
Proposal and Study on Implementation of Data Eavesdropping Protection Method

over Multipath TCP Communication Using Data Scrambling and Path Dispersion

Toshihiko Kato1)2), Shihan Cheng1), Ryo Yamamoto1), Satoshi Ohzahata1) and Nobuo Suzuki2)

1) Graduate School of Informatics and Engineering

University of Electro-Communications

Tokyo, Japan

2) Adaptive Communications Research Laboratories

Advanced Telecommunication Research Institute International

Kyoto, Japan

kato@is.uec.ac.jp, chengshihan@net.is.uec.ac.jp, ryo_yamamotog@is.uec.ac.jp,

ohzahata@is.uec.ac.jp, nu-suzuki@atr.jp

Abstract— Recent mobile terminals have multiple interfaces,

such as 4G and wireless local area network (WLAN). In order

to use those interfaces at the same time, multipath transmission

control protocol (MPTCP) is introduced in several operating

systems. However, it is possible that some interfaces are

connected to untrusted networks and that data transferred over

them is observed in an unauthorized way. In order to avoid this

situation, we proposed, in our previous paper, a new method to

improve privacy against eavesdropping using the data

dispersion by exploiting the multipath nature of MPTCP. One

feature of the proposed method is to realize that an attacker

cannot observe data on any path, even if he observes traffic over

only a part of paths. Another feature is to use data scrambling

instead of ciphering. In this paper, we present the design of this

method and the results of performance evaluation. Besides, we

discuss how to implement it inside the Linux operating system

kernel, using a kernel debugging mechanism called JProbe.

Keywords- Multipath TCP; Eavesdropping; Data Dispersion;

Data Scrambling; JProbe.

I. INTRODUCTION

This paper is an extension of our previous paper [1], which
was presented in an IARIA conference.

Recently, mobile terminals with multiple interfaces have
come to be widely used. For example, most smart phones are
equipped with interfaces for 4G Long Term Evolution (LTE)
and WLAN. In the next generation (5G) network, it is studied
that multiple communication paths provided multiple network
operators are commonly involved [2]. In this case, mobile
terminals will have more than two interfaces at the same time.

In order for applications to use multiple interfaces
effectively, MPTCP [3] is being introduced in several
operating systems, such as Linux, Apple OS/iOS [4] and
Android [5]. MPTCP is an extension of TCP, and provides
multiple byte streams through different interfaces. It is
designed so as for conventional TCP applications to use
MPTCP as if they were working over traditional TCP.

MPTCP is specified in three request for comments (RFC)
documents provided by the Internet Engineering Task Force.
RFC 6182 [6] outlines architecture guidelines for developing
MPTCP protocols, by discussing the high level design

decisions on selecting the protocol functions from multiple
candidates. RFC 6824 [7] presents the details of extensions to
the traditional TCP to support multipath operation. It defines
the MPTCP control information realized as new TCP options,
and the MPTCP protocol procedures for the initiation and
association of subflows (TCP connections related with an
MPTCP connection), the data transfer and acknowledgment
over multiple subflows, and the closing MPTCP connection.
RFC 6356 [8] presents a congestion control algorithm that
couples the congestion control algorithms running on different
subflows.

When a mobile terminal uses multiple interfaces, i.e.,
multiple paths, some of them may be unsafe such that an
attacker is able to observe data over them in an unauthorized
way. For example, a WLAN interface is connected to a public
WLAN access point without any encryption at the WLAN
level, data transferred over this WLAN may be disposed to
other nodes connected to it. In order to prevent this
eavesdropping, the transport layer security (TLS) is used to
provide communication security. Although TLS can be
applied to various applications including web access, e-mail
and ftp, however, it is widely used only with HTTP, and some
applications like VoIP cannot use TLS.

In order to avoid this eavesdropping, we proposed another
approach to improve privacy against eavesdropping by
exploiting the multipath nature of MPTCP. We called this
approach a not-every-not-any protection, in our previous
paper [1]. Even if an unsafe WLAN path is used, another path
may be safe, such as LTE supported by a trusted network
operator. So, the proposed method is such that if an attacker
cannot observe the data on every path, he cannot observe the
traffic on any path [9]. The feature of the proposed method is
to adopt the not-every-not-any protection, and to use the data
scrambling instead of ciphering.

In this paper, we present the proposed method in detail,
and show the results of processing overhead of the data
scrambling/descrambling in the proposed method, and the
conventional encryption/decryption methods. We also
discuss a study on how the proposed method is implemented
in the MPTCP program inside the Linux operating system
kernel.

118

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The rest of this paper is organized as follows. Section II
explains the overview [10] and the security issues of MPTCP.
Section III describes the design of the proposed method
protecting against eavesdropping. Section IV gives the
performance evaluation on the processing overhead of the
proposal method and other ciphering methods. Basically, the
content in Sections II through IV comes from our previous
paper [1]. Section V shows a study on how to implement the
proposed method inside the Linux operating system kernel. In
the end, Section VI concludes this paper.

II. OVERVIEW AND SECURITY ISSUES OF MPTCP

A. MPTCP connections and subflows

As described in Figure 1, the MPTCP module is located
on top of TCP. As described above, MPTCP is designed so
that the conventional applications do not need to care about
the existence of MPTCP. MPTCP establishes an MPTCP
connection associated with two or more regular TCP
connections called subflows. The management and data
transfer over an MPTCP connection is done by newly
introduced TCP options for MPTCP operation.

