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Abstract—Breaches of sensitive data have been occurring at an 
alarming rate to the embarrassment and expense of companies. 
It would appear that in each breach, the attack surface for the 
data has been sufficiently large to attract attackers. Reducing 
this attack surface is a way to lessen the likelihood of breaches. 
This paper presents methods for reducing the attack surface of 
the data held in the online computer systems of  organizations. 
The methods are applied to a software system’s  architecture 
early in the design process, as an approach for designing-in 
security. This work first defines the attack surface and then uses 
this definition to obtain methods for reducing the attack surface. 
The definition also leads to a formula for calculating the size of 
the attack surface. The formula incorporates the fact that 
vulnerabilities differ within the architecture. This paper further 
gives recommendations on how to apply the methods effectively 
and illustrates this application using two examples. Reducing 
the attack surface may not prevent breaches, but it will make 
them less likely to occur.  

Keywords-sensitive data; private data; breaches; attack 
surface identification; attack surface reduction. 

I.  INTRODUCTION 
This work extends Yee [1] by a) extending the application 

domain to all sensitive data, not just private data, b) 
improving the calculation of the size of the attack surface to 
account for the fact that some parts of the software 
architecture are more likely to be attacked than others, c) 
improving the explanations throughout the paper as well as 
updating the examples of breaches in Section I, d) adding a 
second application example, and e) increasing the number of 
references.  

Breaches of sensitive data held by companies and other 
types of organizations have been occurring at an alarming rate. 
In recent years, each year has been accompanied by its 
assortment of data breaches. Consider the following sampling 
of breaches in 2020 [2], the year of this work: 

• July 20, 2020: Ancestry.com, an unsecured server 
exposed sensitive data belonging to 60,000 clients of 
this family history search company. The lost data 
include email addresses, geolocation information, IP 
addresses, system user IDs, support messages and 
technical support details. 

• June 22, 2020: BlueLeaks, over 296 GB of data was 
leaked from US law enforcement agencies and fusion 

centers, and posted on an online searchable portal 
called BlueLeaks. The leaked information contained 
more than one million files, including scanned 
documents, videos, emails, audio files, some of which 
had sensitive and personal data, such as names, bank 
account numbers, and phone numbers. 

• April 20, 2020: Beaumont Health, the personal and 
medical data of more than 112,000 employees and 
patients of Beaumont Health was accessed by a 
hacker after compromising employee email accounts 
using a phishing attack. The lost data included names, 
birth dates, social security numbers, driver’s license 
numbers, medical condition information, and bank 
account data. 

• February 20, 2020: MGM Resorts, the personal 
information of over 10.6 million hotel guests who had 
stayed at MGM Resorts was found posted on a 
hacking forum. The information included names, 
home addresses, phone numbers, emails, and dates of 
birth. On July 15, 2020, researchers found 142 million 
personal records of formers guests of MGM Resorts 
hotels for sale on the Dark Web, suggesting that the 
original breach was larger than previously announced. 

Apparently, the attack surface for the data that was breached, 
or the number of ways that the data could be accessed and 
stolen, was sufficiently large and attractive to the attackers. 

Given the rate of recent data breaches, it is clear that more 
needs to be done to reduce the probability of a data breach 
occurring. The objective of this work is to derive methods for 
reducing the attack surface of sensitive data held in online 
(i.e., connected to the Internet) computer systems of 
organizations. The methods are obtained from consideration 
of the definition of the attack surface, which in turn is based 
on how an attack happens. This definition also leads to a 
straightforward formula for calculating the size of the attack 
surface, which can be used to verify that use of the methods 
does indeed reduce the attack surface. The methods focus on 
reducing the attack surface by altering the system architecture, 
rather than the deployment of add-on security appliances, such 
as firewalls and intrusion detection systems. The methods are 
meant to be applied at the early stages of design within a 
software development cycle, as part of the Design for Security 
toolset. 
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This paper is organized as follows. Section II explains 
sensitive data, attacks, and attack surface. Section III derives 
methods for reducing the attack surface. Section IV illustrates 
the methods using two application examples. Section V 
describes related work. Section VI discusses some potential 
issues. Finally, Section VII presents conclusions and future 
work. 

II. SENSITIVE DATA, ATTACKS, AND ATTACK SURFACE 
This section explains sensitive data, attacks, attack 

surface, and how to calculate the size of the attack surface. 

