
145

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Usability Enhancement on the Privacy-Preserving Online Monitoring Framework

for E-Health Applications

Youna Jung and Minsoo Kim

Department of Computer and Information Sciences

Virginia Military Institute

Lexington, Virginia, United States

e-mail: {jungy, kimm}@vmi.edu

Abstract— Many e-health applications are currently using

online monitoring services to improve the accuracy and quality

of services. Privacy concern is however one of the biggest

obstacles in widespread adoption of e-health applications. To

address the privacy issue on e-health applications, we have

preliminarily developed the privacy-preserving online

monitoring framework (PPoM) that enables healthcare

providers and patients to specify their own privacy policies

without professional knowledge and skills and enforces

patients’ privacy policies during monitoring in systematic

manner. The prototype successfully protects patients’ privacy

against unwanted data disclosure but its complex user

interfaces reduce the performance of the PPoM. In this paper,

we describe how we improve the PPoM to address the usability

issue and present the enhanced version of the PPoM.

Keywords - Privacy; policy-based protection; online monitoring;

framework; e-health; usability.

I. INTRODUCTION

User monitoring on e-health application is a controversial
issue. In order to assess and improve the performance of e-
health applications, monitoring is one of the essential
techniques. It tracks and analyzes patients’ online activities
(e.g., mouse clicks, frequency of use, time spent in a
particular page, media viewed, page navigation sequences,
content entered into a textbox, location, whether a mobile
device is being used, etc.) on e-health applications.

In case of e-health applications that often deal with
sensitive information, however, the protection of user
privacy is critical. Indiscriminate monitoring without control
over the sharing of patients’ sensitive data may cause serious
privacy problems (i.e., private health data may be used for
unwanted purposes and/or shared with unknown people)
[1][2][3][4]. It is therefore urgent and critical to facilitate
online monitoring without privacy loss.

To this end, we have preliminarily proposed the PPoM
framework [5] and the Privacy Policy Language that
complies with the Health Insurance Portability and
Accountability Act (HIPAA) [6] for e-health Applications.
The PPoM framework enables healthcare providers to collect
necessary information without violation of patient’s privacy
preferences and HIPAA regulations by enforcing patients’
privacy preferences on the user side, not application side. To
realize the proposed idea, we developed a prototype [1].

The prototype benefits both healthcare providers and
patients. For healthcare provides, it offers an intuitive way to
describe privacy policies for their e-health applications,
monitor patients’ activities, and collect patients’ data without
serious privacy breach. At the same time, for patients, it
provides a way to verify an application’s compliance with
HIPAA and policies that are mutually agreed with patients,
and if necessary, rigorously protect patients’ private data
based on their preference on the user side. However, in the
previous development in [1], we focused on the feasibility
and the performance of the prototype and did not deeply
concern its usability. The usability is a critical issue because
the PPoM aims at non-IT patients and healthcare providers.
To address the limitation, in this paper, we present an
enhanced prototype having improved user interfaces (UIs)
and describes Human-Computer Interaction (HCI)
techniques that are used in this enhancement.

The rest of this paper is organized as follows. In Section
II, our preliminary work on the PPoM is introduced and the
enhanced development is described in Section III with details
and examples. In Section IV, we present evaluation results
and in Section V, describe our conclusion and future work.

II. PRELIMINARY WORK

The PPoM framework has been proposed to address the

privacy issues on e-heath applications conducting online

monitoring [5]. In this section, we briefly introduce our

preliminary work on the PPoM. As shown in Fig. 1, the

PPoM framework consists of four components: the HIPAA

Profile, the PPoM Service, the PPoM Browser, and the

PPoM Tools (PPoMT).

• HIPAA Profile [6] – It is a policy profile that enables

both patients and e-health providers to specify a privacy

policy related to health data and HIPAA regulations. It

has been proposed to address the lack of considerations

on health-related data of existing general-purpose policy

languages (e.g., P3P [7], APPEL [8], and XPref [9]). All

patients by law have a right to know if an e-health

application is compliant with HIPAA and Service-Level

Agreements (SLAs). To this end, they need to publish

their privacy preferences on health data first. However, it

is a herculean task for non-IT people to specify and

146

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

verify privacy policies on health-related data using

existing languages because in order to so, they have to

create their own data schema for health data. To address

the limitations of existing languages, the PPoM

employees the HIPAA Profile [6] that provides the

Health data schema and extensions to P3P.