Figure 2 shows an example of MPTCP connection
establishment where host A with two network interfaces
invokes this sequence for host B with one network interface.
In the beginning, host A sends a SYN segment to host B with
a Multipath Capable (MP_CAPABLE) TCP option. This
option indicates that an initiator supports the MPTCP
functions and requests to use them in this TCP connection. It
contains host A’s Key (64 bits) used by this MPTCP
connection. Then, host B replies a SYN+ACK segment with
MP_CAPABLE option with host B’s Key. This reply means
that host B accepts the use of MPTCP functions. In the end,
host A sends an ACK segment with MP_CAPABLE option
including both A’s and B’s Keys. Through this three-way
handshake procedure, the first subflow and the MPTCP
connection are established. Here, it should be mentioned that
these “Keys” are not keys in a cryptographic sense. As
described below, they are used for generating the Hash-based

Message Authentication Code (HMAC), but MPTCP does not
provide any mechanisms to protect them from attackers’
accessing while transfer.

Next, host A tries to establish the second subflow through
another network interface. In the first SYN segment in this
try, another TCP option called a Join Connection (MP_JOIN)
option is used. An MP_JOIN option contains the receiver’s
Token (32 bits) and the sender’s Nonce (random number, 32
bit). A Token is an information to identify the MPTCP
connection to be joined. It is obtained by taking the most
significant 32 bits from the SHA-1 hash value for the
receiver’s Key (host B’s Key in this example). Then, host B
replies a SYN+ACK segment with MP_JOIN option. In this
case, MP_JOIN option contains the random number of host B
and the most significant 64 bits of the HMAC value. An
HMAC value is calculated for the nonces generated by hosts
A and B using the Keys of A and B. In the third ACK segment,
host A sends an MP_JOIN option containing host A’s full
HMAC value (160 bits). In the end, host B acknowledges the
third ACK segment. Using these sequence, the newly
established subflow is associated with the MPTCP connection.

B. Data transfer

An MPTCP implementation will take one input data
stream from an application, and split it into one or more
subflows, with sufficient control information to allow it to be
reassembled and delivered to the receiver side application
reliably and in order. The MPTCP connection maintains the
data sequence number independent of the subflow level
sequence numbers. The data and ACK segments may contain
a Data Sequence Signal (DSS) option depicted in Figure 3.

The data sequence number and data ACK is 4 or 8 byte
long, depending on the flags in the option. The number is
assigned on a byte-by-byte basis similarly with the TCP
sequence number. The value of data sequence number is the
number assigned to the first byte conveyed in that TCP
segment. The data sequence number, subflow sequence
number (relative value) and data-level length define the
mapping between the MPTCP connection level and the
subflow level. The data ACK is analogous to the behavior of
the standard TCP cumulative ACK. It specifies the next data
sequence number a receiver expects to receive.

C. Security issues on MPTCP and related work

Some new security issues emerge by the introduction of
MPTCP [8]. One is a new threat that an attacker splits
malicious data over multiple paths. Traditional signature-
based intrusion detection systems (IDSs) suppose that they
can monitor all packets of a given flow. If a target system uses

Figure 1. Layer structure of MPTCP.

Host A
Address A1 Address A2

Host B
Address B

 SYN (MP_CAPABLE [Key-A])
 SYN+ACK (MP_CAPABLE [Key-B])

 ACK (MP_CAPABLE [Key-A, Key-B])
 SYN (MP_JOIN

[Token-B, Nonce-A])

 SYN+ACK (MP_JOIN
[HMAC-B, Nonce-B])

 ACK (MP_JOIN [HMAC-A])
 ACK

Figure 2. Example of MPTCP connection establishment.

 Application

MPTCP

Subflow (TCP) Subflow (TCP)

IP IP

Kind (= 30) Length
Subtype

(= 2)
Flags

Data ACK (4 or 8 octets, depending on flags)

Data sequence number (4 or 8 octets, depending on flags)

Subflow sequence number (4 octets)

Data-level length (2 octets) Checksum (2 octets)

Figure 3. Data Sequence Signal option.

119

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MPTCP and an attacker sends signatures over different
subflows, IDSs cannot detect them. Ma et al. [11] proposed a
new approach for this problem, where each IDS locally scans
and processes its monitored traffic, and all IDSs share
asynchronously a global state of string matching automaton.

Another issue is related to MPTCP and privacy. MPTCP
has a potential to provide improved privacy against attackers
who are able to observe or interfere with subflow traffic along
a subset of paths. Dispersing traffic over multiple paths makes
it less likely that attackers will get access to all of the data.
Pearce and Zeadally [9] suggested the concept of the not-
every-not-any protection and introduced some ideas including
sending cryptographic signing details using multiple paths and
applying cryptographic chaining, such as cipher block
chaining (CBC), across multiple paths.

