
Proposal and Study on Implementation of Data Eavesdropping Protection Method 

over Multipath TCP Communication Using Data Scrambling and Path Dispersion 

 

Toshihiko Kato1)2), Shihan Cheng1), Ryo Yamamoto1), Satoshi Ohzahata1) and Nobuo Suzuki2) 

1) Graduate School of Informatics and Engineering 

University of Electro-Communications 

Tokyo, Japan 

2) Adaptive Communications Research Laboratories 

Advanced Telecommunication Research Institute International 

Kyoto, Japan 

kato@is.uec.ac.jp, chengshihan@net.is.uec.ac.jp, ryo_yamamotog@is.uec.ac.jp,  

ohzahata@is.uec.ac.jp, nu-suzuki@atr.jp 

 
Abstract— Recent mobile terminals have multiple interfaces, 

such as 4G and wireless local area network (WLAN).  In order 

to use those interfaces at the same time, multipath transmission 

control protocol (MPTCP) is introduced in several operating 

systems.  However, it is possible that some interfaces are 

connected to untrusted networks and that data transferred over 

them is observed in an unauthorized way.  In order to avoid this 

situation, we proposed, in our previous paper, a new method to 

improve privacy against eavesdropping using the data 

dispersion by exploiting the multipath nature of MPTCP.  One 

feature of the proposed method is to realize that an attacker 

cannot observe data on any path, even if he observes traffic over 

only a part of paths.  Another feature is to use data scrambling 

instead of ciphering.  In this paper, we present the design of this 

method and the results of performance evaluation.  Besides, we 

discuss how to implement it inside the Linux operating system 

kernel, using a kernel debugging mechanism called JProbe.   

Keywords- Multipath TCP; Eavesdropping; Data Dispersion; 

Data Scrambling; JProbe.   

I. INTRODUCTION 

This paper is an extension of our previous paper [1], which 
was presented in an IARIA conference.  

Recently, mobile terminals with multiple interfaces have 
come to be widely used.  For example, most smart phones are 
equipped with interfaces for 4G Long Term Evolution (LTE) 
and WLAN.  In the next generation (5G) network, it is studied 
that multiple communication paths provided multiple network 
operators are commonly involved [2].  In this case, mobile 
terminals will have more than two interfaces at the same time.   

In order for applications to use multiple interfaces 
effectively, MPTCP [3] is being introduced in several 
operating systems, such as Linux, Apple OS/iOS [4] and 
Android [5].  MPTCP is an extension of TCP, and provides 
multiple byte streams through different interfaces.  It is 
designed so as for conventional TCP applications to use 
MPTCP as if they were working over traditional TCP.   

MPTCP is specified in three request for comments (RFC) 
documents provided by the Internet Engineering Task Force.  
RFC 6182 [6] outlines architecture guidelines for developing 
MPTCP protocols, by discussing the high level design 

decisions on selecting the protocol functions from multiple 
candidates.  RFC 6824 [7] presents the details of extensions to 
the traditional TCP to support multipath operation.  It defines 
the MPTCP control information realized as new TCP options, 
and the MPTCP protocol procedures for the initiation and 
association of subflows (TCP connections related with an 
MPTCP connection), the data transfer and acknowledgment 
over multiple subflows, and the closing MPTCP connection.  
RFC 6356 [8] presents a congestion control algorithm that 
couples the congestion control algorithms running on different 
subflows.   

When a mobile terminal uses multiple interfaces, i.e., 
multiple paths, some of them may be unsafe such that an 
attacker is able to observe data over them in an unauthorized 
way.  For example, a WLAN interface is connected to a public 
WLAN access point without any encryption at the WLAN 
level, data transferred over this WLAN may be disposed to 
other nodes connected to it.  In order to prevent this 
eavesdropping, the transport layer security (TLS) is used to 
provide communication security.  Although TLS can be 
applied to various applications including web access, e-mail 
and ftp, however, it is widely used only with HTTP, and some 
applications like VoIP cannot use TLS.   

In order to avoid this eavesdropping, we proposed another 
approach to improve privacy against eavesdropping by 
exploiting the multipath nature of MPTCP.  We called this 
approach a not-every-not-any protection, in our previous 
paper [1].  Even if an unsafe WLAN path is used, another path 
may be safe, such as LTE supported by a trusted network 
operator.  So, the proposed method is such that if an attacker 
cannot observe the data on every path, he cannot observe the 
traffic on any path [9].  The feature of the proposed method is 
to adopt the not-every-not-any protection, and to use the data 
scrambling instead of ciphering.   

