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Abstract—In this paper, decision-making of repairable load-
sharing k-out-of-n is discussed. Decision variables are related to 
system degradation and restoration. By exploiting these decision 
variables combinations, the optimal design solution is selected 
by utilizing weighted principal component analysis based multi-
response optimization. The mathematical modeling of the 
decision-making process is based on the statistical flowgraph 
model. The statistical flowgraph model is used to describe 
degradation and restoration with the advantage of computation 
over the traditional Markovian model. Based on the statistical 
flowgraphs of different factorial decision variables 
combinations, the reliability-related measurements of load-
sharing system can be evaluated, which correspond to the 
responses in the multi-response optimization problem. 

Keywords- system reliability; modular design; multi-response 
optimization. 

I.  INTRODUCTION 
To improve system reliability, the well-known approaches 

are based on the determination of component reliabilities and 
their system configuration. That is, the system reliability can 
be improved by reducing the system complexity, using the 
highly reliable components and structural redundancy. 
Additionally, if the system is repairable, then a planned 
maintenance, repair schedule and repair policy can be used to 
increase the system availability.  

If the computation of system reliability is based on the 
critical assumption of independent failures among 
components, the system reliability is determined by applying 
an appropriate reliability for each component of the system 
and the rules of probability according to the system 
configuration. However, when component failures are 
dependent, more powerful methods, such as Markov analysis, 
may be needed [1]. 

Concentrating on a parallel configuration, which is used 
for including redundant components in the system, if 
independence is assumed across the components in the 
system, a failure of any component does not affect the failure 
rates of surviving components in a parallel configuration. On 
the other hand, in any multicomponent system, the failure of 
one component can affect the performance of the remaining 
components [2]. That is, many systems are structured to share 
loads among components, which is known as load-sharing. 
For a load-sharing system, the assumption of independence is 
unreasonable. The system reliability can be estimated from 

dependencies among components, the knowledge of 
components and their system configuration. 

With the purpose of analyzing the reliability of load-
sharing systems, the relationship between the load and the 
failure behavior of a component, described by the failure rate 
of the component, is considered. For example, Tierney [3] 
proposed two load-sharing settings for fibers in the parallel 
arrangement. Assume that there is little or no cohesion 
between fibers. Once a fiber fails, the surviving fibers share 
the steady and tensile load equally and uniformly. In the 
second setting, the load of a failed fiber is transferred to an 
adjacent fiber based on the shape of the set of adjacent failed 
fibers. As a generalization of the two previous settings, a load 
on any individual component monotonically increases as other 
components fail. 

For a repairable system, when components fail, the system 
can be restored. Due to the variety of failure causes, the repair 
times are random. Therefore, studies of probabilistic repair 
times and repair performance levels are necessary. Since both 
time-to-failure and repair time are stochastic processes, as 
mentioned earlier, Markov process is the most common 
mathematical methodology for the reliability design of the 
repairable system. 

Once the system is repairable, the maintenance of the 
system can be classified into three categories. The first one is 
the corrective maintenance. In this case, the system is repaired 
based on the system failure only. Once the system failure is 
significant due to a series of losses, preventive maintenance 
should be used. There are two policies for preventive 
maintenance. Given the failure distributions of components, 
one can plan a repair treatment before the failure of 
components occurs. On the other hand, if the analysis of 
component failures concentrates on the physical evaluations, 
conditional maintenance can be performed based on 
continuous records of specific measurements, which have 
thresholds to indicate the component failure events. The third 
maintenance strategy is reliability-centered maintenance. It is 
a corporate level maintenance strategy based on analysis and 
testing of factors, which affect the reliability of components 
systematically. 

In the design phase, maintenance is a functional design 
problem. System modular design is beneficial to the 
competition since the system is reconfigurable based on the 
functional combination of modules in the system. By 
exploring the relationship between system configuration and 
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separation of functional requirements, the functional 
combination is implemented. Proposed by [4], the modularity 
of a system depends on two characteristics of the design: 1) 
similarity between the physical and functional architectures of 
the design and 2) minimization of incidental interactions 
among physical components. In this paper, modular design 
concentrates on maintenance. The design decision includes 
the number of components in each maintenance module and 
the selection of component type for each module. It is 
assumed that each module has the same type of components.  

For the load-sharing k-out-of-n systems, the repair time of 
each component is arbitrary distributed. This assumption is 
more valuable than constant repair time assumption in realistic 
applications. On the other hand, for the repairable load-
sharing k-out-of-N configuration, Markov chain in which the 
states represent the number of failed components in the system 
has the strictest assumption. Comparing with the Markovian 
model, the flowgraph model is a graphical representation of a 
stochastic system in which possible outcomes are connected 
by directed line segments. This model provides a new 
computational way to the reliability evaluation of load-sharing 
k-out-of-N system based on Moment Generating Functions 
(MGFs). The use of MGFs simplifies the computational 
multiplication of different distribution functions. By linking 
covariates into branch transition, the MGFs of the system 
failure are evaluated under different covariates levels so that 
presence of external events can be described in quantitative 
way. In the proposed model, during the repair process of failed 
components, the operating component can fail. 

The Weighted Principal Component Analysis (WPCA) 
based multi-response optimization [5] is used for determining 
components, system configuration and maintenance policy. 
This methodology is beneficial to the optimization problem, 
in which both network parameters and network structures 
(nodes and edges) of potential designs vary. 

The paper provides a new computational framework based 
on statistical flowgraph model for repairable load-sharing 𝑘-
out-of-𝑛 problem. Integrating the maintenance-based modular 
design concept into maintenance task, WPCA-based multi-
response optimization is applied to determine the optimal 
design factorial combination. The remaining sections are 
organized as follows. Section 2 reviews the development of 
models for analyzing repairable load-sharing system. Section 
3 proposes the flowgraph model and the methodology for 
computing system failure time MGF with different 
combinations of covariate levels. Section 4 presents the multi-
response optimization for the module system and repair policy 
design, and Section 5 shows the detailed procedures of the 
proposed framework by a numerical example. 