A. Sensitive Data, Attacks, and Attack Surface 
Sensitive data is data that needs protection and must not 

fall into the wrong hands. It includes private or personal data. 
Sensitive data also includes non-private information that may 
compromise the competitiveness of the organization if 
divulged, such as trade secrets or proprietary algorithms and 
formulas. For government organizations, non-personal 
sensitive data may include information that is vital for the 
security of the country for which the government organization 
is responsible. 

Private data, also known as personal data, is data about an 
individual, can identify that individual, and is owned by that 
individual [3]. For example, an individual’s driver license 
number, passport number, or credit card number can each be 
used to identify the individual and are therefore considered as 
private data. The individual’s privacy then refers to his/her 
ability to control the collection (what personal data and 
collected by which party), purpose of collection, retention, 
and disclosure of that data, as stated in the individual’s privacy 
preferences [3]. 

DEFINITION 1: Sensitive data (SD) is information that must 
be protected from unauthorized access in order to safeguard 
the privacy of an individual, the well-being or expected 
operation of an organization, or the well-being or expected 
functioning of an entity for which the organization has 
responsibility. 

DEFINITION 2: An attack is any action carried out against 
an organization’s computer system that, if successful, results 
in the system being compromised.  

This work focuses on attacks that compromise the SD held 
in the online systems of organizations. The attacker who 
launches an attack may be internal (inside attacker) or external 
(outside attacker) to the organization. This work applies to 
both types of attackers. An internal attacker usually has easier 
access to the targets of his/her attack and he/she may hide 
his/her attacks in the guise of normal duty.  

Salter et al. [4] give an interesting insight into what 
enables a successful attack: “Any successful attack has three 
steps: One, diagnose the system to identify some attack. Two, 
gain the necessary access. And three, execute the attack. To 
protect a system, only one of these three steps needs to be 
blocked.” Thus, an attack surface must contain a target that 
the attacker deems worthy of attack (suit his/her purpose for 
the attack) and that target must be accessible to the attacker. 
For this work, the target that is potentially worthy of attack is 

the SD that is accessible to attackers. In a computer system, 
this SD is either moving (travelling from one location to 
another), at rest (stored), or being used (by some process). 
This leads to the following definition of attack surface: 

DEFINITION 3: The attack surface for sensitive data, also 
called the data attack surface, contained in an online 
computer system is the set of all locations in the system that 
contain attacker accessible SD in the clear, where the SD is 
moving, at rest, or being processed.  

In Definition 3, “attacker accessible SD” means that the 
attacker is able to exfiltrate the SD using some agent of attack, 
such as malware against stored SD and SD being processed, 
or a man-in-the-middle attack against a link containing 
moving SD. Also, we assume that attackers would attack SD 
that is in the clear rather than SD that is encrypted. In the rest 
of this paper, by “attack surface” we mean the data attack 
surface, unless otherwise indicated. Figure 1 shows an 
example data attack surface.   

      

 
 
 
 
 
 
 
 
 
                             
 
 
 

 
 

 
 

An alternative definition of attack surface for SD 
contained in a computer system is the set of ways the attacker 
has to exfiltrate the SD. However, given the complexity of 
computer systems and the fact that the tools available to the 
attacker to use in his/her attacks are unknown to us, it is next 
to impossible to determine this set.  On the other hand, 
locations that contain attacker accessible SD are easier to 
identify.  Since an exfiltration must be from a location that 
contains SD, the set of such exfiltrations depends on the set 
of such locations. The larger the set of locations, the larger 
the set of exfiltrations. The smaller the set of locations, the 
smaller the set of exfiltrations. Therefore, Definition 3 in a 
sense includes this alternative definition, but in addition, is 
more easily applied. 

As mentioned above, in the first step of a successful 
attack, the attacker diagnoses the system to identify the attack 
[4].  A smaller attack surface will make this step more 
difficult for the attacker. Therefore, a smaller attack surface 
corresponds to higher security, which is why we wish to 
reduce the attack surface. Definition 3 also gives rise to this 
conclusion: a smaller attack surface means a smaller number 
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Legend: 

SD data store 

Process using SD 
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Figure 1. Example data attack surface consisting of the set of all 6 
attacker accessible locations in the system that contain SD in the clear.  
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of locations that contain SD, which in turn means fewer 
opportunities for exfiltration of the SD, or in other words, 
higher security.  