In this paper, we present the proposed method in detail, 
and show the results of processing overhead of the data 
scrambling/descrambling in the proposed method, and the 
conventional encryption/decryption methods.  We also 
discuss a study on how the proposed method is implemented 
in the MPTCP program inside the Linux operating system 
kernel.   
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The rest of this paper is organized as follows.  Section II 
explains the overview [10] and the security issues of MPTCP.  
Section III describes the design of the proposed method 
protecting against eavesdropping.  Section IV gives the 
performance evaluation on the processing overhead of the 
proposal method and other ciphering methods.  Basically, the 
content in Sections II through IV comes from our previous 
paper [1].  Section V shows a study on how to implement the 
proposed method inside the Linux operating system kernel.  In 
the end, Section VI concludes this paper.   

II. OVERVIEW AND SECURITY ISSUES OF MPTCP 

A. MPTCP connections and subflows 

As described in Figure 1, the MPTCP module is located 
on top of TCP.  As described above, MPTCP is designed so 
that the conventional applications do not need to care about 
the existence of MPTCP.  MPTCP establishes an MPTCP 
connection associated with two or more regular TCP 
connections called subflows.  The management and data 
transfer over an MPTCP connection is done by newly 
introduced TCP options for MPTCP operation.   

Figure 2 shows an example of MPTCP connection 
establishment where host A with two network interfaces 
invokes this sequence for host B with one network interface.  
In the beginning, host A sends a SYN segment to host B with 
a Multipath Capable (MP_CAPABLE) TCP option.  This 
option indicates that an initiator supports the MPTCP 
functions and requests to use them in this TCP connection.  It 
contains host A’s Key (64 bits) used by this MPTCP 
connection.  Then, host B replies a SYN+ACK segment with 
MP_CAPABLE option with host B’s Key.  This reply means 
that host B accepts the use of MPTCP functions.  In the end, 
host A sends an ACK segment with MP_CAPABLE option 
including both A’s and B’s Keys.  Through this three-way 
handshake procedure, the first subflow and the MPTCP 
connection are established.  Here, it should be mentioned that 
these “Keys” are not keys in a cryptographic sense.  As 
described below, they are used for generating the Hash-based 

Message Authentication Code (HMAC), but MPTCP does not 
provide any mechanisms to protect them from attackers’ 
accessing while transfer.   

Next, host A tries to establish the second subflow through 
another network interface.  In the first SYN segment in this 
try, another TCP option called a Join Connection (MP_JOIN) 
option is used.  An MP_JOIN option contains the receiver’s 
Token (32 bits) and the sender’s Nonce (random number, 32 
bit).  A Token is an information to identify the MPTCP 
connection to be joined.  It is obtained by taking the most 
significant 32 bits from the SHA-1 hash value for the 
receiver’s Key (host B’s Key in this example).  Then, host B 
replies a SYN+ACK segment with MP_JOIN option.  In this 
case, MP_JOIN option contains the random number of host B 
and the most significant 64 bits of the HMAC value.  An 
HMAC value is calculated for the nonces generated by hosts 
A and B using the Keys of A and B.  In the third ACK segment, 
host A sends an MP_JOIN option containing host A’s full 
HMAC value (160 bits).  In the end, host B acknowledges the 
third ACK segment.  Using these sequence, the newly 
established subflow is associated with the MPTCP connection.   

B. Data transfer 

An MPTCP implementation will take one input data 
stream from an application, and split it into one or more 
subflows, with sufficient control information to allow it to be 
reassembled and delivered to the receiver side application 
reliably and in order.  The MPTCP connection maintains the 
data sequence number independent of the subflow level 
sequence numbers.  The data and ACK segments may contain 
a Data Sequence Signal (DSS) option depicted in Figure 3.    

The data sequence number and data ACK is 4 or 8 byte 
long, depending on the flags in the option.  The number is 
assigned on a byte-by-byte basis similarly with the TCP 
sequence number.  The value of data sequence number is the 
number assigned to the first byte conveyed in that TCP 
segment.  The data sequence number, subflow sequence 
number (relative value) and data-level length define the 
mapping between the MPTCP connection level and the 
subflow level.  The data ACK is analogous to the behavior of 
the standard TCP cumulative ACK.  It specifies the next data 
sequence number a receiver expects to receive.   

C. Security issues on MPTCP and related work 

Some new security issues emerge by the introduction of 
MPTCP [8].  One is a new threat that an attacker splits 
malicious data over multiple paths.  Traditional signature-
based intrusion detection systems (IDSs) suppose that they 
can monitor all packets of a given flow.  If a target system uses 

 
Figure 1.  Layer structure of MPTCP. 

Host A
Address A1 Address A2

Host B
Address B

 SYN (MP_CAPABLE [Key-A]) 
 SYN+ACK (MP_CAPABLE [Key-B]) 

 ACK (MP_CAPABLE [Key-A, Key-B]) 
 SYN (MP_JOIN 

[Token-B, Nonce-A]) 

 SYN+ACK (MP_JOIN 
[HMAC-B, Nonce-B]) 

 ACK (MP_JOIN [HMAC-A]) 
 ACK 

 
Figure 2.  Example of MPTCP connection establishment. 
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Data-level length (2 octets) Checksum (2 octets)
 

Figure 3.  Data Sequence Signal option. 
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MPTCP and an attacker sends signatures over different 
subflows, IDSs cannot detect them.  Ma et al. [11] proposed a 
new approach for this problem, where each IDS locally scans 
and processes its monitored traffic, and all IDSs share 
asynchronously a global state of string matching automaton.   