There have been several proposals on the data dispersion
over multiple paths. Yang and Papavassiliou [12] provided a
method to analyze the security performance when a virtual
connection takes multiple disjoint paths to the destination, and
a traffic dispersion scheme to minimize the information
leakage when some of the intermediate routers are attacked.
Nacher et al. [13] tried to determine the optimal trade-off
between traffic dispersion and TCP performance over mobile
ad-hoc networks to reduce the chances of successful
eavesdropping while maintaining acceptable throughput.
These two studies use multiple TCP connections by their own
coordination methods instead of MPTCP. Gurtov and
Polishchuk [14] used host identity protocol (HIP), which
locates between IP and TCP to provide multiple paths, and
propose how to spread traffic over them. Apiecionek et al.
[15] proposed a way to use MPTCP for more secure data
transfer. After data are encrypted, they are divided into blocks,
mixed in the predetermined random sequence, and then
transferred through multiple MPTCP subflows. A receiver
rearranges received blocks in right order and decrypts them.

All of those proposals aim at just spreading data packets
over multiple paths, and do not consider the coordination over
multiple paths. If the transferred data are encrypted before
dispersion, it can be said that they are coordinated by the
encryption procedure, but the coordination is not realized by
the dispersion schemes. In contrast with them, our proposal
adopts an approach to improve privacy by coordinating data
over multiple paths through data scrambling not encryption.

III. PROPOSAL

A. Requirements and possible approaches

The following are the requirements for designing a not-
any-not-every protection method protecting eavesdropping.
 The method needs to cope with two way data exchanges

within one MPTCP connection.
 The length of exchanged data should not be expanded.
 Even if there are any bytes with known values, such as

fixed bytes in an application protocol header, the method
provides protection from information leakage.

 The method does not introduce any new overheads into
MPTCP as much as possible.

 The method does not change the behaviors of MPTCP as
much as possible.

In designing the proposed method, we have considered the
following possible candidates.

(1) Secret sharing method
The secret sharing method is to divide data D into n pieces

in such a way that D is easily reconstructed from any k pieces,
but even complete knowledge of k -1 pieces reveals absolutely
no information about D [16]. Shamir [16] gave an example
method based on polynomial interpolation. It is possible to
apply the idea of secret sharing to data transfer. Zhao et al.
[17] proposed an efficient anonymous message submission
protocol based on secret sharing and a symmetric key
cryptosystem. It aggregates messages of multiple members
into a message vector such that a member knows only his own
position in the submission sequence.

Figure 4 shows an idea of applying secret sharing to the
eavesdropping protection. It supposes the case that n = 2 and
k = 2. Pieces D1 and D2 are generated from an original data
and transferred through different paths. An attacker can
access only D2 over an untrusted path, and so he cannot obtain
the original data. In this approach, however, the amount of
transferred data is increased, twice in this example.

(2) Network coding
The second candidate is the network coding [18]. In this

framework, the exclusive OR (XOR) is calculated among
multiple packets and the result is transferred instead of packets
themselves. Ahlswede et al. [18] mentioned that by
employing coding at network nodes, which they referred to as
network coding, it is possible to save bandwidth in general. Li
et al. [19] proposed a network coding based multipath TCP
(NC-MPTCP), which uses the mix of regular subflows,
delivering original data, and network coding subflows, which
deliver linear combinations of original data. NC-MPTCP

Figure 4. Secret sharing based approach.

data A
A B receiver

A

A B

trusted

untrusted

sender

data B

Figure 5. Network coding based approach.

A

receiver

trusted

untrusted

sender

IV

data 1

B C

data 2

D

IV A A B

IV A A B

B C C D B C C D

Figure 6. Block ciphering based approach.

data
D1

D2

receiver

D1

D2

trusted

untrusted

sender

120

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

achieves higher goodput compared to MPTCP in the presence
of different subflow qualities.

Figure 5 shows an idea of applying network coding to the
eavesdropping protection. Using data A and B, their XOR
(A⊕ B) is calculated. Through a trusted path, an original data
A is transferred, and through an untrusted path, A⊕ B is
transferred. Since an attacker observes only A⊕ B, he cannot
obtain data B without knowledge of data A. This idea can be
said a packet level data scrambling. Although it can provide
the not-every-not-any protection, it introduces an additional
overhead due to the variable length packets, and an additional
control in MPTCP, such as sending XOR data only over an
untrusted path.

(3) Mode of operation in block ciphering
The third candidate is the mode of operation, such as CBC

and output feedback (OFB), used in block ciphering [20]. The
block cipher defines only how to encrypt or decrypt a fixed
length bits (block). A mode of operation defines how to apply
this operation to data longer than a block. CBR and OFB
introduce a chaining between blocks such that a block is
combined with the preceding block by XOR calculation.

Figure 6 shows an idea of applying mode of operation to
the eavesdropping protection. Data to be sent (data 1 and 2)
are divided into blocks (A through D). The first block is
XORed with the initialization vector (IV), and the following
blocks are XORed with their preceding blocks. The XORed
results are transferred via different paths. In the example, an
attacker can only observe B⊕ C and C⊕ D, and does not
know block B, which is transferred through a trusted path. So,
he cannot obtain C and D any more. This idea can be said a
block level data scrambling. Although it can provide the not-
every-not-any protection, it introduces an additional data
overhead because the length of packets is not integral multiple
of block length in general.

According to those considerations, we select a byte stream
based data scrambling approach described below that avoids
the issues of the approaches described so far.

B. Detailed design of proposed method

As shown in Figure 7, we introduce a data scrambling
function within MPTCP and on top of the original MPTCP.
When an MPTCP communication is started, the use of data
scrambling is negotiated. It may be done using a flag bit in
MP_CAPABLE TCP option.