 The Health data schema, an addition to the existing

P3P data schemas, aims to describe a patient’s health

status. It contains sixteen health terminologies that can be

widely acceptable in a variety of e-health applications:

height, weight, hearing-acuity, visual-acuity, blood-type,

blood-pressure, allergies, blood-sugar-level, cholesterol-

level, family-medical-history, disease-history, disabilities,

immunization-history, healthcare-providers, medication,

and lab-tests. By using the Health data schema, patients

and healthcare providers can specify their privacy

preferences on health data and HIPAA regulations. In

addition, the HIPAA Profile also prevents us from having

inconsistent schemas across different patients and e-

health applications.

 In addition to the Health data schema, the profile

provides several extensions to P3P, which allows

specifying HIPAA-friendly privacy policy. It is critical

for healthcare providers to ensure full compliance with

HIPAA regulations because HIPAA is the most stringent

rules for privacy protection against indiscriminate

disclosure of health data. To this end, e-health providers

need a privacy policy language that deals with

terminology and rules in HIPAA. Towards this end, the

HIPAA Profile provides extensions to the POLICY

element of P3P (represented as <POLICY>) [6].

• PPoM Browser – It is a user browser having the PPoM

plugin. It protects patients’ privacy, even if a patient is

exposed to untrustworthy e-health applications that

conduct indiscriminate monitoring in violation of a

patient’s privacy policies. To do so, the PPoM Browser

understands a patient’s privacy preferences, presents all

user data being monitored, and blocks outgoing messages

that contain data he/she does not want to disclose.

• PPoMT – It is a toolkit that helps non-IT healthcare

providers develop PPoM-enabled applications. Although

patient monitoring is essential, it is quite difficult for

healthcare professionals to develop e-health applications

conducting online monitoring based on application

policies. To overcome the difficulty, the PPoMT

provides several tools that enable them to specify

application policies and convert existing applications into

PPoM-enabled applications without professional IT

knowledge and skills.

• PPoM Service – It is an online monitoring service that

gathers only authorized user/usage data that users allow

to monitor. By specifying user policies, patients can

determine which data can be monitored. Then, the PPoM

Service selectively collects user/usage data based on user

policies. Unlike the existing monitoring services where

user data are collected based on applications’ preferences,

the PPoM Service provides a way to refer user policies

during online monitoring in a systematic manner, rather

than simply presenting a written agreement.

In the PPoM, a healthcare provider first needs to upload

the source code or enter the URL(s) of his/her e-health
application to the PPoMT and then select objects to be
monitored and the corresponding privacy policies through
the user-friendly interfaces generated by the In-page Selector.
The Privacy Policy Generator then creates the application’s
policies by analyzing selected monitoring data and policies,
while the Application Converter produces updated source
code by inserting monitoring code generated by the
Monitoring Code Generator into the original source code.
The provider then needs to deploy the generated application
policies and updated source code in the application’s server.

In-Page

Selector

Monitoring

Code

Generator

Privacy

Policy

Generator

Application

Converter

E-health
Application

Patient
/user PPoM

Browser

Administrator

PPoM

Service PPoM Tool (PPoMT)

App.
Policy

User
Policy

HIPAA
Profile

Figure 1. Overall Architecture of the PPoM Framework

147

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When a patient enters a URL of e-health applications,
his/her PPoM Browser compares user policies and
application policies. If they match, the application server
sends PPoM-enabled pages, which privacy-aware monitoring
code is embed in. While the patient interacts with the
application, the PPoM Browser displays all user/usage data
being monitored so that the patient can verify privacy
protection during online monitoring. The monitoring code
inserted in webpages checks user policies prior to monitoring
and collects only authorized user/usage. If any violation is
suspected, the PPoM Browser will block outgoing messages
to a monitoring server.

III. ENHANCEMENT ON THE PPOM FRAMEWORK

To realize the proposed idea described above, we
developed a prototype [1]. During our tests on the prototype,
we found some usability issues. The usability is indeed a
critical issue because the PPoM platform targets at non-IT
users. In this section, we describe our improvement on each
component of the PPoM in detail. Note that we developed
the PPoM using PHP and JavaScript. We use PHP to
develop the backend of the PPoM Browser and the PPoMT
and JavaScript, HTML5, and CSS3 to develop the user
interfaces (UIs). MySQL is used for a database of the PPoM
Service.

A. HIPAA Profile

As mentioned above, the PPoM uses the HIPAA Profile
to allow specifying privacy preference on data related to
health and HIPAA regulations. To describe operations of
each component in the PPoM, we use two examples of
HIPAA Profile policy, a user policy shown in Fig. 2 and an
application policy shown in Fig. 3. The examples are
upgraded version of the previous examples in [6].