Another issue is related to MPTCP and privacy.  MPTCP 
has a potential to provide improved privacy against attackers 
who are able to observe or interfere with subflow traffic along 
a subset of paths.  Dispersing traffic over multiple paths makes 
it less likely that attackers will get access to all of the data.  
Pearce and Zeadally [9] suggested the concept of the not-
every-not-any protection and introduced some ideas including 
sending cryptographic signing details using multiple paths and 
applying cryptographic chaining, such as cipher block 
chaining (CBC), across multiple paths.   

There have been several proposals on the data dispersion 
over multiple paths.  Yang and Papavassiliou [12] provided a 
method to analyze the security performance when a virtual 
connection takes multiple disjoint paths to the destination, and 
a traffic dispersion scheme to minimize the information 
leakage when some of the intermediate routers are attacked.  
Nacher et al. [13] tried to determine the optimal trade-off 
between traffic dispersion and TCP performance over mobile 
ad-hoc networks to reduce the chances of successful 
eavesdropping while maintaining acceptable throughput.  
These two studies use multiple TCP connections by their own 
coordination methods instead of MPTCP.  Gurtov and 
Polishchuk [14] used host identity protocol (HIP), which 
locates between IP and TCP to provide multiple paths, and 
propose how to spread traffic over them.  Apiecionek et al. 
[15] proposed a way to use MPTCP for more secure data 
transfer.  After data are encrypted, they are divided into blocks, 
mixed in the predetermined random sequence, and then 
transferred through multiple MPTCP subflows.  A receiver 
rearranges received blocks in right order and decrypts them.   

All of those proposals aim at just spreading data packets 
over multiple paths, and do not consider the coordination over 
multiple paths.  If the transferred data are encrypted before 
dispersion, it can be said that they are coordinated by the 
encryption procedure, but the coordination is not realized by 
the dispersion schemes.   In contrast with them, our proposal 
adopts an approach to improve privacy by coordinating data 
over multiple paths through data scrambling not encryption.   

III. PROPOSAL 

A. Requirements and possible approaches 

The following are the requirements for designing a not-
any-not-every protection method protecting eavesdropping.   
 The method needs to cope with two way data exchanges 

within one MPTCP connection.   
 The length of exchanged data should not be expanded.   
 Even if there are any bytes with known values, such as 

fixed bytes in an application protocol header, the method 
provides protection from information leakage.   

 The method does not introduce any new overheads into 
MPTCP as much as possible.   

 The method does not change the behaviors of MPTCP as 
much as possible.   

In designing the proposed method, we have considered the 
following possible candidates.   

(1) Secret sharing method 
The secret sharing method is to divide data D into n pieces 

in such a way that D is easily reconstructed from any k pieces, 
but even complete knowledge of k -1 pieces reveals absolutely 
no information about D [16].  Shamir [16] gave an example 
method based on polynomial interpolation.  It is possible to 
apply the idea of secret sharing to data transfer.  Zhao et al. 
[17] proposed an efficient anonymous message submission 
protocol based on secret sharing and a symmetric key 
cryptosystem.  It aggregates messages of multiple members 
into a message vector such that a member knows only his own 
position in the submission sequence.   

Figure 4 shows an idea of applying secret sharing to the 
eavesdropping protection.  It supposes the case that n = 2 and 
k = 2.  Pieces D1 and D2 are generated from an original data 
and transferred through different paths.  An attacker can 
access only D2 over an untrusted path, and so he cannot obtain 
the original data.  In this approach, however, the amount of 
transferred data is increased, twice in this example.   

(2) Network coding 
The second candidate is the network coding [18].  In this 

framework, the exclusive OR (XOR) is calculated among 
multiple packets and the result is transferred instead of packets 
themselves.  Ahlswede et al. [18] mentioned that by 
employing coding at network nodes, which they referred to as 
network coding, it is possible to save bandwidth in general.  Li 
et al. [19] proposed a network coding based multipath TCP 
(NC-MPTCP), which uses the mix of regular subflows, 
delivering original data, and network coding subflows, which 
deliver linear combinations of original data.  NC-MPTCP 

 
Figure 4.  Secret sharing based approach. 
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Figure 5.  Network coding based approach. 
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Figure 6.  Block ciphering based approach.   
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achieves higher goodput compared to MPTCP in the presence 
of different subflow qualities.   