Figure 8 shows an overview of data scrambling. In the
data sending side, an application sends data to MPTCP. It is
stored in the send socket buffer, and the data scrambling
module scrambles it in a byte-by-byte basis. The result is
stored in the send socket buffer again. The data in this buffer
is transferred reliably by MPTCP. While sending data,
MPTCP tries to send the first packet over an MPTCP
connection via a subflow that uses a trusted path. After that,
the data transfer by MPTCP is performed according to its
native scheduler. We suppose that the distinction of trusted or
untrusted path can be done by the IP address of interfaces. In
the data receiving side, data is transferred through MPTCP
without any losses, transmission errors, nor duplications. The
received in-sequence data is stored in the receive socket buffer.

After that, the data descrambling module is invoked to restore
the scrambled data to the original one.

Figure 9 shows the details of data scrambling. As
described above, the scrambling is performed in a byte-by-

original MPTCP

Subflow (TCP) Subflow (TCP)

Data Scrambling
M
P
T
C
P

Figure 7. Layer structure of MPTCP with data scrambling.

Send socket
buffer

Data Scrambling

original MPTCP

trusted path
untrusted

path

Receive socket
buffer

Data
Descrambling

original MPTCP

trusted path
untrusted

path
 (a) Sending data (b) Receiving data

Figure 8. Overview of data scrambling processing.

sending data

XOR　　　　・・・

send scramble buffer

scrambled sending data

XOR

・・・ ・・・

・・・ ・・・

　　　　・・・

・・・ ・・・

sending data

send scramble buffer

(a) Scrambling

(b) Adding sending byte to scramble buffer

bi

bi

Bi

bi

Figure 9. Procedure of data scrambling.

scrambled received data

XOR　　　　・・・

receive scramble buffer

received data

XOR

・・・ ・・・

・・・ ・・・

　　　　・・・

・・・ ・・・

received data

receive scramble buffer

(a) Descrambling

(b) Adding received byte to scramble buffer

bi

Bi

bi

bi

Figure 10. Procedure of data descrambling.

121

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

byte basis. More specifically, one byte being sent is XORed
with its preceding 64 bytes. In order to realize this scrambling,
the data scrambling module maintains the send scrambling
buffer, whose length is 64 bytes. It is a shift buffer and its
initial value is the Key of this side. Since the length of the
Key is 8 bytes, the higher bytes in the send scrambling buffer
is filled by zero. When a data comes from an application, each
byte (bi in the figure) is XORed with the result of XOR of all
the bytes in the send scrambling buffer. The obtained byte
(Bi) is the corresponding sending byte. After calculating the
sending byte, the original byte (bi) is added to the send
scramble buffer, forcing out the oldest (highest) byte from the
buffer. The send scrambling buffer holds recent 64 original
bytes given from an application. By using 64 byte buffer, the
access to the original data is protected even if there are well-
known byte patterns (up to 63 bytes) in application protocol
data.

Figure 10 shows the details of data descrambling, which is
similar with data scrambling. The data scrambling module
also maintains the receive scramble buffer whose length is 64
bytes. Its initial value is HMAC of the key of the remote side.
When an in-sequence data is stored in the receive socket
buffer, a byte (Bi that is scrambled) is applied to XOR
calculation with the XOR result of all bytes in the receive
scramble buffer. The result is the descrambled byte (bi),
which is added to the receive scramble buffer.

By using the byte-wise scrambling and descrambling, the
proposed method does not increase the length of exchanged
data at all. The separate send and receive control enables two
way data exchanges to be handled independently. Moreover
the proposed method introduces only a few modification to
the original MPTCP.

C. Discussions

We need to discuss here about the security scheme of the
proposed method. The proposed method does not use the data
ciphering, and so it does not protect eavesdropping in a strict
sense. It depends on the difficulty of unauthorized data access
over networks provided by trusted operators. That is, the
intrusion model is that an attacker can access only untrusted
networks, such as public access point based WLANs, but
he/she cannot access to trusted networks.

We also need to point out that the proposed method gives
a small modification to MPTCP. It uses the HMAC value of
sender side Key as an initial value of XORing, which means
that no additional vulnerabilities are introduced for the
initialization vector setting. Besides, as for the dependency
between multiple paths that a byte cannot obtained only after
the precedence bytes are received, it is intrinsic to MPTCP and
is not a defect of the proposed method itself.

Another feature of the proposed method is that it does not
introduce any additional control information at all. It just
performs XORing a sending byte with bytes in the send
scramble buffer. Even if data sending and data receiving are
interleaved, the sending byte stream is focused and XORed
beyond data receiving. The fact that data is delivered in
sequence is assured by MPTCP, because the scrambling is
done before data sending, and the descrambling is done after
data receiving according to MPTCP.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the processing overhead of the
proposed method. In addition, we evaluate the overhead of
commonly used cryptographic methods for the purpose of
comparison. We adopt the data encryption standard (DES)
[21], the triple data encryption algorithm (TDEA) [21], and
the advanced encryption standard (AES) [22].

DES is a block based ciphering algorithm standardized by
the National Institute of Standards and Technology (NIST). It
is designed to encipher and decipher of blocks of data
consisting of 64 bits (8 bytes) under control of a 64 bit (8 byte)
key. Currently, it has been withdrawn as a standard ciphering
method, but the TDEA, a compound operation of DES
encryption and decryption operations, can be used as one of
cipher suites in TLS.

