization, the input can be compressed, preferably with
not trainable methods, or extended through padding. Shortcut
methodologies are subject to current research. Due to the
shortcut connections, the influence of vanishing gradients is
far lower than with traditional ANNs. Moreover, the back-
propagation can be applied much more efficient and simpler.
Highway networks follow a similar approach, however, they
employ a gating function optimized within the training phase
to filter the data through the shortcut [6].

The related work within this field of research is presented
in Section II. The method of our exploration is twofold. We
further used Reinforcement Learning (RL) to automate the
exploration for the MLP networks. The results of the RL
based exploration can be found in Section IV. A discussion
and summary of the current results, as well as an outlook to
future work can be found in Section V.

II. RELATED WORK

An early work within the direction of our approach was
published by Massicotte et al. [7], who investigated into the
calibration of high-pressure measurement systems with MLP
networks. The authors compared an ANN-based method to a
spline-based method, and state that the ANN-based method
achieves better results with lower quality reference data, and
thus, enables a reduction of the time necessary for calibration
data acquisition. Moreover, the spline-based method requires
the parallel measurement of the temperature to consider tem-
perature effects, which is not the case for the Ann-based
method.

Several different classification methods for analyzing mass
spectra data were analyzed by the authors of [8]. Those classi-
fication methods include linear discriminant analysis, quadratic
and discriminant analysis, k-nearest neighbor classifier, classi-
fication trees, Support Vector Machines (SVMs), and random
forest. Wu et al. found that Random Forrest outperforms the

other classification methods in overall misclassification as well
as in stable assessment of classification errors.

The authors of [9] used an unsupervised method for extract-
ing features from mass spectra data followed by classification
realized with SVMs. Their methodology results in greater 95 %
correctly classified samples.

The work described in [10] uses a RL method (Q-learning)
based algorithm capable of generating high performance stan-
dard CNN. Created CNNs are outperforming existent networks
with similar layer types and are competitive with state of the
art networks making use of more complex layer types.

Referring to the screening methodology in the medical and
genetic fields, the authors of [11] developed an approach which
randomly generates a high number of networks with different
parameter initialization and architectures. Configurations that
show good results are used for further training. Regarding
the steady growth of computational power Pinto et al. [11]
claim that this approach can speed up development success
and understanding of biological vision.

With the use of Cartesian Genetic Programming (CGP),
Suganuma et al. [12] automatically construct a CNN for an
image classification task with CIFAR-10 data set. Within the
process the CNN structure is represented by CGP encoding
method and is further optimized to reach best possible results.
With this approach the authors claim to automatically find
network architectures which are comparable with common
state of the art CNNs.

III. EMPIRICAL EXPLORATION

Within this Section we demonstrate our approach to explore
the shape of four different types of ANNs. The goal is to
investigate, which structure suits best for the given qualitative
analysis. This task represents a complex empirical optimization
due to the high amount of adjustable hyperparameters, in-
cluding among others batch-size, optimizer, and learning rate.
Thus, the empirical approach can be seen as a starting point
for further explorations preferably using optimization method
such as RL described in Section IV.

The input vector consists of 990 floating point values
representing the mass spectra from 0 to 100m

z . The last layer of
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every ANN within this work is built as a fully-connected layer
with four neurons representing the constituents concentrations,
where no activation function is applied. Due to the regression
task we define the cost function as the Mean Squared Error
(MSE) between the labeled constituents concentrations and the
outcome of the last layer. The corresponding loss function is
defined in Equation 1, with the true value y and the prediction
ŷ for each of the four constituent.

MSE =
1

4

4∑
i=0

(yi − ŷi)
2 (1)

We apply batch normalization with trainable scale and shift
parameters for all networks at certain points in hierarchical
structure. For training we use a fixed batch size consisting of
25 randomly picked samples and Adaptive Moment Estimation
(Adam) as the optimization method. The Adam optimizer was
chosen due to the adaptive learning rate for every parameter
and its good results dealing with sparse gradients. For further
information, we refer to [13]. Those sparse gradients can result
from the properties of ReLU activation function. As a weight
initialization we choose the Xavier method [14]. To avoid
overfitting, we apply early stopping. The break condition is
an increasing deviation of the prediction from the label of the
last three to the previous three predictions of the verification
dataset, after the network has been trained with all samples
in the dataset consisting of 100000 mass spectra. After the
training, we verify the accuracy of the networks based on the
deviation of the output of the last layer and the corresponding
labels using a new dataset of 10000 mass spectra.