Figure 5 shows an idea of applying network coding to the 
eavesdropping protection.  Using data A and B, their XOR 
(A⊕ B) is calculated.  Through a trusted path, an original data 
A is transferred, and through an untrusted path, A⊕ B  is 
transferred.  Since an attacker observes only A⊕ B, he cannot 
obtain data B without knowledge of data A.  This idea can be 
said a packet level data scrambling.  Although it can provide 
the not-every-not-any protection, it introduces an additional 
overhead due to the variable length packets, and an additional 
control in MPTCP, such as sending XOR data only over an 
untrusted path.   

(3) Mode of operation in block ciphering 
The third candidate is the mode of operation, such as CBC 

and output feedback (OFB), used in block ciphering [20].  The 
block cipher defines only how to encrypt or decrypt a fixed 
length bits (block).  A mode of operation defines how to apply 
this operation to data longer than a block.  CBR and OFB 
introduce a chaining between blocks such that a block is 
combined with the preceding block by XOR calculation.   

Figure 6 shows an idea of applying mode of operation to 
the eavesdropping protection.  Data to be sent (data 1 and 2) 
are divided into blocks (A through D).  The first block is 
XORed with the initialization vector (IV), and the following 
blocks are XORed with their preceding blocks.  The XORed  
results are transferred via different paths.  In the example, an 
attacker can only observe B⊕ C and C⊕ D, and does not 
know block B, which is transferred through a trusted path.  So, 
he cannot obtain C and D any more.  This idea can be said a 
block level data scrambling.  Although it can provide the not-
every-not-any protection, it introduces an additional data 
overhead because the length of packets is not integral multiple 
of block length in general.  

According to those considerations, we select a byte stream 
based data scrambling approach described below that avoids 
the issues of the approaches described so far.   

B. Detailed design of proposed method 

As shown in Figure 7, we introduce a data scrambling 
function within MPTCP and on top of the original MPTCP.  
When an MPTCP communication is started, the use of data 
scrambling is negotiated.  It may be done using a flag bit in 
MP_CAPABLE TCP option.   

Figure 8 shows an overview of data scrambling.  In the 
data sending side, an application sends data to MPTCP.  It is 
stored in the send socket buffer, and the data scrambling 
module scrambles it in a byte-by-byte basis.  The result is 
stored in the send socket buffer again.  The data in this buffer 
is transferred reliably by MPTCP.  While sending data, 
MPTCP tries to send the first packet over an MPTCP 
connection via a subflow that uses a trusted path.  After that, 
the data transfer by MPTCP is performed according to its 
native scheduler.  We suppose that the distinction of trusted or 
untrusted path can be done by the IP address of interfaces.  In 
the data receiving side, data is transferred through MPTCP 
without any losses, transmission errors, nor duplications.  The 
received in-sequence data is stored in the receive socket buffer.  

After that, the data descrambling module is invoked to restore 
the scrambled data to the original one.   

Figure 9 shows the details of data scrambling.  As 
described above, the scrambling is performed in a byte-by-

original MPTCP

Subflow (TCP) Subflow (TCP)

Data Scrambling
M
P
T
C
P

 
Figure 7.  Layer structure of MPTCP with data scrambling. 
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Figure 8.  Overview of data scrambling processing. 
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Figure 9.  Procedure of data scrambling.   
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Figure 10.  Procedure of data descrambling. 
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byte basis.  More specifically, one byte being sent is XORed 
with its preceding 64 bytes.  In order to realize this scrambling, 
the data scrambling module maintains the send scrambling 
buffer, whose length is 64 bytes.  It is a shift buffer and its 
initial value is the Key of this side.  Since the length of the 
Key is 8 bytes, the higher bytes in the send scrambling buffer 
is filled by zero.  When a data comes from an application, each 
byte (bi in the figure) is XORed with the result of XOR of all 
the bytes in the send scrambling buffer.  The obtained byte 
(Bi) is the corresponding sending byte.  After calculating the 
sending byte, the original byte (bi) is added to the send 
scramble buffer, forcing out the oldest (highest) byte from the 
buffer.  The send scrambling buffer holds recent 64 original 
bytes given from an application.  By using 64 byte buffer, the 
access to the original data is protected even if there are well-
known byte patterns (up to 63 bytes) in application protocol 
data.   

Figure 10 shows the details of data descrambling, which is 
similar with data scrambling.  The data scrambling module 
also maintains the receive scramble buffer whose length is 64 
bytes.  Its initial value is HMAC of the key of the remote side.  
When an in-sequence data is stored in the receive socket 
buffer, a byte (Bi that is scrambled) is applied to XOR 
calculation with the XOR result of all bytes in the receive 
scramble buffer.  The result is the descrambled byte (bi), 
which is added to the receive scramble buffer.   

By using the byte-wise scrambling and descrambling, the 
proposed method does not increase the length of exchanged 
data at all.  The separate send and receive control enables two 
way data exchanges to be handled independently.  Moreover 
the proposed method introduces only a few modification to 
the original MPTCP.   