AES is another block based ciphering algorithm newly
standardized by NIST in 2001. It is a symmetric block cipher
that can process data blocks of 128 bits (16 bytes), using
cipher keys with lengths of 128, 192, and 256 bits (16 bytes,
24 bytes, and 32 bytes, respectively).

In this paper, we used publicly available source programs
for DES and AES [23] distributed by PJC, a Japanese software
company. They are written in C language. As for the DES

algorithm, we prepared 160 blocks (8 × 160 = 1280 bytes)

and performed encryption and decryption for those blocks
with the electronic codebook (ECB) mode. That is, each
block is just encrypted and decrypted independently from
other blocks. As for the TDEA algorithm, each of 160 blocks
is encrypted or decrypted three times according to the DES
algorithm with independent three keys. As for the AES

algorithm, we prepared 80 blocks (16 × 80 = 1280 bytes) and

used keys with 128, 192 and 256 bit length (AES-128, AES-
192 and AES-256). We also used the ECB mode here. It
should be mentioned that we suppose 1280 byte long message
to be transferred.

As for the proposed method, we introduced two kinds of
implementations. One is a straightforward implementation,
where the proposed method described in the previous section
is programmed in C language as they are. The following are
the summary of the straightforward implementation.
 The send/receive scramble buffers are realized by an

array of unsigned char type.
 When a byte is scrambled or descrambled, the exclusive

OR of all bytes in the scramble buffer is calculated.
 When a byte is scrambled or descrambled, it is added to

the scramble buffer by shifting all bytes in the buffer.
The other is a revised implementation, where unnecessary

data copying nor exclusive OR calculation are avoided. The
following are the summary of the revised implementation.
 The send/receive scramble buffers are realized as ring

buffers, by an array of unsigned char type (sScrBuf[]

and rScrBuf[]). In order to avoid unnecessary data
copying, the last element (newest element) in the ring

buffer is maintained by an index parameter (sIndex or

rIndex).
 The exclusive OR calculation for all bytes in the

scramble buffer is performed just once in the beginning.

122

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This result is maintained by a static variable sXor or

rXor.
 When a byte is to be scrambled or descrambled, the static

variable (sXor or rXor) is overwritten by the
exclusive OR of the oldest element in the scramble

buffer, sXor (or rXor) and the new byte.
 When a byte is to be scrambled or descrambled, it is

added to the scramble buffer just by moving the index

parameter (sIndex or rIndex).
By use of these two implementations, we executed the data

scrambling and descrambling for a message with length of
1280 bytes.

We evaluated the performance of those seven methods
(DES, TDEA, AES-128, AES-192, AES-256, the proposed
method by straightforward implementation, and the proposed
method by revised implementation). Table I shows the
specification of personal computer used for the evaluation. It
is a laptop computer manufactured by Lenovo over which the
Linux operating system is installed. We measured the
processing time of the encryption and decryption, or the
scrambling and descrambling for a message with 1280 byte

length. We used Linux time command for 10,000 iterations,
and calculated the processing time for one operation.

Table II gives the performance results. The encryption
and decryption of the DES and AES-128 algorithms require
around 2.2 or 2.3 msec. The AES-192 and AES-256
algorithms requires a little more time. The TDEA algorithm
requires around 6.7 msec, which is about three time of the
DES algorithm. We need to say that we also evaluated the
performance of the DES and AES with cipher block chaining
(CBC) mode, and obtained the result that the processing time
is almost the same with ECB mode.

On the other hand, the straightforward implementation of
the proposed method requires around 1 msec. This is smaller
than the cryptographic approaches, but the improvement is not
large. However, the revised implementation of the proposed
method decreases the processing time largely, to around 0.04
msec. It is less than 1/60 compared with the DES and AES
algorithms. Although the implementation of DES and AES
algorithms is a publicly accessible software, which may be
optimized adequately, the obtained results are considered to

show that the proposed method is able to decrease the
processing overhead of ciphering operations and to provide
some level of security against the eavesdropping over
untrusted paths in MPTCP communications.

V. STUDY ON IMPLEMENTATION

A. How to modify Linux operating system

Since MPTCP is implemented inside the Linux operating
system, the proposed method also needs to be realized by
modifying operating system kernel. However, modifying an
operating system kernel is hard task, and so we decided to use
a debugging mechanism for the Linux kernel, called kernel
probes [24].

The following are cited from [24]. A kernel probe is a set
of handlers placed on a certain instruction address. There are
two types of probes in the kernel as of now, called "KProbes"
and "JProbes." A KProbe is defined by a pre-handler and a
post-handler. When a KProbe is installed at a particular
instruction and that instruction is executed, the pre-handler is
executed just before the execution of the probed instruction.
Similarly, the post-handler is executed just after the execution
of the probed instruction. JProbes are used to get access to a
kernel function's arguments at runtime. A JProbe is defined
by a JProbe handler with the same prototype as that of the
function whose arguments are to be accessed. When the
probed function is executed the control is first transferred to
the user-defined JProbe handler, followed by the transfer of
execution to the original function.