A. Multi-Layer Perceptron Network
For the exploration of MLP networks, we created networks

with different depths, starting from three up to 13 layers. The
choice of the layer sizes is based on NumPy’s logspace()
function with base 10.0, generating a list of layers defined
by the input layer size and the output layer size. The input
layer size has been set within the range of 1.1× to 0.05× of
the length of the input vector. We assume that the resulting
funnel-shape of the networks is a suitable approximation to
follow the feature extracting policy in order to raise the depth
of the network with a sufficient number of neurons within the
layers. This implies that we assume the data to be compressed
and the function of the network is more dependable on the
depth than on the width of the layers. We further save a
significant number of parameters when downsizing the width
of the fully-connected layers. The observed deviation on the
test dataset is depicted in Figure 2. With an increasing depth of
the network, the deviation tends to be larger. The best overall
result for this exploration is achieved with a depth of four
fully-connected layers with a mean of 1.5 %. The result of the
exploration matches our expectations. The vanishing gradient
problem prevent the network to perform better with increasing
network depth. This represents a well-known problem in the
deep learning domain. In Section III-C, we tackle this problem
with the introduction of residual blocks allowing us to build
deeper networks.

B. Convolutional Neural Network
CNNs are a famous type of ANNs in the computer vi-

sion domain, especially in object detection, segmentation and
tracking applications [15]. They are mainly responsible for

Figure 2. Deviations for different MLP configurations.

the today’s popularity of ANNs due to their success in this
field starting with ImageNet in 2011. One reason for their
success is the property of the corresponding convolutional
layer to combine spatial information applying 2-dimensional
filter kernels to the input followed by pooling to reduce
dimensions along the depth of the network. We also want
to take advantage of these feature assuming the existence of
spatial relationships.

Instead of reshaping the input and perform a 2-dimensional
convolution we apply a 1-dimensional convolution with dif-
ferent kernel-sizes and filter-depths. The output of this con-
volution is a 2-dimensional feature map, which consist of
corresponding height and depth. We further could apply a 2-
dimensional convolution. However, we still assume that the
spatial relationships only exist among the first dimension.
Therefore, we decide to use 2-dimensional 1x1 convolution
to reduce the shape back to a 1-dimensional outcome. To also
reduce the shape among the first dimension we can apply the
1-dimensional convolution with a specific stride. The feature
map shape of the 1 dimension is then given by the quotient of
the 1 dimension of the input shape and the stride. These two
convolutions represent the basic block of our CNN. The basic
principle is visualized in Figure 3.

Figure 3. Visualization of the basic CNN principle.

We design the CNN by simply stacking those basic blocks
and adjusting the hyperparameters, which are the stride, the
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number of feature maps, and the kernel size. The output of
the last basic block is fed to a fully-connected layer with a
fixed number of neurons of 99 followed by the output layer.
The exploration is done with five CNNs ranging from two
to six stacked basic blocks. We reduce the shape of the first
dimension by using a stride of five in the first basic block.
We further use a stride of two in the last basic block except
for the first CNN, where just two basic blocks are involved.
The stride parameter for all other basic blocks is set to one.
The kernel size and number of kernels within a layer varies,
starting with a wide kernel and a low number of kernels.
Table II lists the chosen CNN configurations. While going
deeper, we downscale the kernel size and increase the kernel
depth. The result of this evaluation can be seen in Figure 4.
Contrary to the MLP exploration, the accuracy does not drop
rapidly as the network depth’s increases, instead the deviation
on the test dataset is approximately the same. Therefore, we
follow that the influence of vanishing gradient is intensified
in MLP networks. CNNs can be deeper, as the convolution
requires less parameters, and owns an aggravated forward- and
backpropagation path, due to the spatial connections, compared
with the MLP network. The overall accuracy is slightly lower
compared to those of the MLP exploration. To design deeper
networks, we add block-wise shortcuts to the MLP and CNN
as introduced in the next Section.