C. Discussions 

We need to discuss here about the security scheme of the 
proposed method.  The proposed method does not use the data 
ciphering, and so it does not protect eavesdropping in a strict 
sense.  It depends on the difficulty of unauthorized data access 
over networks provided by trusted operators.  That is, the 
intrusion model is that an attacker can access only untrusted 
networks, such as public access point based WLANs, but 
he/she cannot access to trusted networks.   

We also need to point out that the proposed method gives 
a small modification to MPTCP.  It uses the HMAC value of 
sender side Key as an initial value of XORing, which means 
that no additional vulnerabilities are introduced for the 
initialization vector setting.  Besides, as for the dependency 
between multiple paths that a byte cannot obtained only after 
the precedence bytes are received, it is intrinsic to MPTCP and 
is not a defect of the proposed method itself.   

Another feature of the proposed method is that it does not 
introduce any additional control information at all.  It just 
performs XORing a sending byte with bytes in the send 
scramble buffer.  Even if data sending and data receiving are 
interleaved, the sending byte stream is focused and XORed 
beyond data receiving.  The fact that data is delivered in 
sequence is assured by MPTCP, because the scrambling is 
done before data sending, and the descrambling is done after 
data receiving according to MPTCP.   

IV. PERFORMANCE EVALUATION 

In this section, we evaluate the processing overhead of the 
proposed method.  In addition, we evaluate the overhead of 
commonly used cryptographic methods for the purpose of 
comparison.  We adopt the data encryption standard (DES) 
[21], the triple data encryption algorithm (TDEA) [21], and 
the advanced encryption standard (AES) [22].   

DES is a block based ciphering algorithm standardized by 
the National Institute of Standards and Technology (NIST).  It 
is designed to encipher and decipher of blocks of data 
consisting of 64 bits (8 bytes) under control of a 64 bit (8 byte) 
key.  Currently, it has been withdrawn as a standard ciphering 
method, but the TDEA, a compound operation of DES 
encryption and decryption operations, can be used as one of 
cipher suites in TLS.   

AES is another block based ciphering algorithm newly 
standardized by NIST in 2001.  It is a symmetric block cipher 
that can process data blocks of 128 bits (16 bytes), using 
cipher keys with lengths of 128, 192, and 256 bits (16 bytes, 
24 bytes, and 32 bytes, respectively).   

In this paper, we used publicly available source programs 
for DES and AES [23] distributed by PJC, a Japanese software 
company.  They are written in C language.  As for the DES 

algorithm, we prepared 160 blocks (8 × 160 = 1280 bytes) 

and performed encryption and decryption for those blocks 
with the electronic codebook (ECB) mode.   That is, each 
block is just encrypted and decrypted independently from 
other blocks.  As for the TDEA algorithm, each of 160 blocks 
is encrypted or decrypted three times according to the DES 
algorithm with independent three keys.  As for the AES 

algorithm, we prepared 80 blocks (16 × 80 = 1280 bytes) and 

used keys with 128, 192 and 256 bit length (AES-128, AES-
192 and AES-256).  We also used the ECB mode here.  It 
should be mentioned that we suppose 1280 byte long message 
to be transferred.   

As for the proposed method, we introduced two kinds of 
implementations.  One is a straightforward implementation, 
where the proposed method described in the previous section 
is programmed in C language as they are.  The following are 
the summary of the straightforward implementation.   
 The send/receive scramble buffers are realized by an 

array of unsigned char type.   
 When a byte is scrambled or descrambled, the exclusive 

OR of all bytes in the scramble buffer is calculated.   
 When a byte is scrambled or descrambled, it is added to 

the scramble buffer by shifting all bytes in the buffer.   
The other is a revised implementation, where unnecessary 

data copying nor exclusive OR calculation are avoided.  The 
following are the summary of the revised implementation.   
 The send/receive scramble buffers are realized as ring 

buffers, by an array of unsigned char type (sScrBuf[] 

and rScrBuf[]).  In order to avoid unnecessary data 
copying, the last element (newest element) in the ring 

buffer is maintained by an index parameter (sIndex or 

rIndex).   
 The exclusive OR calculation for all bytes in the 

scramble buffer is performed just once in the beginning.  
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This result is maintained by a static variable sXor or 

rXor.     
 When a byte is to be scrambled or descrambled, the static 

variable (sXor or rXor) is overwritten by the 
exclusive OR of the oldest element in the scramble 

buffer, sXor (or rXor) and the new byte.   
 When a byte is to be scrambled or descrambled, it is 

added to the scramble buffer just by moving the index 

parameter (sIndex or rIndex).   
By use of these two implementations, we executed the data 

scrambling and descrambling for a message with length of 
1280 bytes.   