Fig. 2 shows an example of a patient’s XPref policy
specified using the HIPAA Profile. The user policy indicates
that a patient allows a first party clinic to use his/her health
data, except his/her disability status and family history, for a
HIPAA-regulated retention period if the data collection is not
for telemarketing purpose. This agreement is subject to an
application’s compliance with HIPAA regulations that
stipulate healthcare providers must guarantee patients’ access
right.

<RULESET>

<RULE behavior="block" condition="/POLICY[ACCESS/*

 [name(.) != "HIPAA-compliant-access"]

<RULE behavior="block" condition="/POLICY/STATEMENT

 [PURPOSE/*[name(.) = "telemarketing"] or

 RECIPIENT/*[name(.) !="ours"] or

 RETENTION/*[name(.) !="HIPAA-compliant-retention"]]"/>

<RULE behavior="block" condition="/POLICY/STATEMENT

 /DATA-GROUP/DATA [@ref="#health.disability" or

 @ref="#health.family-medical-history"/]

 <RULE behavior="request" condition= "true"/>

</RULESET>

Fig. 2. An example of a user policy specified using the HIPAA Profile

A sample application policy shown in Fig. 3 is generated
for the Daily Weight Tracker, an e-health application that we
developed as a testbed. The policy indicates that the tracker
collects weight, disability status, blood sugar level, and
family medical history of obese patients for the application’s
healthcare operations and telemarketing purposes. The
collected health data will be disclosed to only the first party,
the obese patient clinic that owns the online tracker. The
clinic guarantees patients’ right to access their health data
and will retain monitoring data according to HIPAA
regulations.

<POLICIES xmlns="http://www.w3.org/2002/01/P3Pv1">

 <POLICY discuri=http://dailyweighttracker.com/privacy.html

 name="policy">

 <ENTITY>

 <DATA-GROUP>

 <DATA ref="#business.contact-info.online.uri">

 http://dailyweighttracker.com/ </DATA>

 <DATA ref="#business.name"> Daily Weight Tracker

 </DATA>

 </DATA-GROUP>

 </ENTITY>

 <ACCESS> <HIPAA-compliant-access/> </ACCESS>

 <STATEMENT>

 <CONSEQUENCE>We collect health data of obese patients.

 </CONSEQUENCE>

 <PURPOSE> <healthcare-operation/> <telemarketing/>

 </PURPOSE>

 <RECIPIENT> <ours/> </RECIPIENT>

 <RETENTION> <HIPAA-compliant-retention/>

 </RETENTION>

 <DATA-GROUP>

 <DATA ref="#health.weight">

 <CATEGORIES> <health/> </CATEGORIES> </DATA>

 <DATA ref="#health.disabilities">

 <CATEGORIES> <health/> </CATEGORIES> </DATA>

 <DATA ref="#health.blood-sugar-level">

 <CATEGORIES> <health/> </CATEGORIES> </DATA>

 <DATA ref="#health.family-medical-history">

 <CATEGORIES> <health/> </CATEGORIES> </DATA>

 </DATA-GROUP>

 </STATEMENT>

 </POLICY>

</POLICIES>

Fig. 3. An example application policy specified using the HIPAA Profile

B. PPoM Browser

To protect user privacy, the PPoM Browser provides
three ways to enable non-IT patients to: 1) specify users’
privacy preferences on health data without knowledge about
policy language, 2) check all usage and user data being
monitored, and 3) block monitoring if a patient finds
unwanted data disclosure.

First, a patient can generate user policies through user
interfaces. The PPoM supports three levels of user policy:
the General Policies (GP), the Application-specific Policies
(AP), and the Page-specific Policies (PP). A GP describes a
patient’s general preference regarding data sharing and it

148

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

must be applicable to all online applications. To define a GP,
a patient needs to specify data types that a patient allows or
disallows to be monitored across different applications. An
AP is generated for a particular application and it affects all
webpages in an application. Unlike GP and AP that describe
preferences on data types, in a PP, we can describe privacy
policies for designated web objects and values. A PP is
applied to only a particular webpage of an application. To
specify an AP or a PP, a patient needs to enter an
application’s url in a PPoM Browser as shown in Fig. 5. If
two or more policies conflict, then the most specific policy
takes precedence. Note that the prototype of the current
version of the PPoM Browser only supports the APs and the
PPs.