TABLE II. CNN CONFIGURATIONS EXPLORED

number of stacked List of layer configurations
basic blocks with [(kernelsize,number of kernels)] in hierarchical order
2 [(15,30),(10,60)]
3 [(15,20),(10,30),(5,60)]
4 [(15,20),(10,30),(10,60),(5,300)]
5 [(30,20),(20,30),(20,80),(10,200),(5,400)]
6 [(30,20),(20,30),(10,60),(5,180),(1,300),(3,500)]

Figure 4. Deviations for different CNN configurations.

C. Residual and Highway Network
Residual Networks or ResNets are the state-of-the-art net-

works for various applications and especially famous in image
recognition tasks. He et al. [16] reformulated the layers to
learn residual functions with respect to the input of the layer.
This basic principle eases the learning due to the stepwise

Figure 5. Deviations for different ResNet and Highway configurations.

replacement of the product with the sum of the output of the
layers in the backward path, and thereby reduces the problem
of vanishing gradients rapidly. Thus, He et al. were able to
design a ResNet with 152 stacked layers which outperformed
all previous plain networks. We adopt this principle to our
needs extending our basic convolution pair described in Sec-
tion III-B with an identity mapping. The resulting principle
residual block is shown in Figure 6. For simplicity reasons,
we forego to reduce the shape of the first dimension. Thus,
the dimensions of the input and the output of the block are
the same. If this would be not the case the input has to be
downscaled or upscaled, preferable without or a low number of
trainable parameters. To downscale the first dimension among
the depth of the network at certain points, we apply the basic
convolution pair without shortcuts with a specific stride after
a significant number of residual blocks. This could also be
replaced with a pooling layer in the future.

A similar principle is used with Highway Networks. The
main difference is the use of a gating function for identity
mapping. However, this difference is only valid considering
the original ResNet and the original Highway Network. Recent
developments regarding different types of ResNet blurred these
difference [17]. In the original highway network, developed by
Srivastava et al. [18], the output y of a basic highway block
is defined as follows:

y = F (x,WFWFWF ) · T (x,WTWTWT ) + x · (1− T (x,WTWTWT )) (2)

Where x represents the input of the layer and F represents
the nonlinear activation function with the weight parameters
WFWFWF . T is defined as the transform gate, while the term 1− T
is depicted as the carry gate. This gating units can be seen
as a learnable dataflow control unit through the network. We
use this principle to continue our exploration. Therefore, we
extend fully-connected layers with this gating unit. Similar to
the ResNet approach we keep the dimensions equal inside the
block units. We further apply fully-connected layers without
gating units after a significant amount of highway blocks in
order to reduce the shape of the first dimension.

Figure 5 shows the deviation result of 3 different configu-
rations based on our residual and highway basic blocks. The
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residual blocks consist of a 1-dimensional convolution with
kernel size 15, and 5 or 10 kernels, as well as a 2-dimensional
1×1 convolution. For the ResNet exploration we used 120, 80,
and 40 layers. For the exploration of the highway network, we
analyzed configurations with 24×500 and 24×20, 35×100 and
35×50, as well as 30×100 and 30×50 highway layers.

ResNet82 performs best on the given test dataset with an
mean deviation of 0.24 %. This network represents also the
deepest one in our exploration containing 120 layers. However,
the deviation difference to the other ResNet configurations
are negligible. For instance, ResNet85 consists of only 40
layers with mean deviation of 0.238 % on the test dataset.
The highway network HW87 is built with 48 highway blocks
and owns a very low overall accuracy. In comparison, HW88,
consisting 70 blocks, and HW89, consisting 60 blocks, perform
better on the test dataset. This corresponds to our expectations
as the results of the exploration of Srivastava et al. [18] also
show a similar tends, where the accuracy is not sufficient
for smaller highway Networks and increases with increasing
depth.