We evaluated the performance of those seven methods 
(DES, TDEA, AES-128, AES-192, AES-256, the proposed 
method by straightforward implementation, and the proposed 
method by revised implementation).  Table I shows the 
specification of personal computer used for the evaluation.  It 
is a laptop computer manufactured by Lenovo over which the 
Linux operating system is installed.  We measured the 
processing time of the encryption and decryption, or the 
scrambling and descrambling for a message with 1280 byte 

length.  We used Linux time command for 10,000 iterations, 
and calculated the processing time for one operation.   

Table II gives the performance results.  The encryption 
and decryption of the DES and AES-128 algorithms require 
around 2.2 or 2.3 msec.  The AES-192 and AES-256 
algorithms requires a little more time.  The TDEA algorithm 
requires around 6.7 msec, which is about three time of the 
DES algorithm.  We need to say that we also evaluated the 
performance of the DES and AES with cipher block chaining 
(CBC) mode, and obtained the result that the processing time 
is almost the same with ECB mode.   

On the other hand, the straightforward implementation of 
the proposed method requires around 1 msec.  This is smaller 
than the cryptographic approaches, but the improvement is not 
large.  However, the revised implementation of the proposed 
method decreases the processing time largely, to around 0.04 
msec.  It is less than 1/60 compared with the DES and AES 
algorithms.  Although the implementation of DES and AES 
algorithms is a publicly accessible software, which may be 
optimized adequately, the obtained results are considered to 

show that the proposed method is able to decrease the 
processing overhead of ciphering operations and to provide 
some level of security against the eavesdropping over 
untrusted paths in MPTCP communications.   

V. STUDY ON IMPLEMENTATION 

A. How to modify Linux operating system 

Since MPTCP is implemented inside the Linux operating 
system, the proposed method also needs to be realized by 
modifying operating system kernel.  However, modifying an 
operating system kernel is hard task, and so we decided to use 
a debugging mechanism for the Linux kernel, called kernel 
probes [24].   

The following are cited from [24].  A kernel probe is a set 
of handlers placed on a certain instruction address. There are 
two types of probes in the kernel as of now, called "KProbes" 
and "JProbes." A KProbe is defined by a pre-handler and a 
post-handler. When a KProbe is installed at a particular 
instruction and that instruction is executed, the pre-handler is 
executed just before the execution of the probed instruction. 
Similarly, the post-handler is executed just after the execution 
of the probed instruction. JProbes are used to get access to a 
kernel function's arguments at runtime. A JProbe is defined 
by a JProbe handler with the same prototype as that of the 
function whose arguments are to be accessed. When the 
probed function is executed the control is first transferred to 
the user-defined JProbe handler, followed by the transfer of 
execution to the original function.   

Figure 11 shows a schematic explanation of JProbe.  We 

assume that there is function a_func() inside the Linux 
kernel, whose symbol is exported.  A user may define JProbe 

handler ja_func() whose arguments are exactly the same 

as a_func().  When the Linux kernel is going to call 

a_func(), ja_func() is executed in the beginning of 

a_func().  When ja_func() returns, the kernel executes 

a_func().  In order to make this mechanism work, a user 
needs to prepare the following;  

 registering the entry by struct jprobe and  
 defining the init and exit modules by functions 

register_jprobe() and unregister_jprobe 

()[25].     
A famous example of JProbe is tcpprobe [26] used to collect 
TCP sender internal information such as a TCP congestion 
window value.   

B. Design principles 

We adopted the following design principles to implement 
the proposed method inside the Linux kernel.   

TABLE I.  SPECIFICATION OF PC USED IN EVALUATION.   

model

CPU

clock

memory size

kernel

lenovo ThinkPad E430

Intel Core i5-3230M CPU×4

2.60GHz

3.7 Gbytes

ubuntu 16.04 LTS
 

TABLE II.  PROCESSING TIME OF 1280 BYTE MESSAGE.   

DES TDEA
AES-
128

Proposed 
(straight)

Proposed 
(revised)

2.24 
msec

6.69 
msec

2.29 
msec

0.950 
msec

0.0352 
msec

AES-
192

2.80 
msec

AES-
256

3.40 
msec

 
 

Figure 11.  Schematic explanation of JProbe.   

Linux kernel

a_func(args)

ja_func(args)
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 Use the JProbe mechanism as much as possible.   

In the Linux kernel, function tcp_sendmsg() is 
called when a user process tries to send data to MPTPCP 
(actually TCP, too) [27].  So, we define a JProbe handler 
for this function in order to scramble data to be 
transferred.  On the other hand, function 

tcp_recvmsg() is called when a user process is 
going to receive data from MPTCP.  In this case, 
however, the descrambling procedure needs to be done 
in the end of this function.  So, we introduce a dummy 
kernel function and export its symbol.  We then 
introduce a JProbe handler for descrambling.  By 
adopting this approach, we can program and debug 
scrambling/descrambling independently of the Linux 
kernel itself.   