As we can see in Fig. 4, the interface of the previous
prototype displayed many buttons and colorful checkboxes
in one page in order to receive a user’s selection of data and
policy. However, such complicated interface increases task
complexity, and in turn, reduced the usability of the PPoM
Browser. To address the usability issue, we improve the
browser’s interface using dynamic menus. According to the
study of Stefan Leuthold et. al., dynamic menus significantly
reduce task complexity and increase retention rates [10]. By
leveraging the results of the study, the enhanced PPoM
Browser displays a main menu and limited number of sub-
menus, as shown in Fig. 5.

Figure 4. A complex UI of the previous PPoM Browser

The sub-menus displayed in a screen are dynamically
determined depending on a user’s current task and context.
Fig. 5 shows a UI with five sub-menus (e.g., Select All,
Deselect All, Block Selected, and Allow Selected), when a
user clicks the Block Selected button on the main menu to
select data to be protected. By using dynamic menus, the
enhanced PPoM browser can provide more simple and
intuitive interface.

Figure 5. An improved user interface of the PPoM browser that uses dynamic menus

149

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Second, the PPoM Browser displays all data being
monitored when a patient uses an e-health application.
Although a patient agrees to an application’s policies, it is
critical to verify the application’s compliance with the
mutually agreed SLA. To do so, a user needs to turn on the
privacy-preserving mode by clicking the purple icon on the
left top corner and select the Show Data Being Monitored
menu. Then, a patient can easily figure out that what
usage/user data are being monitored.

In the previous prototype, all monitoring data and
recipients are displayed using different-colored checkmarks
in one page as shown in Fig. 4. The red checkmarks mean
that the data are protected and there is no recipient. The
orange checkmarks mean that only the first party (for
example, an e-health application that a patient is using) is
receiving the data. The green checkmarks mean that third
parties (for example, advertisement companies, payment
companies, and other healthcare providers referred by the
first party) are also receiving monitoring data. A summary of
monitoring data, including not only general usage and user
data defined in P3P and but also health-related data defined
in the HIPAA profile, is displayed in the status bar.

a) PPoM Browser displaying no data

b) PPoM Browser displaying the numbers of monitoring data for each data

schema (Health, Dynamics, User, Business, and Third Party)

c) PPoM Browser disaplying all the data being monitored and its recipients

Figure 6. Three different levels of data display on the enhanced PPoM

Browser

As pointed out above, however, displaying different
types of information within a page may increase the task
complexity and cause confusion to non-IT patients.
Therefore, the enhanced browser only shows data that a user
is interested in at that moment, rather than all the monitoring
data. Fig. 6 (a) shows the enhanced browser’s UI that does
not display anything except the PPoM icon on the left top
corner. If a patient does not want to see monitoring data,
he/she can use the browser as an ordinary browser.

When a user needs to check data being monitored, clicks
the icon and then the Show Data being Monitored. Then, the
user can see the number of monitoring data for each data
schema. If a user clicks on a particular schema, then specific
data types are listed. Fig. 6 (b) indicates that three types of
health data (Height, Weight, and Blood Sugar Level) are
being monitored on that page. To check all monitoring data
and recipients regardless of data schema at once, a user
needs to click the See Details, and then a summary will be
popped up, as shown in Fig. 6 (c).

Third, the PPoM Browser enables a patient to stop
monitoring if he/she finds out fraud activities that are against
the patient’s preferences. To this end, a user needs to click
the Block Monitoring in the main menu. Then, the browser
renders all clickable web objects (e.g., buttons and objects
handled by JavaScript click-event handler) and input HTML
elements (e.g., textbox and checkbox), and creates
checkboxes for each of them. By checking or unchecking the
checkmarks, a patient can easily select data. At this time, a
patient has multiple options for selecting objects: 1) select all
clickable and input elements, 2) select all clickable elements,
3) select all input elements, 4) select an individual (clickable
or input) element, or 5) select None. After selecting objects,
the patient must decide whether or not to allow monitoring
on those objects by clicking the Allow Selected button or the
Block Selected button on the sub-menu.

To block monitoring, a PPoM Browser needs to generate
and run JavaScript codes based on a patient’s selection in
real-time. Before explaining the blocking process further, let

150

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

us assume that the main functionalities of an e-health
application do not depend on JavaScript. To block online
monitoring on a particular web element, a PPoM Browser
disables JavaScript event handlers that are associated with
the selected web elements, and in turn, a monitoring
JavaScript using those handlers will be disabled. For
example, if a patient selects the Disabilities textbox and
clicks the Block Selected sub-menu. Then, the following
JavaScript code is generated to disable the PPoM monitoring
JavaScript on the Disabilities textbox (The ID of the textbox
element is “DISABILITIESTXT”): $(“body”).off(“keyup

keypress change click blur”, “#DISABILITIESTXT”).
The generated code then removes five event handlers from
‘DISABILITIESTXT’ element by invoking jQuery off

function. When the blocking code runs, none of monitoring
services obtains data from that textbox.