II. STATE OF THE ART  
Most of the load-sharing k-out-of-n system models 

assume constant failure rate for every component, which can 
be either analytically solved [6] or represented by the Markov 
transition diagram [7]. On the other hand, the assumption of 
time-varying failure rates is proposed as well [8]. Another 
attempt was proposed by Liu [9], who modeled the component 
failure time distribution by proportional hazards model and 
the load changes by piecewise constant function. However, 

the generalizations of the models in these studies are limited 
by their computation complexity. Similarly, Liu and 
Mohammad et al. [10] presented a model in which the load-
dependent time-varying failure rate of each component is 
expressed by Cox’s proportional hazards model and provided 
a closed form expression for the system reliability when all 
components are identical. To reduce the computation 
complexity induced by multiple integrations for failure 
dependency, Suprasad et al. [11] proposed a series of models 
which can solve large systems in a short time. They 
considered two classes of models accounting for the effects of 
load history: tampered failure rate (TFR) model and 
cumulative exposure (CE) model. They converted the TFR 
load-shared model with general failure distributions and used 
the concept of supplementary variables in semi-Markov 
processes to model the effects of load history on system life 
for CE model [12]. A slightly different perspective of 
modeling load-sharing k-out-of-n system is based on task 
allocation and queueing, in which the load is considered as the 
tasks assignment on each component. Huang and Xu [13] 
studied such models and introduced the concept of queueing 
system and cumulative time in each state to generate a closed-
form expression for reliability of load-sharing k-out-of-n 
system with arbitrary failure distributions. 

Despite a wide range of applications for load-sharing 
redundant systems, the methods for lifetime-related 
performance evaluation and design of repairable load-sharing 
k-out-of-n systems are limited. The failure dependency as well 
as maintenance process complicate the states and transitions 
between states, so that it is of great challenge to model the 
lifetime reliability of such system. Shao and Lamberson [14] 
studied a Markov model for analyzing a shared-load 
repairable k-out-of-n system with imperfect switching. It 
assumed that all the components are identical with constant 
failure rates and constant repair rates. Although the repair rule 
declared in their paper considered more than one component 
at a time in each repair, the model used considered only one 
repair transition from each state to its one-step backward state, 
which means that only one component can be repaired at a 
time. Hasset et al. [8] extended Shao’s model by considering 
time-varying failure rates and time-varying repair rates within 
states transitions and solved a 2- component failure-dependent 
parallel system. As stated by the authors, the computation of 
non-constant failure rate or repair rate models is rather 
challenging because the general solution for such model is 
intractable. A response to such intractability is to assume 
identical Weibull failure time distributions and identical 
constant repair rates. Even with these simple assumptions, the 
expression for system reliability and availability is extremely 
complicated and tedious to evaluate. Therefore, Amari et al. 
[15] proposed an efficient algorithm based on symmetric 
switching functions and iterative implementation to 
approximate the reliability, availability and failure 
distribution of a repairable k-out-of-n system with 
identical/non-identical components, which has O(kn) 
computational complexity. However, the cases with non-
identical components still assume constant failure rates, and 
load-sharing was not considered in the paper. Different from 
the Markov models proposed in the previous papers, where 
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the states represent the number of failed components in the 
system, Mandziy et al. [16] modeled a detailed Markov chain 
where the states representing the failure of components at 
specific locations caused by specific fault mode for a simple 
3-component system. In this study, the component failure time 
was distributed by Weibull, and load sharing effect was set by 
the scale functions depending on the status of all survival 
components in the system. A failed component could be 
repaired as long as it does not cause system failure, and the 
repair time was assumed exponentially distributed and 
identical for all components. 

As a generalization of Markov process, semi-Markov 
process creates flexibility in modeling system degradation and 
recovery. In semi-Markov model, the states being 
successively visited are governed by a Markov chain, and the 
transition time distribution can be arbitrarily specified. 
Hellmich [17] modeled the repairable load-sharing k-out-of-
n: G system with identical components by nonhomogeneous 
semi-Markov process, in which the failure time distribution of 
each component was arbitrary and repairable. But the repair 
time distribution was restricted to be exponential, because 
when the system was in the state that q components fail and 
another component failed, the process transited to the next 
state that q + 1 components fail and the repair of the previous 
failed component had to be forgotten which forced the repair 
process to be memoryless. 

Although a semi-Markov multistate model provides a way 
allowing the transition time to a future state to depend on the 
duration of time spent in the current state, it is quite difficult 
to analyze data for semi-Markov models in practice. 
Flowgraphs model semi-Markov processes and allow a 
variety of distributions used within the multistate model. The 
“states” in the flowgraphs are all the possible outcomes of a 
stochastic system. The waiting time distributions of the 
change of states are formulated by MGFs. Moreover, 
flowgraphs can easily handle reversibility [18]. These give 
flowgraphs the natural advantage in analyzing time-to-event 
data and modeling system reliability performance. Jenab and 
Dhillon [19] used flowgraph to model the k-out-of-n system 
in which every component in the system had a failure 
detection – isolation – repair loop and all components were 
assumed to be identical and operating independently. Jenab 
and Dhillon [20] then extended this model to adapt the 
reversible multi-state case, where each unit in the system 
could transit from better states to worse states due to aging 
effect, or from worse states to better states due to repair, and 
the degradation and recovery process was a semi-Markov 
model and was represented by the flowgraph model. The load 
sharing was simply represented by changing the states from 
the level of degradation to the level of load carried by that unit 
in the system function, assuming all the units in the system are 
identical. In this paper, the flowgraph model is embedded in a 
novel framework for modular based design and extended for 
more general system in which the components are not 
necessarily identical and the failure and repair time 
distributions are not necessarily exponential. 