Definition 3 is consistent with the intuitive understanding 
of an attack surface (the usual meaning), which is “the set of 
ways in which an adversary can enter the system and 
potentially cause damage” [5]. Each “way” corresponds to a 
location in Definition 3 that in turn corresponds to methods 
for exfiltrating SD from the location.  

B. Calculating the Size of the Attack Surface 
It would be useful to have a numerical value for the size 

of the attack surface, since then we could a) compare attack 
surfaces at different stages of development to see if the 
system’s security is getting better or worse, b) compare attack 
surfaces of different systems when choosing a system for 
purchase, and c) easily see if actions taken to reduce the attack 
surface have indeed reduced it.  

As mentioned above, sensitive data held in a computer 
system can be in the following three states: moving, at rest, or 
being processed. These states correspond respectively, within 
a computer system, to SD that is moving along a link, SD that 
is stored in a data store, and SD that is being processed. Thus, 
the locations in Definition 3 refer to links, datastores, and 
processes that contain attacker accessible SD. Definition 3 
then leads naturally to the following formula for calculating 
the size of the attack surface for sensitive data.  

Let N be an estimate of the size of the attack surface for 
SD. Let m, n, and k be the number of links, data stores, and 
processes, respectively, that contain attacker accessible SD in 
the clear. Then 

 
𝑁 = 𝑚 + 𝑛 + 𝑘 

 
Equation (1) says that N is found by adding up the number 

of attacker accessible locations in the system that contain SD, 
namely: the number m of links, the number n of data stores, 
and the number k of processes, all of which contain attacker 
accessible SD. This equation follows directly from Definition 
3, by simply replacing “attack surface” with “size of the attack 
surface” and “set” with “size of the set” in that definition. We 
call N an estimate because it is impossible to know all the 
vulnerabilities in a system, and hence it is impossible to have 
an accurate value of the size of the attack surface. As well, an 
estimate suffices for the three benefits mentioned at the 
beginning of this Section. In the following, unless stated 
otherwise, we use “size” to mean “estimated size”. 

Equation (1) is the minimum size of the attack surface 
because it counts the number of links, data stores, and 
processes that form the attack surface. It can only be smaller 
if one or more of these components are not part of the attack 
surface, which would contradict Definition 3. Further, (1) 
makes no distinction between links, data stores, or processes 
as locations that contain attacker accessible SD. Yet, given a 
choice between attacking a link, a data store, or a process in 
the same computer system, where the difficulty level is the 
same for all locations, the attacker will probably choose to 
attack a data store of SD as it is more likely to give the attacker 
what he/she wants. This preference for data stores is seen in 

the large number of data store breaches that have occurred. 
Thus, a data store should contribute more to the size of the 
attack surface than a link or a process. A datastore makes the 
system more vulnerable to attack and this should be reflected 
in the size of the attack surface, which is also a measure of the 
system’s vulnerability to attack.  We can reflect this in (1) by 
making the contribution of data stores to the size of the attack 
surface as Md • n where  Md is a positive integer multiplier.  In 
fact, we can have positive integer multipliers Ml for links and 
Mp for processes, and corresponding contributions Ml •m  and 
Mp • k to the size of the attack surface. Getting back to 
reflecting the greater contribution of data stores to the size, we 
can set Ml = Mp = 1 and Md = 2, which states that each data 
store contributes twice as much to the size of the attack surface 
as either a link or a process. Thus, the equation for the size of 
the attack surface with multipliers is 

 
𝑁 = 𝑀!𝑚+𝑀"𝑛 +𝑀#𝑘 

 
and with the above values of the multipliers to reflect the 
increased contribution to size of data stores, (2) becomes 

 
𝑁 = 𝑚 + 2𝑛 + 𝑘 

 
We will use (3) rather than (1), since it suits our goal and is 
closer to reality. Applying (1) to Figure 1 gives an attack 
surface of size N = m + n + k = 2 + 2 + 2 = 6. Applying (3) 
gives 8, reflecting the greater vulnerability of the system due 
to its data stores. 