C. PPoM Tools (PPoMT)

The PPoMT is a server-side toolkit that enables non-IT

healthcare providers to generate application policies and

monitoring codes for their own e-health applications, and in

turn, upgrade their existing applications into a PPoM-

enabled application, without professional skills on

programming and policy languages.

As a feasibility study, we developed a prototype of

PPoMT [1] but there was a usability issue due to high task

complexity. In order to simplify user tasks, we adopt the UI

design rules proposed by Shneiderman [11]. According to

the rules, we use dynamic menus and breaks complicated

tasks (e.g., data selection and policy specification) into

several simple steps using sliders as shown in Fig. 7. The

enhanced PPoMT shows a main menu on the left side and

only if necessary, it presents sub-menus on the top. The

detailed explanation for each component is below.

1) In-Page Selector
The In-Page Selector aims to show selectable HTML

elements in webpages so that an administrator of an e-health
application can select usage/user data to be monitored and
policies corresponding to each web object, each page, or an
entire application. Fig. 7 shows an example execution for the
tracker setup page of the Daily Weight Tracker application.
The selected data and policies are delivered to the Privacy
Policy Generator and the Monitoring Code Generator for
further processing.

2) Monitoring Code Generator
When receiving a set of data to be monitored and

relevant policies, the Monitoring Code Generator produces
privacy-aware monitoring codes for an e-health application.
To this end, it first checks if each element selected has an ID.
If not, it assigns a unique element ID and generates
JavaScript code using the assigned ID. Depending on an
application type, static or dynamic, ID generation processes
are different.

A static application delivers the same HTML code stored
in an application’s server to all users’ browsers, while a
dynamic application dynamically generates HTML codes
with different contents. If an e-health application is a static
application, the Monitoring Code Generator assigns an
absolute ID to an element. Let us assume that a webpage has
several textboxes and its HTML code is shown in Fig. 8 (a).

Figure 7. A screenshot of the enhnaced PPoMT (An administrator of the Daily Weight Tracker application is specifying a page policy for the Current
Weight and the Goal Weight objects).

151

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<body>
Current Weight:<input id="WEIGHT" type="text">lbs.
Height: <input type="text">feet
 <input type="text">inches
Blood Sugar Level: <input type="text"> mg/dL
......

<input id="BUTTON1" type="submit" value="Click to
Sart Weigt Tracker">
</body>

a) A code snippet of the tracker setup page shown in Fig. 6 (a)

<body>
Current Weight:
 <input id="WEIGHT" type="text"> lbs.
Height:
 <input id="PPOM-ELEMENT-0001" type="text"> feet
 <input id="PPOM-ELEMENT-0002" type="text">inches
Blood Sugar Level:
 <input id="PPOM-ELEMENT-0003" type="text"> mg/dL
......
<input id="button1" type="submit" value="Click to
Sart Weigt Tracker">
</body>
<script>

$("#WEIGHT").change(function() {
monitor($(this), "change");

});
$("#PPOM-ELEMENT-0001").change(function() {

monitor($(this), "change");
});
$("#PPOM-ELEMENT-0002").change(function() {

monitor($(this), "change");
});
$("#PPOM-ELEMENT-0003").change(function() {

monitor($(this), "change");
});

$("#BUTTON1").click(function() {

monitor($(this), "click");
});

</script>

b) HTML code converted by the PPoMT in case of a static application

<script>
$("#WEIGHT").change(function()
 { monitor($(this), "change");});
$("input[type='text']:nth-of-type(2)").change(function()

{ monitor($(this), "change");});
$("input[type='text']:nth-of-type(3)").change(function()
 { monitor($(this), "change");});
$("input[type='text']:nth-of-type(4)").change(function()
 { monitor($(this), "change"); });
......
$("#BUTTON1").click(function()
 { monitor($(this), "click"); });
</script>

c) HTML code converted by the PPoMT in case of a dynamic application

Figure 8. An example of application conversion by inserting

monitoring code generated by the Privacy Policy Generator into an exisitng
application code.