From the previous reviews, it can be seen that Markov 
process is restricted to memoryless property. That is, the 
transition time from one state to another is exponential 

distributed. Although the semi-Markov process relaxes this 
restriction, the corresponding computational task is a 
challenge. Based on the property of MGFs, statistical 
flowgraph model is advantageous in regards to the challenge. 
Based on statistical flowgraph model, the repairable load-
sharing k-out-of-n system is studied. By introducing the 
modular design concept, the intermediate layer between the 
top level and bottom level (component-level) is introduced, 
and the decision variables can be discussed for optimizing the 
corresponding repairable system. Specially, in the loading-
sharing k-out-of-n system, the number of components in the 
system becomes a decision variable, which is denoted by N. 
Therefore, in this paper, the computational process 
encompasses the system degradation (step-by-step failures) 
and restoration (maintenance tasks) into a decision-making 
perspective. By using multi-response optimization 
methodology, the optimal factorial combination is obtained at 
last. 

III. PROBLEM DESCRIPTION 
A parallel model consists of n components in active 

redundancy, of which k (1 £ k < N) are necessary to perform 
the required function [21]. For many practical applications, 
load sharing is a suitable design to explain the dependence 
among components. Consider a k-out-of-N: G system with 
independent components, the system is put into operation at 
time zero, all components are functioning, and they are 
equally sharing a constant load that the system is supposed to 
carry [22]. When the system experiences component failures, 
the surviving components must carry the same load on the 
system. Considering the target performance levels prescribed 
in the design phase, the redundancy level is a decision 
variable, denoted by N, should be determined so that there is 
a suitable redundancy level in the system. 

System design with prefabricated modules encompasses 
the production and use of preplanned modules as a solution to 
build with higher quality and more efficiency [23]. In order to 
manufacture systems in a manageable and economic way, 
prefabricated modules and adaptable module frames are 
selected, customized, and assembled [24]. For a k-out-of-N: 
G system, prefabricated modules are configured in the parallel 
structure to build redundancy of the system. Take a 
redundancy system with five components as example, which 
is illustrated in Figure 1. There are two types of modules: 
module 1 and module 2, in a shared-load k-out-of-5: G system, 
k = 1, 2, 3, 4, 5. Without loss of generality, the failure 
distributions of these components are not necessary to be 
identical. 

 
Figure 1. Shared-load k-out-of-5: G system with two types of module 
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On the other hand, considering the stability of 
manufacturing processes, the types of prefabricated modules 
should be limited at an affordable level. Suppose that the 
manufacturer produces M types of prefabricated modules, and 
M is a small integer. The numbers of components in each 
module are denoted by {m1, …, mM}. Denote the numbers of 
each module in the system by {n1, …, nM}. Then the total 
number of components in the system is ∑ 𝑚%𝑛%&

%'( = 𝑁 which 
is equal to the redundancy level of the system. 

For a k-out-of-N: G system, two types of cost, interface 
cost and encapsulate cost, are assumed. The interface cost 
depends on the number of modules in the system, and the 
encapsulate cost depends on the number of components in the 
module. Therefore, the total design cost of the system is 
𝑐( ∑ 𝑛%	&

%'( + 𝑐.𝑁 , where c1 and c2 are cost coefficients of the 
interface cost and the encapsulate cost respectively, ∑ 𝑛%&

%'(  is 
the total number of modules in the system.  

Additionally, for a k-out-of-N: G system, a maintenance 
policy determines how and when the maintenance should be 
performed in order to avoid the system failures. Basic 
maintenance policies, such as age repair, periodic repair, and 
block repair polices are usually suggested for non-
modularization systems.  In particular, a maintenance policy, 
described by [25], is that the failed components are replaced 
if and only if the failed components are contained within the 
critical component set. Inspired by this policy, in this paper, 
we assume that a module can be replaced if and only if all 
components in the module are failed based on continuous 
monitoring.  

The analysis of system performance presented in this 
paper is based on the system reliability analysis upon the flow-
graph concept. The reliability of modularized shared-load k-
out-of-N: G system is evaluated by using the concept of the 
flowgraph and MGF. A flowgraph is a graphical 
representation of a stochastic system in which possible 
outcomes are connected by directed line segments. Possible 
outcomes for the system reliability analysis are determined by 
the components failures in each module. Define a M-tuple, O 
= (O1, …, Oj, …, OM) in order to describe the possible 
outcomes, where Oj, j = 1, …, M, is a variable representing 
the number of failed components in the module j. If all 
components in the system are operating, then O = (0, …, 0, 
…, 0) and the system is in state 0. When one component in the 
system fails, assume that the failed component belongs to the 
module j, j Î {1, …, M}, then O = (0, …, 1, …, 0).  The 
number of states used to represent one component failure case 
is equal to the number of modules in the system. When the 
second failure occurs, it is assumed that the second failed 
component belongs to module j, for j Î {1, …, M}. It is 
possible that i = j, that the two failures occur in the same 
module. If i = j, O = (0, …, 2, …, 0). If i ¹ j, O = (0, …, 1, …, 
1, …, 0). Similarly, all the possible outcomes (states) are 
determined. Once the total number of failed components is 
greater than 𝑘, ∑ 𝑂%&

%'( > 𝑘, the system fails and the system 
state enters to failure state, called F. For maintenance policy, 
once all components of a module fail, Oj = mj, j Î {1, …, M}, 

the module j is replaced immediately with measurable 
probabilistic repair time. For the shared-load k-out-of-5: G 
system in the Figure 1, Figure 2 (a) gives the flowgraph for k 
= 2 where the transitions of states are indicated on the branch. 