 Maintain control variables within socket data structure.  
In order to perform the scrambling/descrambling, the 
control variables described in the previous section, such 

as sScrBuf[64] and sXor, need to be installed 
within the Linux kernel.  The TCP software in the kernel 
uses a socket data structure to maintain internal control 
data on an individual TCP / MPTCP connection [27].  So, 
we add the control variables for data scrambling to this 
data structure.  Although the kernel modification and 
rebuild are required, we believe that to insert some 
variables is an easy task and therefore frequent 
debugging and rebuilding are not necessary.   

C. Detailed design 

(1) How to insert control variables in socket data structure 

As described above, function tcp_sendmsg() is called 
at data sending.  Its prototype in Ubuntu 16.04 LTS is;  

tcp_sendmsg(struct sock *sk, struct  

msghdr *msg, size_t size).   

Here, struct sock is a type of socket data structure.  In 

the beginning of this function, sk is converted to type 

struct tcp_sock in the following way.   

struct tcp_sock *tp = tcp_sk(sk); 

struct tcp_sock is a type of TCP socket data structure 

maintaining TCP related members like rcv_nxt, which is 
sequence number of a byte to be expected to receive next, and 

snd_nxt, which is sequence number of a byte to be sent next.  
It also includes a control information on MPTCP like 

struct mptcp_cb *mpcb;. 

Structure struct mptcp_cb includes MPTCP related 

information including keys and tokens like __u64 

mptcp_loc_key; (local key) and __u32 

mptcp_loc_token; (local token).  Based on these 
considerations, we decided to insert control variables for data 

scrambling within structure struct mptcp_cb in a way 

shown in Figure 12.  When tcp_sendmsg() is called, we 

can access to these variables in a way like tp->mpcb-

>sXor.  It should be noted that sFirst and rFirst 
indicate whether the scrambling and descrambling is 
performed at first or not in this MPTCP connection, 
respectively.   

(2) How to implement scrambling 
(2-1) Overview 

Figure 13 shows an overview program structure to 
implement scrambling using JProbe handler 

jtcp_sendmsg().  As described in the previous 

subsection, jtcp_sendmsg() is declared so as to have the 

same arguments as tcp_sendmsg(), as shown in part (i) in 
the figure.  Part (ii) in the figure shows a data structure 
registering an entry point of the JProbe hander and its related 
symbol name.  Parts (iii) and (iv) are the initialization and exit 
functions, respectively.   

We need to explain about the second argument of 

jtcp_sendmsg().  Structure struct msghdr has a 
linked data structure maintaining one or more members, each 

of which is expressed by structure struct iovec, 

including pointer to data (iov_vase) and its length 

(iov_length).  iov_for_each() is a macro for 
traversing individual members, and can be used as a for 
statement in C language.   

 
Figure 12.  Control variables for data scrambling.   

struct mptcp_cb {
. . . .
unsigned char sScrBuf[64], rScrBuf[64];

unsigned char sXor, rXor;
int sIndex, rIndex, sFirst=1, rFirst=1;

};  
Figure 13.  Overview on how to implement scrambling in 

tcp_sendmsg().   

int jtcp_sendmsg(struct sock *sk,

        struct msghdr *msg, size_t size) {

  struct tcp_sock *tp = tcp_sk(sk);

  struct iov_iter iter;

  struct iovec iov;

  if(tp->mpcb->sFirst) scramble_init(tp);

  iov_for_each(iov, iter, msg->msg_iter) {

    scramble(tp, iov.iov_base, iov.iov_len);

  }

  jprobe_return();

  return 0;

} // (i) JProbe handler

static struct jprobe tcp_sendmsg_jprobe = {

  .kp = {.symbol_name = "tcp_sendmsg",},

         .entry = jtcp_sendmsg,

}; // (ii) Register entry

static __init int jtcp_sendmsg_init(void) {

  ret= register_jprobe(&tcp_sendmsg_jprobe);

  if (ret < 0) return -1;

  return 0;

}  // (iii) Init function

module_init(jtcp_sendmsg_init);

static __exit void jtcp_sendmsg_exit(void) {

unregister_jprobe(&tcp_sendmsg_jprobe);

} // (iv) Exit function

module_exit(jtcp_sendmsg_exit);
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In function jtcp_sendmsg(), control variable tp-

>mpcb->sFirst is checked in the beginning and, if it is 1, 

function scramble_init() is called.  After that, function 

scramble() is called for each data contained in msg.   

(2-2) Detailed design for scrambling 
Figure 14 shows an example of program code for functions 

scramble_init() and scramble().  

scramble_init() is called with an argument tp, which 

is a pointer to struct tcp_sock data structure.  By 

functions memset() and memcpy(), the send scramble 

buffer tp->mpcb->sScrBuf[64] is initialized so as to 
contain the local Key in this MPTCP connection.  Then, the 
XOR result for all bytes in the send scramble buffer is stored 

in control variable tp->mpcb->sXor.  After that, the index 
parameter indicating the end of the send scramble buffer is 

settled and tp->mpcb->sFirst is reset.   