In this example, the Current Weight textbox has its ID
("WEIGHT") but other three textboxes (e.g., the feet, the

inches, and the Blood Sugar Level textboxes) do not have
their IDs. If the webpage is a static page, then the
Monitoring Code Generator automatically creates IDs for
three textboxes. For example, "PPOM-ELEMENT-0001", "PPOM-
ELEMENT-0002", and "PPOM-ELEMENT-0003" for the feet, the
inches, and the Blood Type textbox, respectively. The
generated monitoring code using the absolute IDs is shown
in Fig. 8 (b).

On the other hand, if an application is a dynamic
application, a path of an element from a root of a Document
Object Model (DOM) object is used as a unique ID because
an element’s path is unique and unchangeable. As you can
see in Fig. 8 (c), except the pre-defined ID of the Current
Weight textbox, for other three textboxes that do not have
IDs, their paths are used to identify each textbox. For
example, "input[type=text]:nth-of-type(2)" and "input[type=
text]:nth-of-type(3)" for the feet and inches of the Height
textbox and "input[type='text']:nth-of-type(4)" for the Blood
Type textbox. Note that the PPoMT uses the PPoM Service
so privacy-aware monitoring script code is generated as
default, but it is possible to use different monitoring services
such as Google Analytics.

3) Privacy Policy Generator
The Privacy Policy Generator generates an application’s

policies using the HIPAA Profile. To do so, an administrator
needs to enter a url of an application and click Create Policy
Document on the main menu. Alternatively, he/she needs to
click Set Policy For Page after In-Page Selector.

When an administrator selects a web element or a group
of elements, a slider is overlapped as shown in Fig. 7 to
allow him/her to specify a privacy policy about the selected
element(s). Each slide in the slider focuses on one element of
a policy (e.g., Purpose, Non-Identifiable, Recipient,
Retention, Data Category, or Data Type). This approach
significantly reduces task complexity compare to the
previous PPoMT that displayed all child elements in one
page. Such advance in UIs allows more simple and intuitive
use of the PPoMT.

4) Application Converter
This component produces a PPoM-enabled application

by inserting monitoring codes generated by the Monitoring
Code Generator into DOM objects for each webpage in an
application. A conversion process may be different
depending on an application’s type. In case of a static
application, the Application Converter can generate the
updated HTML code systematically. However, the PPoMT
provides monitoring script code only if an application is a
dynamic application. In that case, an administrator must
insert the generated monitoring code into the server-side
program manually.

D. PPoM Service

The PPoM Service provides APIs for privacy-aware
monitoring to applications’ administrators so that they can
embed the APIs in the webpages of their applications. Note

152

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that the APIs enable them to specify the type of data to be
monitored, including health-related data types defined in the
HIPAA Profile. Once deployed in an e-health application, the
APIs check a patient’s user policies, not an application’s
policies, and collect data that the patient allows to disclose. It
does not collect data if a patient prefers not to disclose it,
even if a monitoring code is inserted in webpages. By doing
so, the PPoM Service provides a way to protect a patient’s
privacy from indiscriminate monitoring.

Monitoring data contain general usage data (e.g., device
category, operating systems, event, time, etc.) and user data
including health data. All data collected are encoded in
JavaScript Object Notation (JSON), a lightweight data
interchange format, and sent by a patient’s web browser to
the PPoM Service server. The structure of a JSON
monitoring data is shown in Fig. 9.

[ELEMENT_ID|ELEMENT_PATH] [EVENT_TYPE] [TIME]
[DATA_ TYPE] [DATA] [DEVICE_INFORMATION]

• ELEMENT ID: It is a unique ID of a HTML element.
• ELEMENT_PATH: In case of dynamic webpages, a path

from the root element is used as an ID if an element does not
have ID. The path is unique for each element.

• EVENT_TYPE: It denotes that a type of an event occurred.
The set of event types are as follows: {entering a page,
leaving a page, clicking an element, filling an element}.

• TIME: It denotes the occurring time of an event
• DATA_TYPE: It is a type of monitoring data and it must be

specified based on the data types in the P3P data schema and
the HIPAA Profile.

• DATA: It is an actual value of monitoring data.

• DEVICE_INFORMATION: It includes a device’s category,
operating system, language, and browser information.