 

 
(a) 

 
(b) 

Figure 2. Flow graph for the example in Figure 1: (a) branches are labeled 
with transition between states; (b) branches are labeled with transmittances 

In the flowgraph, each branch has a transition probability, 
pxy, and a waiting time distribution associated with the 
transition from its beginning and ending nodes, Mxy(s), where 
x and y denote the nodes in the flowgraph. Figure 2 (b) shows 
the flowgraph of the example in Figure 1 with k = 2, where 
the branches are labeled with transition probability and MGF 
of waiting time. pxy is determined by the number of survival 
components in each module and the module in which the next 
failure occurs. Let Ox = (Ox1, …, Oxj, …, OxM) denote the 
component failure state of node x, x = 0, 1, …, F, where Oxj is 
the number of failed components in module j when the system 
is in state x. The transition probability from state x to state y, 
is 

𝑝23 =
456785

96∑ 78:;
:<=

, for	 ∑ 𝑂2%&
%'( + 1 = ∑ 𝑂3%&

%'( , 

6Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-698-9

PESARO 2019 : The Ninth International Conference on Performance, Safety and Robustness in Complex Systems and Applications



where N is the total number of components in the system, 
and h represents the module in which the new failure occurs, 
h Î {1, …, M}. For example, in Figure 2, state 4, (1, 1), 
represents that there is one failed component in module 1 and 
one failed component in module 2. Correspondingly, there 
are 5 – (1 + 1) = 3 survival components, in which two of them 
are in module 1 and the other one is in module 2. State 7, (2, 
1), represents that the next failure component is in module 1. 
Thus, the probability of transformation from node 4 to 7 is 

p47 = 1/[5 – (1 + 1)]´2 = 2/3 
It is assumed that a module will be replaced when all 

components in that module fail. Thus, when the system 
reaches node Ox = (Ox1, …, Ox(j-1), mj, Ox(j+1), …, OxM), 
j = 1, …, M, module j is replaced with a new one, and the 
system will be transferred to Oz = (Ox1, …, Ox(j-1), 0, 
Ox(j+1), …, OxM), because the number of failed component 
in module j is restored to 0. In this case, the transition 
probability is 
pxz = 1, from Ox = (Ox1, …, Ox(j-1), mj, Ox(j+1), …, OxM) to Oz 

= (Ox1, …, Ox(j-1), 0, Ox(j+1), …, OxM) 
Let Txy be the random waiting time in state x until the 

transition to y occurs, x, y = 0, 1, …, F, x ¹ y, and Mxy(s) be 
the MGF of Txy  

𝑀23(𝑠) = 𝐸(𝑒IJ8K) 
provided that the expectation exists for s in an open 
neighborhood of 0 [18]. Txy on branches from state x to y, x 
< y, are the component failure times, and Txy on branches 
from state x to y, x > y are the times to repair the failed 
component. Txy can follow any arbitrary distributions. This 
paper assumes that the failure time of each component 
follows exponential distribution, 

𝑀23(𝑠) =
L8K
L8K6I

, for	 ∑ 𝑂2%&
%'( + 1 = ∑ 𝑂3%&

%'( , 

where lxy is the failure rate of the failed component causing 
transition from node x to y and a function of various 
covariates and the shared load on that component. We assume 
that the repair time is normally distributed with mean µ and 
standard variation s for all types of modules, 

𝑀2M(𝑠) = 𝑒NIO
PQRQ
Q , for	𝓞𝒙 =

U𝑂2(,⋯ ,𝑚%,⋯ , 𝑂2&W	and	𝓞𝒛 = (𝑂2(,⋯ ,0,⋯ , 𝑂2&), 
The first step in this problem is to compute the overall 

transmittance of the entire flowgraph from the initial state 0 to 
the end state F, M(s). After identifying all paths, loops, and 
loops not connecting the path between nodes of state 0 and 
state F, M(s) is computed by Mason’s rule. For details of 
computing M(s), refer to [18]. M(s) determines the 
distribution of the system life time. The flowgraph model 
concerns modeling the probabilities of the outcomes, the 
failure/repair time distributions of the outcomes, and 
manipulating the flowgraph to access overall failure time 
distribution. Once the system failure time MGF M(s) is 
computed, the system reliability measurements, such as mean 
time to failure, and average number of repairs at specified 
covariate levels can be determined. Therefore, for each 
combination of covariate levels, system life time, total design 

cost and performance deviation are considered, to obtain a 
criterion for design’s quality. 

IV. MODULE DESIGN USING MULTI-RESPONSE 
OPTIMIZATION 

Suppose there are S different operating conditions. For the 
ith operating condition, a system 𝕊(^)  consists of modules 
needs to be designed, i = 1, 2, …, S. Suppose there are M types 
of modules to be allocated to each system. Let mj denote the 
number of components in the jth type of module, j = 1, 2, …, 
M. Let 𝑛%

(^) denote the number of type j modules in system 
𝕊(^) designed for operating condition i, i = 1, 2, …, S, j = 1, 2, 
…, M. Therefore, the factors to be determined are mj and 𝑛%

(^), 
i = 1, 2, …, S, j = 1, 2, …, M, and the possible values for them 
are the factor levels. 

In this paper, system mean time to failure (MTTF), system 
failure time standard deviation (SD), average number of 
module repair before system failure (MRep), and total design 
cost (Cost) are selected as four response variables.  The 
proposed method aims to obtain optimal values of mj and nj, 
while minimizing a function of four response variables 
through WPCA. Once the system MGF, 𝑀𝕊(_)	(𝑠)  is 
calculated following the method stated in Section 3, MTTF 
and SD can be obtained by 

MTTF(^) =
c&

𝕊(_)	
(I)

cI
d
I'e

 (1) 

SD(^) =
cQ&

𝕊(_)	
(I)

cIQ
d
I'e

− MTTF. (2) 

To compute the distribution of repair occurrence, an auxiliary 
constant 1 is created and its MGF, eu, is attached to the branch 
of repair. For example, in Figure 2, branch 5 à 0, 6 à 0, and 
8 à 1 are the repair transitions, and the transmittance about 
these branches are changed to p50eµM50(s), p60eµM60(s), and 
p81eµM81(s). The overall system life MGF is computed as 
described in Section 3. The joint MGF of the distribution of 
system life time and number of repairment is  𝑀𝕊(_)	(𝑠, 𝑢). 
Then, MRep can be calculated by taking the first derivative 
of 𝑀𝕊(_)	(𝑠, 𝑢)jI'e over u and letting u = 0, 

MRep(^) =
c&

𝕊(_)	
(I,n)o

R<p
cn

q
n'e

	 (3)	