We have used Ml = Mp = 1 and Md = 2 with the rationale 
that attackers are more attracted to data stores than to links and 
processes, plus the observation that there has been many 
breaches of data stores. Note that Ml = Mp = 2 and Md = 3 
would have worked as well. The effect of these values in 
reducing the attack surface is that eliminating a data store from 
the attack surface gives a greater reduction than removing a 
link or a process. This means that if a data store can be 
removed, it should be. However, the values can be anything 
so long as they relatively reflect what the contributions to size 
should be according to past history or other sources of 
information, such as the system architecture. Since we don’t 
have access to other values, we have used the ones above since 
they reflect our conviction regarding datastores. Perhaps in the 
future, these values can be refined based on studies. Note that 
whatever values are used for Ml, Md, and Mp, our attack 
surface reduction techniques will always show N decreasing 
after applying each technique. Note also that (2) treats all links 
equally, all data stores equally, and all processes equally in 
terms of their contributions to the size of the attack surface. 
To allow each location to have its own specific contribution 
would be to attempt a level of accuracy that is unwarranted in 
light of our lack of knowledge of attacker behaviour as well 
as all the vulnerabilities in the system. 

III. REDUCING THE ATTACK SURFACE 
This section derives methods for reducing the attack 

surface based on (3). 

(1) 

(2) 

(3) 
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A. Methods for Reducing the Attack Surface 
Equation (3) implies that the attack surface will decrease 

if and only if any or all of the quantities m, n, or k decrease. 
Therefore, the attack surface may be reduced by the following 
methods, where each method decreases m, n, or k.  

a) Make a SD location useless to the attacker. 
b) Combine two or more SD locations into a single SD 

location.  
c) Deny the attacker access to a SD location.  
d) Remove a SD location from the system. 
 
The following explains these methods in greater detail 

and describes how they may be carried out. 

a) Make a SD Location Useless to the Attacker 
As mentioned above, in the first step of a successful attack, 

the attacker diagnoses the system to identify an attack, or in 
our case, the SD target for the attack. In this diagnosis, it is 
reasonable to assume that the attacker will ignore any target 
that he/she finds useless for his/her purposes. Such targets 
may be removed from the attack surface. Some ways to make 
a SD target useless to an attacker are: 
• Obfuscate (e.g., encrypt) the SD at the location. The 

attacker will not want to exfiltrate SD that cannot be 
read. The computer system will need to be able to de-
obfuscate the data securely for its own purposes. 

• Anonymize the SD at the location. Again, the attacker 
will not want SD that cannot be linked to individuals, 
since it is this linking that adds value to the data, e.g., 
for advertising purposes. The computer system will 
need to be able to de-anonymize the data securely for 
its own purposes. 

Note that this method does not affect any other location, 
whereas the following methods do.   

To illustrate, obfuscating one data store and one process in 
Figure 1 results in Figure 2, where the obfuscated data store 
and the obfuscated process have been removed from the attack 
surface. It can be seen that the attack surface in Figure 2 is 
reduced (size 5) relative to the attack surface of Figure 1 (size 
8).  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

b) Combine Two or More SD Locations into a Single SD 
Location 

This method will decrease the number of SD locations 
and reduce the size of the attack surface per (3). Links 
carrying SD to/from the locations that were combined may 
need to be moved to the combined location, or they may be 
merged if they extend from the locations that were combined 
to a common endpoint. Merged SD carrying links correspond 
to a reduction of SD carrying links from the attacks surface. 
In addition, changes to the software logic may be needed for 
data stores or processes that were combined to accomplish 
reading or storing the data in the combined location (for 
combined data stores), or new processing of data in the 
combined location (for combined processes). As we have 
seen above, this method can remove SD carrying links from 
the attack surface when such links can be merged.  

To illustrate, suppose in Figure 1 that we combine two 
data stores and two processes into one data store and one 
process. Suppose also that combining the data stores allowed 
the merging of two links into one, but combining the 
processes did not change the number of links. Figure 3 shows 
the result, obtained by removing 1 data store, 1 process, and 
1 link from Figure 1 due to combining locations. We see that 
the attack surface has been reduced from size 8 (Figure 1) to 
size 4 (Figure 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

c) Deny the Attacker Access to a  SD Location 
It may be possible to have some SD locations offline, thus 

denying the attacker access to these locations. For example, 
this may be possible for certain self-contained processing, 
such as analytics, that can be done using SD that is offline. In 
this case, all data stores, processes, and data links involved 
solely in the processing to be moved offline may be removed 
from the attack surface of the system and re-constituted into 
the offline system. It may be necessary to update the offline 
SD data stores periodically using data from the system that is 
online. This update will need to be done in a secure fashion, 
perhaps by transferring the data manually using disks, after 
making sure that no malware can infect the offline system via 
this transfer. Although the destination locations are offline, it 
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Legend: 