Figure 9. The structure of a JSON object for monitoring data

<input id=“bloodtype” type=“text”
 data-type =“health.bloodtype”/>

a) HTML code for the Blood Type textbox

{“ELEMENT_ID”: “bloodtype”,
“EVENT_TYPE”: “TEXTINPUT”,
“TIME”: “2016-07-15T12:45:07”
“DATA_TYPE”: “health.bloodtype”,
“DATA”: “Type A”,
“DEVEICE_INFORMATION”:
 { “DEVICE_CATEGORY”:“DESKTOP”,“OS”: “WINDOWS”,
 “LANGUAGE”: “ENGLISH”,“BROWSER”: “FIREFOX”} }

b) JSON Object of the Raw Monitoring Data

Figure 10. Examples of monitoring data.

Let us assume that a patient enters “A” in the Blood Type
textbox, which its HTML code is shown in Fig. 10 (a). Then,
the monitoring data captured on that textbox is encoded a
JSON object as shown in Fig. 10 (b). At this time, the values
of EVENT, TIME, and DEVICE_INFORMATION are
automatically collected by JavaScript’s Built-in functions.
Note that blood type is one of the health data type defined in
the Health data schema.

To obtain monitoring data, the monitor JavaScript

function presented in Fig. 11 (a) must be embedded in
webpages of an e-health application prior to monitoring.
When a target event is occurred, the monitor function

captures monitoring data and creates a JSON object. To do
so, the function gathers necessary information by using
JavaScript built-in functions and properties. Then, it invokes
the jQuery.ajax function to communicate with the server-

side scripts (the receiveData function shown in Fig. 11

(b)). The jQuery.ajax function converts a JSON object

into a string and sends it to the PPoM Service server through
the HTTP POST method. When receiving a JSON string, the
receiveData PHP module in the PPoM Service server

converts the string into a JSON object and stores monitoring
data in its database as shown in Fig. 12.

function monitor(object, event) {
var monitoredData <= ID, EVENT_TYPE, TIME,
DATA_TYPE, DATA, DEVICE_INFORMATION from the
parameters object and event;
jQuery.ajax({

type: "post",
url: "/PPoM/monitoring.php",
data: JSON.stringify(monitoredData),
contentType:"application/json; ",
dataType: "json" }); }

a) JavaScript Function on the application side

function receiveData($monitoredData) {
$object = json_decode($monitoredData);
$link <= connection to database;
$sql <= create INSERT query to store the

 monitored information ($object)
mysqli_query($link, $sql); }

b) PHP function in the PPoM service

Figure 11. Pseudo code of the PPoM Service that are used on both sides,

the application side and the server side.

Figure 12. Example monitoring data stored in the database of the PPoM

Service

153

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. EVALUATION RESULTS

To test the performance of the prototype, we first develop
two types of sample e-health applications that each has ten
webpages containing different numbers of monitoring
elements without IDs. As the first step, we evaluate the
performance of the PPoMT, the PPoM Browser, and the
PPoM Service, according to the evaluation plans described in
[5].

697

697.5

698

698.5

699

699.5

700

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

KB

Number of Elements

HTML Code Size

0

10

20

30

40

50

60

70

80

90

100
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

KB

Number of Elements

Monitoring Code Size

(a) (b)

0

100

200

300

400

500

600

700

800

900

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

KB

Number of Elements

Total Page Size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Sec.

Number of Elements

Page Loading Time

(c) (d)

Figure 13. Evaluation Results.

As shown in Fig. 13, the size of HTML code that
generated by the Application Converter for dynamic
webpages is zero because the PPoMT will not generate
HTML code for a dynamic application, while the size of
code for static webpages increases linearly as the number of
the monitoring elements increases (see Fig. 13 (a)).

In case of static webpages, the size of the generated
monitoring code remains steady once it reaches a certain size,
even though the number of monitoring elements increases
linearly. However, the size of monitoring code for dynamic
webpages linearly increases according to increase of the
number of monitoring elements (see Fig. 13 (b)). This is
because specifying paths from DOM root is costly,
especially for complex web pages.

As you can see in Fig. 13 (c) and (d), in static webpages,
the number of monitoring elements does not affect the size of
converted webpages and the page loading time. However, in

dynamic webpages, the increase in the number of monitoring
elements affects the page loading time. If a dynamic page is
complex, the loading delay becomes a big obstacle. It is one
of our challenges to find out a way to minimize the loading
delay caused on dynamic webpages.

To evaluate the privacy protection of the PPoM Browser
and the PPoM Service, we generated five hundreds of
different sets of patients’ privacy preferences (i.e., allow or
disallow monitoring on particular web elements) and user
activities on a sample static application (i.e., navigating
webpages, clicking buttons, or entering data in input
elements). Using the sets of synthetic user policies and
activities, we tested the privacy protection on the prototype.
Towards this, we measured two factors: the failure ratio
(c/(a+c) in Table I) and the successful blockade ratio
(h/(g+h) in Table II).