Figure 11 shows a schematic explanation of JProbe. We

assume that there is function a_func() inside the Linux
kernel, whose symbol is exported. A user may define JProbe

handler ja_func() whose arguments are exactly the same

as a_func(). When the Linux kernel is going to call

a_func(), ja_func() is executed in the beginning of

a_func(). When ja_func() returns, the kernel executes

a_func(). In order to make this mechanism work, a user
needs to prepare the following;

 registering the entry by struct jprobe and
 defining the init and exit modules by functions

register_jprobe() and unregister_jprobe

()[25].
A famous example of JProbe is tcpprobe [26] used to collect
TCP sender internal information such as a TCP congestion
window value.

B. Design principles

We adopted the following design principles to implement
the proposed method inside the Linux kernel.

TABLE I. SPECIFICATION OF PC USED IN EVALUATION.

model

CPU

clock

memory size

kernel

lenovo ThinkPad E430

Intel Core i5-3230M CPU×4

2.60GHz

3.7 Gbytes

ubuntu 16.04 LTS

TABLE II. PROCESSING TIME OF 1280 BYTE MESSAGE.

DES TDEA
AES-
128

Proposed
(straight)

Proposed
(revised)

2.24
msec

6.69
msec

2.29
msec

0.950
msec

0.0352
msec

AES-
192

2.80
msec

AES-
256

3.40
msec

Figure 11. Schematic explanation of JProbe.

Linux kernel

a_func(args)

ja_func(args)

123

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Use the JProbe mechanism as much as possible.

In the Linux kernel, function tcp_sendmsg() is
called when a user process tries to send data to MPTPCP
(actually TCP, too) [27]. So, we define a JProbe handler
for this function in order to scramble data to be
transferred. On the other hand, function

tcp_recvmsg() is called when a user process is
going to receive data from MPTCP. In this case,
however, the descrambling procedure needs to be done
in the end of this function. So, we introduce a dummy
kernel function and export its symbol. We then
introduce a JProbe handler for descrambling. By
adopting this approach, we can program and debug
scrambling/descrambling independently of the Linux
kernel itself.

 Maintain control variables within socket data structure.
In order to perform the scrambling/descrambling, the
control variables described in the previous section, such

as sScrBuf[64] and sXor, need to be installed
within the Linux kernel. The TCP software in the kernel
uses a socket data structure to maintain internal control
data on an individual TCP / MPTCP connection [27]. So,
we add the control variables for data scrambling to this
data structure. Although the kernel modification and
rebuild are required, we believe that to insert some
variables is an easy task and therefore frequent
debugging and rebuilding are not necessary.

C. Detailed design

(1) How to insert control variables in socket data structure

As described above, function tcp_sendmsg() is called
at data sending. Its prototype in Ubuntu 16.04 LTS is;

tcp_sendmsg(struct sock *sk, struct

msghdr *msg, size_t size).

Here, struct sock is a type of socket data structure. In

the beginning of this function, sk is converted to type

struct tcp_sock in the following way.

struct tcp_sock *tp = tcp_sk(sk);

struct tcp_sock is a type of TCP socket data structure

maintaining TCP related members like rcv_nxt, which is
sequence number of a byte to be expected to receive next, and

snd_nxt, which is sequence number of a byte to be sent next.
It also includes a control information on MPTCP like

struct mptcp_cb *mpcb;.

Structure struct mptcp_cb includes MPTCP related

information including keys and tokens like __u64

mptcp_loc_key; (local key) and __u32

mptcp_loc_token; (local token). Based on these
considerations, we decided to insert control variables for data

scrambling within structure struct mptcp_cb in a way

shown in Figure 12. When tcp_sendmsg() is called, we

can access to these variables in a way like tp->mpcb-

>sXor. It should be noted that sFirst and rFirst
indicate whether the scrambling and descrambling is
performed at first or not in this MPTCP connection,
respectively.

(2) How to implement scrambling
(2-1) Overview

Figure 13 shows an overview program structure to
implement scrambling using JProbe handler

jtcp_sendmsg(). As described in the previous

subsection, jtcp_sendmsg() is declared so as to have the

same arguments as tcp_sendmsg(), as shown in part (i) in
the figure. Part (ii) in the figure shows a data structure
registering an entry point of the JProbe hander and its related
symbol name. Parts (iii) and (iv) are the initialization and exit
functions, respectively.

We need to explain about the second argument of

jtcp_sendmsg(). Structure struct msghdr has a
linked data structure maintaining one or more members, each

of which is expressed by structure struct iovec,

including pointer to data (iov_vase) and its length

(iov_length). iov_for_each() is a macro for
traversing individual members, and can be used as a for
statement in C language.

Figure 12. Control variables for data scrambling.

struct mptcp_cb {
. . . .
unsigned char sScrBuf[64], rScrBuf[64];

unsigned char sXor, rXor;
int sIndex, rIndex, sFirst=1, rFirst=1;

};
Figure 13. Overview on how to implement scrambling in

tcp_sendmsg().

int jtcp_sendmsg(struct sock *sk,

 struct msghdr *msg, size_t size) {

 struct tcp_sock *tp = tcp_sk(sk);

 struct iov_iter iter;

 struct iovec iov;

 if(tp->mpcb->sFirst) scramble_init(tp);

 iov_for_each(iov, iter, msg->msg_iter) {

 scramble(tp, iov.iov_base, iov.iov_len);

 }

 jprobe_return();

 return 0;

} // (i) JProbe handler

static struct jprobe tcp_sendmsg_jprobe = {

 .kp = {.symbol_name = "tcp_sendmsg",},

 .entry = jtcp_sendmsg,

}; // (ii) Register entry

static __init int jtcp_sendmsg_init(void) {

 ret= register_jprobe(&tcp_sendmsg_jprobe);

 if (ret < 0) return -1;

 return 0;

} // (iii) Init function

module_init(jtcp_sendmsg_init);

static __exit void jtcp_sendmsg_exit(void) {

unregister_jprobe(&tcp_sendmsg_jprobe);

} // (iv) Exit function

module_exit(jtcp_sendmsg_exit);

124

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In function jtcp_sendmsg(), control variable tp-

>mpcb->sFirst is checked in the beginning and, if it is 1,

function scramble_init() is called. After that, function

scramble() is called for each data contained in msg.