The total design cost for system 𝕊(^)  is determined by the 
number of components and number of modules in the system. 
Let pej denote the cost of individual component in the jth type 
of module, j = 1, 2, …, M, and pi is the cost of interface of 
each module. Therefore, for a system 𝕊(^) consisting of  𝑛%

(^) 
type j modules, the total design cost is 

Cost(^) = ∑ 𝑝𝑒% × 𝑛%
(^) × 𝑚%

&
%'( + 𝑝𝑖 × ∑ 𝑛%

(^)&
%'( 	 (4)	

The objective for this optimization is to find the best 
combination of mj and  𝑛%

(^),  i = 1, 2, …, S, j = 1, 2, …, M, 
such that MTTF(i) is as close as possible to a target value 
MTTFe

(^) , and SD(i), MRep(i), Cost(i) are minimized 
simultaneously among all operating conditions. 
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WPCA based Multi-Response Optimization method is 
applied to the experimental design, and the unique optimal 
combination of mj and 𝑛%

(^),  i = 1, 2, …, S, j = 1, 2, …, M is 
determined. WPCA based multi-response optimization 
utilizes PCA to map the original data to a new vector of 
component scores and transforms the original response 
variables into uncorrelated principal components. Each 
component is multiplied by a weight to emphasize the 
contribution of components based on their corresponding 
variation. All the weighted components are combined into one 
multi-response performance index (MPI), and the optimal 
result is the factor level combination with the largest MPI. The 
detailed procedure of WPCA multi-response optimization 
with unique solution can be found in [5]. The optimal value of 
mj, j = 1, 2, …, M gives the modular design which has high 
manufacturing performance and accommodates to various 
demands under different operating conditions. 

V. EXAMPLE  
Suppose a manufacturer is producing three redundancy 

systems of electric motors as in Table I, which are designed to 
supply power under three operating conditions: 

TABLE I. OPERATING CONDITIONS  

Operating 
condition 

Type of service 
application 

Operating 
temperature, 

°F 

Operating 
altitude, 

ft 
1 Heavy shock load 5 500 
2 Light shock load 75 3600 
3 Uniform and steady load 140 40 

Two types of electric motor are considered in the design, 
which are shown in Table II: 

TABLE II. TYPES OF ELECTRIC MOTORS  

Electric 
motor 
type 

Shaft Material Shaft surface 
manufactured 

finish 

Viscosity of lubricant 
used in  

bearing 
system 

gear 
system 

A Alloy steel Polished 1.0 1.0 
B Cast aluminum Ground 0.8 1.2 

The objective is to design the two types of module ℳ(z) 
and ℳ({) , where ℳ(z)  is a parallel structure of type A 
electric motors, and ℳ({)  is a parallel structure of type B 
electric motors, such that ℳ(z)  and ℳ({)  have high 
resilience to accommodate the redundancy product design for 
three different operating conditions ℕ(() , ℕ(.) , and ℕ(}) . 
ℕ((), ℕ(.), and ℕ(}) consist of different allocations of ℳ(z) 
and ℳ({). Therefore, the objective is to determine the optimal 
number of components in the two modules ℳ(z) and ℳ({),  

𝑚z,	𝑚{		
and the number of modules ℳ(z)  and ℳ({)  in the three 
redundancy systems ℕ((), ℕ(.) and ℕ(}), respectively, 

𝑛z
((), 𝑛{

((), 𝑛z
(.), 𝑛{

(.), 𝑛z
(}), 𝑛{

(}) 
 

 
Figure 3. Illustrated Optimal Decision Procedure 

for simultaneously meeting the requirements of mean time to 
failure (MTTF) for each operating condition, while 
minimizing the standard deviation of time to failure, average 
number of replaced modules before system failure, and the 
interface and encapsulate cost. Let N(i) denote the total 
number of electric motors in redundancy system i,  

𝑁(^) = 𝑛z
(^)𝑚z + 𝑛{

(^)𝑚{, 𝑖 = 1,2,3. 
The failure time of an individual electric motor is 

exponentially distributed. Each module is considered as a 
tampered failure rate (TFR) load-sharing k-out-of-n: G system 
with identical electric motors where all surviving motors 
equally share the load. The system is consisted of different 
modules, which have non-identical types of electric motors. In 
this example, it is assumed that k = 3, and the module is 
replaced with a new one when all motors in that module fail, 
and the repair time is normally distributed with mean of 
0.00048 million hour and standard deviation of 0.00024 
million hour. 

The failure rate model of an electric motor is based upon 
the failure rate of its parts, which includes windings, stator 
housing, armature shaft, bearings, and gears [26]. Failure 
mechanisms resulting in part degradation and failure rate 
distributions are independent in each failure mode. The total 
electric motor failure rate is the sum of the failure rates of each 
part in the motor, which are functions of covariates. 

The target mean time to failure for each operating 
condition is assumed to be 8.76 thousand hours (1 year) for all 
operating conditions. The cost of individual electric motor is 
$120 per type A motor and $ 100 per type B motor, and the 
cost of module interface is $100 per module. The possible 
choices of mA and mB are 1, 2, 3, or 4. The possible choices of 	
𝑛z
((), 𝑛{

((), 𝑛z
(.), 𝑛{

(.), 𝑛z
(}), 𝑛{

(}) are 0, 1, 2, or 3. 
By introducing the covariate and load-sharing failure rate 

model to the system, we calculate the MGF of failure time for 
each combination of decision variables, 𝑚z,	𝑚{	, 𝑛z

((), 𝑛{
((), 

𝑛z
(.), 𝑛{

(.), 𝑛z
(}) and 𝑛{

(}). From the failure time MGF, MTTF 
and standard deviation of failure time are calculated. Factors 
(𝑚z,𝑚{), U𝑛z

((), 𝑛{
(()W, U𝑛z

(.), 𝑛{
(.)W, U𝑛z

(}), 𝑛{
(})W  are 

considered as four pairs of factors, and each factor pair 
consists of 4 × 4 = 16  levels. The 16�  full experimental 
design is used. With cost of interface and encapsulate, the 
multi-response optimization experimental design is shown as 
Table III. Based on the Figure 3, we want to select the best 
system performance, described by the four responses. The 
objective is to determine the optimal number of components 
in the two module types and the number of modules in the 
redundancy systems. Therefore, in the Table III, the first eight 
columns of each row indicate sets of candidate designs, which 
are combinations of the number of motors in each module 
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associated with the three operating conditions. Based on these 
controllable design factors, we can evaluate the four responses 
(MTTF, SD, MRep, Cost) to describe the system 
performance.  These four responses are computed based on 
the statistical flowgraph model described in Section 3. 