TABLE I. FAILURE RATIO IN THE PPOM SERVICE

 Monitored Not Monitored

Allowed (a) 4,897 (b) 345

Not Allowed (c) 0 (d) 3,477

TABLE II. SUCCESSFUL BLOCKADE RATIO IN THE PPOM BROWSER

 Sent Blocked

Allowed (e) 5,242 (f) 0

Not Allowed (g) 0 (h) 3,477

The failure ratio evaluates privacy protection on the
server side (the PPoM Service server) and the successful
blockade ratio evaluates protection on the client side (the
PPoM Browser). As shown in Table I and II, none of
user/usage data that patients do not allow to be monitored
was captured by the PPoM Service and none of the
unauthorized data was sent from the PPoM Browser.
However, as shown in Table II, we found some data loss in
the PPoM Service server. The PPoM Browser sent 5,242
data (a+b), but the PPoM Server received only 4,897 data
(a). It may be caused by heavy load of transactions or
overheads for checking application policies and user policies.
To figure out the source of the data loss, we will investigate
the prototype’s monitoring service in the future.

V. CONCLUSION

There is an urgent need for privacy protection on e-health
applications. Although e-health applications can help people
access healthcare service in an easy and convenient way at
the reduced cost, many people hesitate to use e-health
applications due to privacy concerns. To address the privacy
issue, we have proposed the Privacy-Preserving online
Monitoring framework, in short PPoM, and developed a
prototype. In this paper, we address the usability issues on
the previous prototype and describe improvements on our
development with detailed examples. To achieve our

: static application

: dynamic application

154

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/security/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ultimate goal, however, the following tasks must be
completed in the future:

• A way to reduce data loss ratio on the PPoM Service.

• A method to reduce the size of the monitoring codes

generated by the PPoMT, especially for dynamic

applications.

• Usability test for the prototype

• Field test with actual patients and e-health applications.

REFERENCES

[1] M. Kim and Y. Jung, “A Development of Privacy-Preserving

Monitoring System for e-Health Applications,” Proc. the 5th

international conference on global health challenges (Global Health

2016), IARIA, October, pp. 64-70, 2016.

[2] J. R. Mayer and J. C. Mitchell, “Third-Party Web Tracking: Policy

and Technology,” Proc. IEEE Symp. on Security and Privacy (SP

'12), IEEE Press, pp. 413-427, 2012.

[3] M. Bilenko and M. Richardson, “Predictive client-side profiles for

personalized advertising,” Proc. ACM SIGKDD conf. on Knowledge

discovery and data mining (KDD '11), ACM New York, pp. 413-421,

2011.

[4] A. McDonald and L. F. Cranor, “Beliefs and Behaviors: Internet

Users' Understanding of Behavioral Advertising,” TPRC 2010 Social

Science Research Network (SSRN), August 16, pp. 1-31, 2010,

Available from http://ssrn.com/abstract=1989092 [retrieved: 1

December, 2017].

[5] Y. Jung, “Toward Usable and Trustworthy Online Monitoring on e-

health Applications,” International Journal On Advances in Life

Sciences, vol. 8, numbers 1 and 2, pp. 122-132, June, 2016

[6] Y. Jung and M. Kim, “HIPAA-Compliant Privacy Policy Language

for e-health Applications,” Proc. the 6th International Conference on

Current and Future Trends of Information and Communication

Technologies in Healthcare, Procedia Computer Science, Vol. 98,

Elsevier, September 19-22, London, United Kingdom, pp. 283-289,

2016.

[7] P3P 1.1. http://www.w3.org/TR/P3P11/ [retrieved: 1 December,

2017].

[8] A P3P Preference Exchange Language (APPEL) version 1.0.

https://www.w3.org/TR/P3P-preferences/ [retrieved: 1 December,

2017].

[9] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “An XPath-based

preference language for P3P,” Proc. the 12th international conference

on World Wide Web (WWW '03), ACM, New York, pp. 629-639,

2003.

[10] S. Leuthold, P. Schmutz, J. A. Bargas-Avila, A. N. Tuch, and K.

Opwis, “Vertical versus dynamic menus on the world wide web: Eye

tracking study measuring the influence of menu design and task

complexity on user performance and subjective preference,” Comput.

Hum. Behav. 27, 1, January, pp. 459-472, 2011.

[11] B. Shneiderman, ”Designing the user interface: strategies for effective

human-computer interaction,” Pearson Education, India, 2010.