(2-2) Detailed design for scrambling
Figure 14 shows an example of program code for functions

scramble_init() and scramble().

scramble_init() is called with an argument tp, which

is a pointer to struct tcp_sock data structure. By

functions memset() and memcpy(), the send scramble

buffer tp->mpcb->sScrBuf[64] is initialized so as to
contain the local Key in this MPTCP connection. Then, the
XOR result for all bytes in the send scramble buffer is stored

in control variable tp->mpcb->sXor. After that, the index
parameter indicating the end of the send scramble buffer is

settled and tp->mpcb->sFirst is reset.

Function scramble() performs the scrambling

procedure for data pointed by argument data whose length

is len. In this function, each byte in data is XORed with

tp->mpcb->sXor, and index parameter tp->mpcb-

>sIndex is shifted by one. Then, tp->mpcb->sXor is
updated by XORing itself, a byte that is stored in the newly
indexed position, and a byte being scrambled (original byte).
After that, the original byte is stored in a newly indexed

position in the send scramble buffer. In the end, data is
changed by the XORed byte for sending.

(3) How to implement descrambling
As mentioned in the previous subsection, the descramble

procedure needs to be implemented at the end of function

tcp_recvmsg(). In order to realize the descrambling
procedure by the JProbe mechanism, we introduced dummy

function dummy_recvmsg() just before returning from

tcp_recvmsg(). This is shown in Figure 15. For this

function, JProbe handler jdummy_recvmsg() is
implemented in a similar way with the scrambling procedure.

VI. CONCLUSIONS

This paper proposes a new method to improve privacy
against eavesdropping over MPTCP communications, which
has become popular among recent mobile terminals. Recent
mobile terminals have multiple communication interfaces,
some of which are connected to trusted network operators
(e.g., LTE interfaces), and some of which may be connected
to untrusted network, such as public WLAN hot spots. The
proposed method here is based on the not-every-not-any
protection principle, where, if an attacker cannot observe the
data on every path, he cannot observe the traffic on any path.
We designed a detailed procedure by following the byte
oriented data scrambling in order to avoid unnecessary data
length expansion.

We evaluated the processing overhead of the DES, TDEA
and AES encryption/decryption and that of data scrambling in
the proposed method. The result showed that the optimized
implementation of our method requires only less than 1/60
processing time compared with the cryptographic approaches.
Although the proposed method is a practical solution, as
described above, the processing capability of mobile terminals
is still low, and so our proposal is considered to be useful to
increase the security against eavesdropping over untrusted
mobile communication networks.

Moreover, we discussed how to implement the proposed
method in the Linux operating system. We explained about a
kernel debugging mechanism called JProbes, which is used to
implement tcpprobe. We showed how to make program codes,
especially focusing on how to realize the control parameters
in the socket data structure and on how to realize the
scrambling and descrambling procedures in the JProbe
handlers.

We are currently implementing the proposed method on
top of MPTCP software in the Linux operating system. We
will continue this implementation and conduct the
performance evaluation over real networks. Moreover, the
proposed method can only prevent eavesdropping, and cannot
ensure the integrity of transferred data. We need to improve
our method in this aspect.

Figure 14. Program code for scrambling.

void scramble_init(struct tcp_sock *tp) {

int i;
unsigned char x;

 memset(tp->mpcb->sScrBuf, 0, 64);
 memcpy(&tp->mpcb->sScrBuf[56],

&tp->mpcb.mptcp_loc_key, 8);

 for(i=0,x=0;i<64;i++)
 x = x ^ tp->mpcb->sScrBuf[i];
 tp->mpcb->sXor = x;
 tp->mpcb->sIndex = 63;

 tp->mpcb->sFirst = 0;

 return;
}

void scramble(struct tcp_sock *tp,
unsigned char *data, size_t len) {

 int i;
unsigned char x;

 for(i=0;i<len;i++) {
 x = data[i] ^ tp->mpcb->sXor;
 tp->mpcb->sIndex = (tp->mpcb->sIndex+1)%64;

tp->mpcb->sXor = tp->mpcb->sXor

 ^ tp->mpcb->sScrBuf[tp->mpcb->sIndex]
 ^ data[i];
 tp->mpcb->sScrBuf[tp->mpcb->sIndex] = data[i];

 data[i] = x;
}

 return;
}

Figure 15. JProbe handler for data descrambling.

int tcp_recvmsg(struct sock *sk, struct msghdr *msg,

 size_t len, int nonblock,int flags, int *addr_len) {

 struct tcp_sock *tp = tcp_sk(sk);

. . . .

 release_sock(sk);

 dummy_recvmsg(sk, msg, len, nonblack, flags, addr_len);

 return copied;

} // dummy_recvmsg() inserted

EXPORT_SYMBOL(tcp_recvmsg);

void dummy_recvmsg(struct sock *sk, struct msghdr *msg,

size_t len, int nonblock, int flags, int *addr_len)

{

 return;

} // Defining dummy_recvmsg()

EXPORT_SYMBOL(dummy_recvmsg);

125

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This research was performed under the research contract
of “Research and Development on control schemes for
utilizations of multiple mobile communication networks,” for
the Ministry of Internal Affairs and Communications, Japan.