Figure 8 shows the validation error during training of the
best performing ANN of every type of ANN we explored over
500000 epochs. As can be seen, the ResNet82 converges very
fast and without high fluctuations till break conditions. The
MLP network with four layers is comparable to the other ANN
types. The CNN with 10 convolution pairs started to converge
faster but did not improve the prediction after 20000 epochs.
HW88 shows a very fluctuating convergence, especially at the
early training epochs. While parametrization of the gating units
starts to work properly, the deviation with the validation dataset
drops.

Figure 6. Visualization of the residual block principle.

IV. REINFORCEMENT LEARNING

As shown in Section III, the exploration of ANNs is a
very complex optimization problem. Therefore, we start to
explore the shape of ANNs with RL. The first results of this
heuristic exploration are described in this Section. In general,
a RL problem is based on the Markov decision process, in
which an agent is taking actions, measuring the reaction of the
environment, updating the policy and taking a new action based

Figure 7. Reward and Alpha of Reinforcement Learning approach

on the previous information. For further investigations we refer
to [19]. For our purpose, we use a Q-learning methodology,
which is a model-free, off-policy, temporal difference RL
method. We focused the RL-based exploration on the MLP
networks shape, in order to receive a MLP configuration with
a sufficient accuracy. More precisely, we train an agent to the
design an MLP network for our application. Thus, we first have
to define a discrete state-action space. Starting from one hidden
layer after the fixed size of the input layer, the agent can choose
at every step either to add 10 neurons to the current layer or
to extend the network with another hidden layer starting with
10 neurons reaching a new state. At each step the network is
trained with the same hyperparameters outlined in Section III.
The maximum width of every hidden layer consists of 400
neurons, while the maximum depth is set to 10 layers. If the
agent is reaching a depth of 10 layers, or a deviation on the
validation dataset below 0.1 %, the episode is stopped. The
reward is defined as the reciprocal deviation on the validation
dataset.

We choose an ε-greedy policy, where a random action
is chosen with the probability of α, otherwise the currently
optimal action is chosen, which owns the highest value in the
Q-Table. After every step, the Q-Table is updated with the
learning rate β, following the temporal difference mechanism.
α and β are decreasing over time in a logarithmic manner,
after each episode. We verify the functionality of this method
by using 1000 steps, including 70 episodes, to train the agent.
Figure 7 shows the progress of the obtained reward over time
as well as the logarithmic decrease of α. As can be seen, the
reward increases and reaches a maximum the last episodes,
which corresponds to a deviation of 0.22 % on the verification
dataset. However, most interesting is the evolution of the Q-
values. As we expected, for the first layers the agent is more
likely to add neurons to the current layer till a size of 100
neurons. However, the agent does not want to drop the width
of the sizes rapidly as we have expected. Instead the optimal
policy of the agent extends the network in a much smoother
way for the following layers. The best configuration on the
verification dataset is: 90, 100, 70, 100, 100, 100, 60, 20, 50.
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Figure 8. Validation error for best ANN of each class within training process.

V. CONCLUSION AND OUTLOOK

In this paper, we presented an empirical exploration of
different types of feedforward ANNs, namely MLP networks,
CNNs, ResNets, and highway networks. Our goal is to find a
suitable type and shape of ANNs to predict the concentration
of four mixture constituents. The results represent the starting
point for further explorations for this multi-target-regression
task. Therefore, we explored the shape of a traditional MLP
network first and investigated the effect of applying convo-
lution layers to extract spatial relationships on the generated
dataset. We further extend the exploration by increasing the
depth of both network types with the help of shortcuts, namely
residual blocks and highway blocks. The best result was
achieved with a ResNet configuration containing 120 layers,
which also represents the biggest network created in this
research. Due to the high complexity of the exploration task,
we simultaneously develop a Q-learning strategy to automat-
ically explore the shape of a MLP network in order to find
a configuration owning a sufficient accuracy. In future work,
we want to combine the results from both approaches. Thus,
the most promising approach is the automatic exploration with
RL using residual blocks. We also want to extend our approach
with recurrent units, to take aging effects of the mass spectra
into account.
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