For each operating condition, all these four responses are 
monitored so that responses in this example can be modeled 
in a three-level hierarchical structure. The top layer is about 
the system performance, the intermediate layer is about the 
three operating conditions, and the bottom layer is about the 
four responses. PCA-based multi-response optimization, as 
described earlier, can relax the response correlation problem, 
particularly for this hierarchical structure. On the other hand, 
there are two ways to solve the multi-response optimization 
problem: feature selection and dimensional reduction. For this 
hierarchical structure, feature selection is challenged since the 
intermediate levels (operating condition in this example) are 
equally important. This is another advantage of PCA-based 
multi-response optimization. In the experimental conduction 
perspective, the experiments were done by testing all the 
possible combinations of 
(𝑚z,𝑚{), U𝑛z

((), 𝑛{
(()W, U𝑛z

(.), 𝑛{
(.)W, U𝑛z

(}), 𝑛{
(})W . For easy 

visualization, the experiments with MTTF significantly 
deviating from the target value were eliminated from the table 
III. 

Following the procedures proposed in [5] and [26], the 
unique solution WPCA based multi-response optimization 
method is applied on the data in Table III. Table IV 
summarizes the resulting MPIs. It can be seen that the optimal 
design for module ℳ(z) and ℳ({), accommodating the three 
operating conditions, is to allocate two type A motors in 
module ℳ(z)  and allocate three type B motors in module 
ℳ({). The MTTF of system under operation condition 1, 2, 
and 3 are 8.2171, 8.1227, and 9.6936 thousand hours, 
respectively. 

One of the most commonly used strategies of system 
design and repair rule is to consider every single component 
as an individual module which is subject to repair upon 
failure. To compare it with the proposed framework, the 
flowgraph is modified where the repair branch is added to 
every state with component failure. Let the system operates 
for 8.2171, 8.1227, and 9.6936 thousand hours under three 
operation conditions respectively. Following the procedures 
stated in Section 4 and the formulation of (3) and (4), the 
expected number of repairs and system configuration cost for 
different combinations of components are computed and 
summarized in Table V. 

Compared the design options obtained in Table III and V, 
it is obvious that the design that immediately repairs every 
failed component leads to much greater times of repair action. 
For example, the expected number of repairs for the optimal 
solution under operating condition 1 (two modules with three 
type B motors in each module) is 0.1111. However, without 
considering modular repair rule, the system with six 
individual type B motors leads to an average of 1.6579 times 
of repair for operating the same length of time. Moreover, the 

system configuration cost is much higher under non-modular 
design (e.g., $800 for the system with two modules with three 
type B motors in each module and $1200 for the system with 
six individual type B motors), since the increased number of 
interfaces increases the total cost of the system. 

VI. CONCLUSION AND FUTURE WORK  
In this paper, incorporating the reliability concept into 

design for repairable systems is discussed. In the operating 
stage, for a disruptive event, the proposed maintenance 
strategy based on modular design provides a way to recover 
the system in the most appropriate way. In order to quantify 
the reliability-related performance in the design phase, a 
flowgraph model is introduced. The usage of flowgraph 
relaxes exponentially distributed assumptions for the state 
transition time, so that the proposed framework can model the 
problem with arbitrary distributions of failure time and repair 
time. Meanwhile, by linking the flowgraph with covariates, 
the model can be used when considering various external 
variates, such as different environmental conditions in which 
the system is operating. By applying the WPCA based multi-
response optimization, the best design of modules and system 
can be obtained. The application of flowgraph is restricted by 
the complexity of the graph, because all the computations are 
based on functions [27]. The function-based operation limits 
the computation speed, and the higher graph complexity 
increases the number of functions involved, thus reducing the 
computation speed. Therefore, a novel algorithm for high 
efficiency flowgraph computation is needed and will extend 
the application of the proposed methodology in the future. 

REFERENCES 
[1] C. E. Ebeling, An Introduction to Reliability and 

Maintainability Engineering, 2nd ed.. Long Grove, IL: 
Waveland Press, Inc., 2010. 

[2] I. Dewan and U. V. Naik-Nimbalkar, Load-Sharing Systems. 
Wiley Encyclopedia of Operations Research and Managment 
Science, 2010.  

[3] L. Tierney, “Asymptotic bounds on the time to fatigue failure 
of bundles of fibers under local load sharing,” Advances in 
Applied Probability, vol. 14, no. 1, pp. 95-121, March 1982.  

[4] K. Ulrich, “Fundamentals of product modularity,” in 
Management of Design. Dordrecht: Springer, pp. 219-231, 
1994.  

[5] N. Fard, H. Xu, and Y. Fang, “A unique solution for principal 
component analysis-based multi-response optimization 
problems,” The International Journal of Advanced 
Manufacturing Technology, vol. 82, no. 1-4, pp. 697-709, 
January 2016. 

[6] E. M. Scheuer, “Reliability of an m-out-of-n system when 
component failure induces higher failure rates in survivors,” 
IEEE Transactions on Reliability, vol. 37, no. 1, pp. 73-74, 
1988.  

[7] H. Lin, K. Chen and R. Wang, "A multivariate exponential 
shared-load model," IEEE Transactions on Reliability, vol. 41, 
no. 1, pp. 165-171, 1993.  

[8] T. F. Hassett, D. L. Dietrich, and F. Szidarovszky, "Time-
varying failure rates in the availability & reliability analysis of 
repairable systems," IEEE Transactions on Reliability, vol. 44, 
no. 1, pp. 155-160, 1995.  

9Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-698-9

PESARO 2019 : The Ninth International Conference on Performance, Safety and Robustness in Complex Systems and Applications



[9] H. Liu, "Reliability of a load-sharing k-out-of-n: G system: 
non-iid components with arbitrary distributions," IEEE 
Transactions on Reliability, vol. 47, no. 3, pp. 279-284, 1998.  

[10] R. Mohammad, A. Kalam, and S. V. Amari, "Reliability of 
load-sharing systems subject to proportional hazards model," 
Proceedings Annual Reliability and Maintainability 
Symposium (RAMS), pp. 1-5, 2013.  

[11] A. V. Suprasad, M. B. Krishna, and P. Hoang, "Tampered 
failure rate load-sharing systems: status and perspectives," in 
Handbook of performability engineering, pp. 291-308, 2008.  

[12] S. V. Amari and R. Bergman, "Reliability analysis of k-out-of-
n load-sharing systems," Reliability and Maintainability 
Symposium (RAMS), pp. 440-445, 2008.  

[13] L. Huang and Q. Xu, "Lifetime reliability for load-sharing 
redundant systems with arbitrary failure distributions," IEEE 
Transactions on Reliability, vol. 59, no. 22, pp. 319-330, 2010.  

[14] J. Shao and L. R. Lamberson, "Modeling a shared-load k-out-
of-n: G system," IEEE Transactions on Reliability, vol. 40, no. 
2, pp. 205-209, 1991.  

[15] S. V. Amari, M. J. Zuo and G. Dill, "O (kn) algorithms for 
analyzing repairable and non- repairable k-out-of-n: G 
systems," in Handbook of performability engineering, pp. 309- 
320, 2008.  

[16] B. Mandziy, O. Lozynsky, and S. Shcherbovskykh, 
"Mathematical model for failure cause analysis of electrical 
systems with load-sharing redundancy of component," 
Przeglad Elektrotechniczny, vol. 89, no. 11, pp. 244-247, 2013.  

[17] M. Hellmich, "Semi-Markov Embeddable Reliability 
Structures and Applications to Load- Sharing k-Out-of-n 
Systems," International Journal of Reliability, Quality and 
Safety Engineering, vol. 20, no. 2, 1350007, 2013.  

[18] A. V. Huzurbazar, Flowgraph Models for Multistate Time-to-
Event Data. Hoboken, NJ: John Wiley & Sons, Inc., 2005. 

[19] K. Jenab and B. S. Dhillon, "K-out-of-n system with self-loop 
units. International Journal of Reliability," Quality and Safety 
Engineering, vol. 12, no. 1, pp. 61-73, 2005.  

[20] K. Jenab and B. S. Dhillon, "Assessment of reversible multi-
state k-out-of-n: G/F/Load- Sharing systems with flow-graph 
models," Reliability engineering & System safety, vol. 91, no. 
7, pp. 765-771, 2006.  

[21] A. Birolini, Reliability Engineering: Theory and Practice, 8th 
ed.. Springer, 2017. 

[22] W. Kuo and M. J. Zuo, Optimal Reliability Modeling: 
Principles and Applications. Hoboken, NJ: John Wiley & Sons, 
Inc., 2003. 

[23] U. Knaack, S. Chung-Klatte, and R. Kasselbach, Prefabricated 
Systems: Principles of Construction. Birkhäuser Architectur, 
2010. 

[24] H. Mayr, “GEM—A generic engineering framework for 
mechanical engineering based upon meta models,” 
International Conference on Computer Aided Systems Theory 
(EUROCAST 1997), Springer Berlin Heidelberg, 1997, pp. 83-
91, doi: 10.1007/BFb0025036 

[25] M. Ram and J. P. Davim, Advances in Reliability and System 
Engineering. Springer, 2017. 

[26] T. L. Jones, Handbook of Reliability Prediction Procedures for 
Mechanical Equipment. Naval Surface Warfare Center, 
Carderock Division, West Bethesda, Maryland, 2011. 

[27] N. Fard, H. Xu, and Y. Fang, "Reliability assessment of load-
sharing systems by flowgraph for non-identical components 
with time-varying repair rates," Proceedings of International 
Conference on Computers and Industrial Engineering (CIE), 
pp. 1-8, 2017. 

TABLE III. MULTI-RESPONSE OPTIMIZATION EXPERIMENTAL DESIGN LAYOUT 

Factor Response 
Module Type Operating Condition Operating Condition 

A B 1 2 3 1 2 3 
mA mB 𝑛z

(() 𝑛{
(() 𝑛z

(.) 𝑛{
(.) 𝑛z

(}) 𝑛{
(}) MTTF(1) SD(1) MRep(1) Cost(1) MTTF(2) SD(2) MRep(2) Cost(2) MTTF(3) SD(3) MRep(3) Cost(3) 