REFERENCES

[1] T. Kato, S. Cheng, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Protecting Eavesdropping over Multipath TCP Communication Based
on Not-Every-Not-Any Protection,” in Proc. SECURWARE 2017, pp.
82-87, Sep. 2017.

[2] NGNM Alliance, “5G White Paper,” https://www.ngmn.org/5g-white-
paper/5g-white-paper.html, [retrieved: May 2018].

[3] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications of
the ACM, vol. 57, no. 4, pp. 51-57, Apr. 2014.

[4] AppleInsider Staff, “Apple found to be using advanced Multipath TCP
networking in iOS 7,” http://appleinsider.com/articles/13/09/20/apple-
found-to-be-using-advanced-multipath-tcp-networking-in-ios-7,
[retrieved: May 2018].

[5] icteam, “MultiPath TCP – Linux Kernel implementation, Users::
Android,” https://multipath-tcp.org/pmwiki.php/Users/Android,
[retrieved: May 2018].

[6] A. Ford, C.Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” IETF RFC 6182, Mar.
2011.

[7] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” IETF RFC 6824,
Jan. 2013.

[8] C. Raiciu, M. Handley, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” IETF RFC 6356, Oct. 2011.

[9] C. Pearce and S. Zeadally, “Ancillary Impacts of Multipath TCP on
Current and Future Network Security,” IEEE Internet Computing, vol.
19, iss. 5, pp. 58-65, Sept.-Oct. 2015.

[10] T. Kato, M. Tenjin, R. Yamamoto, S. Ohzahata, and H. Shinbo,
“Microscopic Approach for Experimental Analysis of Multipath TCP
Throughput under Insufficient Send/Receive Socket Buffers,” in Proc.
15th ICWI 2016, pp. 191-199, Oct. 2016.

[11] J. Ma, F. Le, A. Russo, and J. Lobo, “Detecting Distributed Signature-
based Intrusion: The Case of Multi-Path Routing Attacks,” in Proc.
2015 INFOCOM, pp. 558-566, Apr. 2015.

[12] J. Yang and S. Papavassiliou, “Improving Network Security by
Multipath Traffic Dispersion,” in Proc. MILCOM 2001, pp. 34-38, Oct.
2001.

[13] M. Nacher, C. Calafate, J. Cano, and P. Manzoni, “Evaluation of the
Impact of Multipath Data Dispersion for Anonymous TCP
Connections,” In Proc. SecureWare 2007, pp. 24-29, Oct. 2007.

[14] A. Gurtov and T. Polishchuk, “Secure Multipath Transport For Legacy
Internet Applications,” In Proc. BROADNETS 2009, pp. 1-8, Sep.
2009.

[15] L. Apiecionek, W. Makowski, M. Sobczak, and T. Vince, “Multi Path
Transmission Control Protocols as a security solution,” in Proc. 2015
IEEE 13th International Scientific Conference on Informatics, pp. 27-
31, Nov. 2015.

[16] A. Shamir, “How to share a secret,” Communications of the ACM, vol.
22, no. 11, pp. 612-613, Nov. 1979.

[17] X. Zhao, L. Li, G. Xue, and G. Silva, “Efficient Anonymous Message
Submission,” in Proc. INFOCOM 2012, pp. 2228-2236, Mar. 2012.

[18] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network Information Flow,”
IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204-1216, Jul.
2000.

[19] M. Li, A. Lukyanenko, and Y. Cui, “Network Coding Based Multipath
TCP,” in Proc. Global Internet Symposium 2012, pp. 25-30, Mar. 2012.

[20] ISO JTC 1/SC27, “ISO/IEC 10116: 2006 – Information technology –
Security techniques – Modes of operation for an n-bit cipher,” ISO
Standards, 2006.

[21] Federal Information Processing Standards Publication 46-3,
“Annoucing the Data Encryption Standard,” Oct. 1999.

[22] Federal Information Processing Standards Publication 197,
“Anouncing the Advanced Encryption Standard (AES),” Nov. 2001.

[23] PJC, “Distribution of Sample Program / Source / Software (in
Japanese),” http://free.pjc.co.jp/index.html, [retrieved: May 2018].

[24] LWN.net, “An introduction to KProbes,” https://lwn.net/Articles/
132196/, [retreieved: May 2018].

[25] GitHubGist, “jprobes example: dzeban / jprobe_etn_io.c,”
https://gist.github.com/dzeban/a19c711d6b6b1d72e594, [retreieved:
May 2018].

[26] Linux Foundation Wiki, “TCP Probe,”
https://wiki.linuxfoundation.org/networking/tcpprobe, [retrieved: May
2018].

[27] S. Seth and M. Venkatesulu, “TCP/IP Architecture, Desgn, and
Implementation in Linux,” John Wiley & Sons, 2009.

126

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