SD data store 

Process using SD 

Attacker 
Link with SD flow 

Figure 2. Resulting reduced data attack surface of size 5 after 
obfuscating locations in Figure 1.   
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Legend: 
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Figure 3. Resulting reduced data attack surface of size 4 after combining 
(method b) or removing (method d) locations in Figure 1.   
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may still be possible for transferred malware to exfiltrate the 
offline data, e.g., hiding the data in the disks that are used for 
transfer and then transmitting the data once the disks are on 
the online part of the system. The locations moved offline are 
still vulnerable to inside attack, so they would have to be 
secured against such attack. Defending against inside attacks 
has been extensively researched, e.g., [6], [7].  

Another way to deny the attacker access to a SD location 
applies to SD links. Here, SD links are implemented on a 
hardware platform along with other components of the 
system.  An example of such a link is the communication 
channel between the CPU and the GPU implemented on a 
computer motherboard. An attacker would find it very 
difficult to access such links for an attack such as man-in-the-
middle. Given other targets that are easier to access, the 
attacker will not attack such links and they can be removed 
from the attack surface. 

As an illustration of moving some SD locations offline, 
Figure 4 shows a data store, a process, and a link taken out of 
Figure 1 and assembled into an offline system. The attack 
surface of the computer system has been reduced from size 8 
(Figure 1) to size 4 (subtracting the contributions to the attack 
surface of the moved locations). However, the offline system 
would need to be secured against inside attack.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d) Remove a SD Location from the System 
Another way to reduce the attack surface is to remove a 

SD location from the system by deciding that the SD in the 
location is no longer required. For example, a company that 
stores the credit card information of its customers for their 
convenience may decide to stop storing this information, and 
instead, ask the customer for their credit card information 
every time the customer goes through checkout. This is in 

general a good decision, to avoid storing SD that may get 
compromised, at the cost of a little inconvenience. In this case, 
the associated credit card SD datastore would no longer be 
needed, and would be removed from the attack surface. 
Another example is the removal of a process that periodically 
sends customers the status of their order. The process uses SD 
consisting of the customer’s name and email address to send 
the status. Suppose that this process is no longer necessary 
because the customer can now use a new Web interface to 
check order status. Removal of this process from the system 
removes it from the attack surface. Interestingly, removal of a 
SD location can also result in removing other SD locations 
that are connected to the location that is removed. For 
example, the removal of a SD data store or a process that uses 
SD can result in also removing connected SD locations, such 
as the links that carry SD, or a SD data store that the removed 
process was exclusively using. Thus, removing a SD location 
not only removes that location from the attack surface but can 
also lead to removing other SD locations further reducing the 
attack surface. 

To illustrate, suppose it is decided that one of the processes 
in Figure 1 is no longer needed. Removing this process means 
that a data store and a link that were used only by this process 
are also no longer needed. Thus, the attack surface of the 
computer system in Figure 1 is reduced from size 8 to size 4, 
and the reduced system is shown in Figure 3. 

B. Applying the Methods 
Since the above methods operate on attacker accessible 

SD locations, it is recommended that they be applied in the 
second phase of two phases, where the attacker accessible SD 
locations are identified in the first phase. These phases are 
carried out on an architectural representation of the online 
system, such as a Data Flow Diagram (DFD) [8] (see the 
application examples in Section IV). The phases are as 
follows. 
• Phase 1: Identify SD locations by tracing the flow of 

sensitive data in the online computer system, looking for 
where SD enters the system, where SD flows (links), 
where it is stored (data stores), and where it is used 
(processes). Identifying the SD locations by tracing the 
flow of SD in the system implies that there are paths to 
the SD that an attacker can use to exfiltrate the SD. We 
therefore conclude that all SD locations found in this 
manner in an online system are attacker accessible SD 
locations. Given the ingenuity of attackers (the 
exfiltration could even be aided by an insider of the 
organization that owns the computer system, through 
social engineering), this conclusion is valid.  