Function scramble() performs the scrambling 

procedure for data pointed by argument data whose length 

is len.  In this function, each byte in data is XORed with 

tp->mpcb->sXor, and index parameter tp->mpcb-

>sIndex is shifted by one.  Then, tp->mpcb->sXor is 
updated by XORing itself, a byte that is stored in the newly 
indexed position, and a byte being scrambled (original byte).  
After that, the original byte is stored in a newly indexed 

position in the send scramble buffer.  In the end, data is 
changed by the XORed byte for sending.   

(3) How to implement descrambling 
As mentioned in the previous subsection, the descramble 

procedure needs to be implemented at the end of function 

tcp_recvmsg().  In order to realize the descrambling 
procedure by the JProbe mechanism, we introduced dummy 

function dummy_recvmsg() just before returning from 

tcp_recvmsg().  This is shown in Figure 15.  For this 

function, JProbe handler jdummy_recvmsg() is 
implemented in a similar way with the scrambling procedure.   

VI. CONCLUSIONS 

This paper proposes a new method to improve privacy 
against eavesdropping over MPTCP communications, which 
has become popular among recent mobile terminals.  Recent 
mobile terminals have multiple communication interfaces, 
some of which are connected to trusted network operators 
(e.g., LTE interfaces), and some of which may be connected 
to untrusted network, such as public WLAN hot spots.  The 
proposed method here is based on the not-every-not-any 
protection principle, where, if an attacker cannot observe the 
data on every path, he cannot observe the traffic on any path.  
We designed a detailed procedure by following the byte 
oriented data scrambling in order to avoid unnecessary data 
length expansion.   

We evaluated the processing overhead of the DES, TDEA 
and AES encryption/decryption and that of data scrambling in 
the proposed method.  The result showed that the optimized 
implementation of our method requires only less than 1/60 
processing time compared with the cryptographic approaches.  
Although the proposed method is a practical solution, as 
described above, the processing capability of mobile terminals 
is still low, and so our proposal is considered to be useful to 
increase the security against eavesdropping over untrusted 
mobile communication networks.   

Moreover, we discussed how to implement the proposed 
method in the Linux operating system.  We explained about a 
kernel debugging mechanism called JProbes, which is used to 
implement tcpprobe.  We showed how to make program codes, 
especially focusing on how to realize the control parameters 
in the socket data structure and on how to realize the 
scrambling and descrambling procedures in the JProbe 
handlers.  

We are currently implementing the proposed method on 
top of MPTCP software in the Linux operating system.  We 
will continue this implementation and conduct the 
performance evaluation over real networks.   Moreover, the 
proposed method can only prevent eavesdropping, and cannot 
ensure the integrity of transferred data.  We need to improve 
our method in this aspect.   

 
Figure 14.  Program code for scrambling.   

void scramble_init(struct tcp_sock *tp) {

int i;
unsigned char x;

  memset(tp->mpcb->sScrBuf, 0, 64);
  memcpy(&tp->mpcb->sScrBuf[56],

&tp->mpcb.mptcp_loc_key, 8);

  for(i=0,x=0;i<64;i++) 
    x = x ^ tp->mpcb->sScrBuf[i];
  tp->mpcb->sXor = x;
  tp->mpcb->sIndex = 63;

  tp->mpcb->sFirst = 0;

  return;
}

void scramble(struct tcp_sock *tp,
unsigned char *data, size_t len) {

  int i;
unsigned char x;

  for(i=0;i<len;i++) {
    x = data[i] ^ tp->mpcb->sXor;
    tp->mpcb->sIndex = (tp->mpcb->sIndex+1)%64;

tp->mpcb->sXor = tp->mpcb->sXor 

         ^ tp->mpcb->sScrBuf[tp->mpcb->sIndex]
         ^ data[i];
    tp->mpcb->sScrBuf[tp->mpcb->sIndex] = data[i];

    data[i] = x;
}

  return;
}

 
Figure 15. JProbe handler for data descrambling.   

int tcp_recvmsg(struct sock *sk, struct msghdr *msg,

    size_t len, int nonblock,int flags, int *addr_len) {

  struct tcp_sock *tp = tcp_sk(sk);

. . . . 

  release_sock(sk);

  dummy_recvmsg(sk, msg, len, nonblack, flags, addr_len);

  return copied;

  . . . . 

} // dummy_recvmsg() inserted

EXPORT_SYMBOL(tcp_recvmsg);

void dummy_recvmsg(struct sock *sk, struct msghdr *msg,

size_t len, int nonblock, int flags, int *addr_len)

{

  return;

} // Defining dummy_recvmsg()

EXPORT_SYMBOL(dummy_recvmsg);
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