1 2 0 3 0 3 0 3 9.159 9.0651 0.7395 900 9.0652 8.9654 0.7395 900 6.5112 6.3642 0.7395 900 
1 3 0 2 0 2 1 2 8.2171 5.8736 0.1111 800 8.1227 5.7918 0.1111 800 12.1395 9.8169 1.3793 1020 
1 3 0 2 0 2 2 1 8.2171 5.8736 0.1111 800 8.1227 5.7918 0.1111 800 5.0004 3.6295 1.6667 840 
3 1 2 0 2 0 1 2 9.0182 6.4383 0.1111 920 8.9048 6.3401 0.1111 920 5.0332 3.5329 1.6667 860 
3 1 2 0 2 0 2 1 9.0182 6.4383 0.1111 920 8.9048 6.3401 0.1111 920 12.5481 10.0771 1.3793 1120 
2 2 0 3 0 3 3 0 9.159 9.0651 0.7395 900 9.0652 8.9654 0.7395 900 6.9375 6.7645 0.7395 1020 
2 2 0 3 1 2 3 0 9.159 9.0651 0.7395 900 9.3472 9.2459 0.7395 940 6.9375 6.7645 0.7395 1020 
2 2 1 2 0 3 3 0 9.4473 9.3526 0.7395 940 9.0652 8.9654 0.7395 900 6.9375 6.7645 0.7395 1020 
2 2 1 2 1 2 3 0 9.4473 9.3526 0.7395 940 9.3472 9.2459 0.7395 940 6.9375 6.7645 0.7395 1020 
2 3 0 2 0 2 1 2 8.2171 5.8736 0.1111 800 8.1227 5.7918 0.1111 800 9.6936 11.4477 0.3668 1140 
2 3 0 2 0 2 2 1 8.2171 5.8736 0.1111 800 8.1227 5.7918 0.1111 800 8.5759 9.1844 0.5541 1080 
3 2 2 0 2 0 1 2 9.0182 6.4383 0.1111 920 8.9048 6.3401 0.1111 920 8.5049 9.0895 0.5541 1060 
3 2 2 0 2 0 2 1 9.0182 6.4383 0.1111 920 8.9048 6.3401 0.1111 920 9.9104 11.6823 0.3668 1220 
3 2 2 0 0 3 1 2 9.0182 6.4383 0.1111 920 9.0652 8.9654 0.7395 900 8.5049 9.0895 0.5541 1060 
3 2 2 0 0 3 2 1 9.0182 6.4383 0.1111 920 9.0652 8.9654 0.7395 900 9.9104 11.6823 0.3668 1220 
3 2 0 3 2 0 1 2 9.159 9.0651 0.7395 900 8.9048 6.3401 0.1111 920 8.5049 9.0895 0.5541 1060 
3 2 0 3 2 0 2 1 9.159 9.0651 0.7395 900 8.9048 6.3401 0.1111 920 9.9104 11.6823 0.3668 1220 
3 2 0 3 0 3 1 2 9.159 9.0651 0.7395 900 9.0652 8.9654 0.7395 900 8.5049 9.0895 0.5541 1060 
3 2 0 3 0 3 2 1 9.159 9.0651 0.7395 900 9.0652 8.9654 0.7395 900 9.9104 11.6823 0.3668 1220 
3 3 1 1 1 1 2 0 8.6172 6.1652 0.1111 860 8.5133 6.0747 0.1111 860 6.0477 4.0822 0.1111 920 
1 4 2 1 2 1 2 1 13.1177 8.5674 2.1667 940 12.98 8.4503 2.1667 940 9.3589 5.7286 2.1667 940 
2 4 1 1 1 1 1 1 8.0723 5.9972 0.1738 840 7.9792 5.9132 0.1738 840 5.5548 3.9151 0.1738 840 
2 4 1 1 1 1 2 1 8.0723 5.9972 0.1738 840 7.9792 5.9132 0.1738 840 10.1503 11.9017 0.4611 1180 
4 2 1 1 1 1 1 1 8.3358 6.1035 0.1738 880 8.2359 6.0151 0.1738 880 5.6737 3.9467 0.1738 880 
4 2 1 1 1 1 1 2 8.3358 6.1035 0.1738 880 8.2359 6.0151 0.1738 880 10.141 11.863 0.4611 1180 
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TABLE IV. MULTI-RESPONSE OPTIMIZATION RESUTLS 

Factor 

MPI 
Module Type Operating Condition 

A B 1 2 3 
mA mB 𝑛z

(() 𝑛{
(() 𝑛z

(.) 𝑛{
(.) 𝑛z

(}) 𝑛{
(}) 

1 2 0 3 0 3 0 3 0.2467 
1 3 0 2 0 2 1 2 1.1930 
1 3 0 2 0 2 2 1 1.0590 
3 1 2 0 2 0 1 2 0.8483 
3 1 2 0 2 0 2 1 1.0065 
2 2 0 3 0 3 3 0 0.2813 
2 2 0 3 1 2 3 0 0.2171 
2 2 1 2 0 3 3 0 0.2248 
2 2 1 2 1 2 3 0 0.1606 
2 3 0 2 0 2 1 2 1.2180 
2 3 0 2 0 2 2 1 1.1631 
3 2 2 0 2 0 1 2 0.9476 
3 2 2 0 2 0 2 1 1.0257 
3 2 2 0 0 3 1 2 0.5617 
3 2 2 0 0 3 2 1 0.6398 
3 2 0 3 2 0 1 2 0.6761 
3 2 0 3 2 0 2 1 0.7542 
3 2 0 3 0 3 1 2 0.2902 
3 2 0 3 0 3 2 1 0.3684 
3 3 1 1 1 1 2 0 1.0041 
1 4 2 1 2 1 2 1 -0.0604 
2 4 1 1 1 1 1 1 0.9000 
2 4 1 1 1 1 2 1 1.0713 
4 2 1 1 1 1 1 1 0.8570 
4 2 1 1 1 1 1 2 1.0158 

 

TABLE V. NUMBER OF REPAIRS AND COST FOR IMMEDIATE REPAIR RULE 

Number of 
Motor A 

Number of 
Motor B 

Operating Condition 
Cost 1 (Operating 8217.1 Hours) 2 (Operating 8122.7 Hours) 3 (Operating 9693.6 Hours) 

MRep(1) MRep(2) MRep(3) 

0 5 3.3315 3.3048 2.4736 1000 
1 4 3.2827 3.2567 2.4469 1020 
2 3 3.2336 3.2082 2.4202 1040 
3 2 3.1841 3.1594 2.3932 1060 
4 1 3.1343 3.1102 2.3660 1080 
5 0 3.0841 3.0607 2.3387 1100 
0 6 1.6579 1.6647 1.5747 1200 
1 5 1.6359 1.6430 1.5629 1220 
2 4 1.6138 1.6212 1.5510 1240 
3 3 1.5916 1.5993 1.5391 1260 
4 2 1.5694 1.5774 1.5271 1280 
5 1 1.5471 1.5555 1.5152 1300 
6 0 1.5247 1.5335 1.5032 1320 
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