• Phase 2: Apply the above methods to the attacker 
accessible SD locations found in Phase 1, where possible, 
while considering the potential negative effects on the 
following aspects of the system: 

— Performance 
— Reliability and dependability 
— Ease of maintenance 
— Implementation cost 

Offline 
System 

Internet 

Computer 
System 

 

Legend: 

SD data store 

Process using SD 

Link with SD flow 
Attacker 

Figure 4. Resulting reduced data attack surface of size 4 for the 
computer system after moving some locations in Figure 1 offline.   
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For example, encryption or anonymization incurs extra 
overhead, combining data stores may introduce a 
performance bottleneck since the newly combined data 
store will now need to additionally support data accesses 
that were originally shared among the data stores that 
were combined. Combining SD locations in general may 
reduce modularity and lead to extra effort needed to 
maintain the system.  

Three guiding rules for applying the methods are:  

 
1. Look for opportunities to apply a method to a data 

store since according to (3), removing a data store 
from the attack surface gives a greater reduction 
than removing either a link or a process.  

2. Look for opportunities to apply the methods where 
the potential negative effects mentioned above are 
minimal.  

3. It may be more efficient to consider method a) last, 
since the other methods can add/delete links that are 
candidates for method a). 

Carrying out the above phases clearly requires knowledge 
of the computer system in terms of identifying the SD 
locations. Some basic knowledge of security would also be 
advantageous. These skills should be found within the 
software development team responsible for developing the 
system, perhaps with a little security training if needed. 

IV. APPLICATION EXAMPLES 
This section illustrates how to apply the methods for 

reducing the attack surface for sensitive data using two 
example online computer systems: one for selling 
merchandise and the other for airline reservation. 

A. Online Seller of Merchandise 
 Suppose that the system of the online seller of 

merchandise (e.g., Amazon.com) is at the beginning stages of 
development and that the development team has produced a 
DFD showing how sensitive data will flow, be stored, and 
used in the system. This DFD is shown in Figure 5.  

The system in Figure 5 allows the customer to enter his/her 
“name”, “address”, “email”, “item selected” for purchase, and  
“credit card info” for payment. These comprise the SD for this 
example. Five processes cooperate to provide the 
functionality for the system. One datastore stores the 
customers’ sensitive data; another datastore contains 
inventory data, i.e., what items are in stock. The system is an 
online system since it is for an online seller. The SD locations 
will be found by tracing the flow of SD in the system 
(described below). All SD locations in the system are attacker 
accessible SD locations, as noted above in the description of 
Phase 1 (Section III-B).  

Applying Phase 1 in Section III-B, we trace the flow of 
sensitive data from the point where the data enters the system 
at process 1. From there, the SD passes through process 1 and 
is stored in the customer datastore. After this datastore, the SD 
is split up with the “credit card info” going to process 4 to be 
used, and the “name”, “address”, “email”, and “item selected” 

going to process 2, where the “item selected” datum is used, 
and “name” and “address” are passed to process 5 to print the 
shipping label, whereas “email” is passed to process 3 to send 
the customer the shipping status. Thus, we can identify the SD 
locations as links, datastores, and processes through which the 
SD passes, is stored, and used. Note that inventory data is not 
considered SD in this example. These attacker accessible SD 
locations are shown in Table I. 

Table I shows that there are 6 attacker accessible SD link 
locations, 1 attacker accessible SD datastore, and 5 attacker 
accessible SD processes. For Figure 5, prior to the application 
of the above methods, (3) gives the size N of the attack surface 
for sensitive data as N = m + 2n + k = 6 + 2 + 5 = 13. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

TABLE I.  ATTACKER ACCESSIBLE SD LOCATIONS IN FIGURE 5 

 Links Datastores Processes 
1 link into process 1  customer datastore process 1 
2 link out of process 1  process 2 
3 link from customer 

datastore to process 2 
 process 3 

4 link from customer 
datastore to process 4 

 process 4 

5 link into process 5  process 5 
6 link into process 3   

 
Applying Phase 2 in Section III-B, we first use the above 

methods on the attacker accessible locations in Table I, as 
follows: 

Customer 
name, address, 
email, item selected, 
credit card info 

1. 
Receive and 

store data 

name, address, 
email, item selected, 
credit card info 

Customer datastore 
3. 

Send 
shipping 

status 

shipping 
status 

credit card 
info 

name, address, 
email, item 
selected email, shipping 

status 
4. 

Charge credit 
card 

 

payment 
status 

2. 
Check 

inventory & 
ship name, 

address 
inventory 
update 
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Figure 5. DFD for online seller system, showing how data 
flows, are stored, and used.  
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• Using method d), remove the customer datastore 
from the system; it was decided that storing customer 
SD was not needed (customer purchase history can 
be stored securely on the customer’s device by the 
seller’s website and later retrieved by that same 
website). Note that removing this data store also 
caused the removal of a SD link (the link between 
process 1 and this data store). This change was seen 
as acceptable, and not significantly impacting 
performance or system maintainability.  

• Using method b), combine process 3 with process 2; 
this was seen to have negligible impact on 
performance and an acceptable reduction in 
modularity. 

• Using method b), combine process 5 with process 2; 
this was also seen to have negligible impact on 
performance and an acceptable reduction in 
modularity. 

These changes result in the DFD shown in Figure 6. Table II 
gives the attacker accessible SD locations corresponding to 
Figure 6. 

Table II shows that there are 3 attacker accessible SD link 
locations and 3 attacker accessible SD processes. For Figure 
6, (3) gives the size N of the attack surface for sensitive data 
as N = m + 2n + k = 3 + 0 + 3 = 6. Thus, the application of 
methods d) and b) have reduced the attack surface from 13 to 
6. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We can further reduce the attack surface as follows: 
• Using method a), obfuscate (encrypt) the links in 

Table II; the impact on performance due to the extra 
over head is deemed acceptable. 

• Using method a), obfuscate (encrypt) the SD in the 
processes shown in Table II; here, the impact on 
performance and the cost involved for extra code to 
handle encryption/decryption were considered 
unacceptable, and this reduction method was not 
applied. This reduction may have been feasible if 
these processes could use encrypted SD, but these 
processes require SD in the clear. 

TABLE II.  ATTACKER ACCESSIBLE SD LOCATIONS IN FIGURE 6 

 Links Datastores Processes 
1 link into process 1   process 1 
2 link from process 1 to 

process 2 
 process 2 

3 link from process 1 to 
process 4 

 process 4 

 
Table III shows the remaining attacker accessible SD 
locations after applying method a) to the links in Table II. The 
new attack surface is of size N = m + 2n + k = 0 + 0 + 3 = 3. 
The application of the methods in Section III-A has improved 
the security of sensitive data in the system by reducing the size 
of the attack surface from 13 to 3. 

TABLE III.  REMAINING ATTACKER ACCESSIBLE SD LOCATIONS IN 
FIGURE 6 AFTER OBFUSCATING THE LINKS IN TABLE II 

 Links Datastores Processes 
1   process 1 
2   process 2 
3   process 4 

 
Comparing Figure 6 to Figure 5, reducing the attack 

surface required the following architectural changes to the 
system: i) eliminating the customer database, ii) reducing the 
number of processes from 5 to 3 by eliminating processes 3 
and 5, and iii) changing the functionality of processes 1 and 2. 
As noted above, the implications of these changes were 
accepted by the development team. 

The size of the attack surface obtained by applying the 
above methods may depend on which methods were applied 
and the order in which they were applied. In particular, it may 
depend on the available opportunities for applying methods d) 
and b). For example, by using only method a) (obfuscation) 
on the link and datastore locations in Table I, assuming that it 
is not advisable to apply method a) to the processes due to 
unacceptable impacts on performance and costs, we obtain an 
attack surface of size 5 (for the remaining 5 processes since 
the obfuscated links and datastore would have been removed 
from the attack surface), which is larger than the attack surface 
of size 3 obtained above by opportunistically applying 
methods d) and b) before method a). This is the rationale 
behind guiding rule 3 in the description of Phase 2 above, that 
it may be more efficient to apply method a) last. 

B. Online Airline Reservation System 
ACCURES is an online airline reservation system that has 

been awarded to a software company for development. The 
system is to consist of 3 modules: MAIN, MOD-CAN, and 
MOD-EU. MAIN and MOD-CAN operate in Canada, 
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processes and removing the customer data store. 
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whereas MOD-EU operates in Germany. MAIN 
communicates with MOD-CAN and MOD-EU to receive 
flight request details, and in turn, sends them flights assigned 
details corresponding to the requests. MOD-CAN and MOD-
EU process customer transactions, where each transaction 
consists of receiving customer identification details, flight 
request details, and payment information (e.g., credit card 
details), storing the customer information in a data store, 
processing the payment, and sending the customer his/her 
travel itinerary, which marks the end of the transaction. The 
development team creates the DFD for ACCURES shown in 
Figure 7. Note that in this DFD, all data are SD, and all 
locations are attacker accessible SD locations.  

Applying Phase 1 in Section III-B, we trace the flow of 
sensitive data from the point where sensitive customer data 
enters the system at processes 4 and 7. Sensitive data also 
enters the system in the form of “flight availability updates” 
but these updates are stored in the Flights data store and go no 
farther. Referring to Figure 7, we see that the customer SD 
flows though all locations of MOD-CAN and MOD-EU. We 
also see that the sensitive data items “flight details requested” 
and “flight details assigned” flow through all locations of 
MAIN. Thus, we can conclude that all locations in ACCURES 
are attacker accessible SD locations, as shown in Table IV. 

TABLE IV.  ATTACKER ACCESSIBLE SD LOCATIONS IN FIGURE 7 

 Links Datastores Processes 

1 link into Flights data 
store  Flights process 1 

2 link between Flights data 
store and process 1 Customer data 1 process 2 

3 link between process 1 
and process 2 Customer data 2 process 3 

4 link between process 2 
and process 3  process 4 

5 link between process 2 
and process 6  process 5 

6 link between Customer 
and process 4  process 6 

7 link between process 4 
and Customer data 1  process 7 

8 link between process 3 
and process 4  process 8 

9 link between process 3 
and Customer data 1 

  

10 link between Customer 
data 1 and process 5 

  

11 link between Customer 
and process 7 

  

12 link between process 7 
and Customer data 2 

  

13 link between process 6 
and process 7 

  

14 link between process 6 
and Customer data 2 

  

15 link between Customer 
data 2 and process 8 

  

 
Table IV shows that there are 15 attacker accessible SD 

link locations, 3 attacker accessible SD datastores, and 8 
attacker accessible SD processes. For Figure 7, prior to the 
application of the above methods, (3) gives the size N of the 

attack surface for sensitive data as N = m + 2n + k = 15 + 6 
+ 8 = 29. 
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Figure 7. DFD for ACCURES, “F.D.A.” stands for “Flight 
details assigned” – used due to lack of space. All data are SD. 
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Note that we count a 2-way communication (two arrows in 
opposite directions) as one link. An example is the 2-way 
communication between processes 1 and 2. This is because 
such a communication is considered implemented on a single 
physical cable, so it is really a single link that will be 
vulnerable to attack. 

Applying Phase 2 in Section III-B, we first use methods b) 
and d) on the attacker accessible locations in Table IV, as 
follows: 

• Using method b), combine process 5 with process 4 
so that process 4 will now take on the additional 
function of charging the payment. Similarly, 
combine process 8 with process 7 so that process 7 
additionally charges the payment. Note that these 
applications of method b) also eliminate the link 
from data store “Customer data 1” to process 5 and 
the link from data store “Customer data 2” to process 
8. These changes were not seen as impacting 
performance, reliability, or maintenance and were 
accepted. 

• Using method d), remove the two datastores 
“Customer data 1” and “Customer data 2”  from the 
system; the software company’s client decided that 
storing the customers’ sensitive private information 
in these datastores results in excessive risks that the 
data could be compromised by attackers. The system 
would still be able to function according to 
expectation without these data stores. Note that 
removing these datastores also caused the removal of 
4 SD links that were connecting to the data stores 
(two links per data store).  These changes were also 
considered feasible and accepted.  

These changes result in the DFD shown in Figure 8. Table V 
gives the attacker accessible SD locations corresponding to 
Figure 8. 

TABLE V.  ATTACKER ACCESSIBLE SD LOCATIONS IN FIGURE 8 

 Links Datastores Processes 

1 link into Flights data 
store  Flights process 1 

2 link between Flights data 
store and process 1  process 2 

3 link between process 1 
and process 2  process 3 

4 link between process 2 
and process 3  process 4 

5 link between process 2 
and process 6  process 6 

6 link between Customer 
and process 4  process 7 

7 link between process 3 
and process 4   

8 link between Customer 
and process 7 

  

9 link between process 6 
and process 7 

  

 
Table V shows that there are 9 attacker accessible SD link 

locations, 1 attacker accessible SD datastore, and 6 attacker 
accessible SD processes. For Figure 8, (3) gives the size N of 

the attack surface for sensitive data as N = m + 2n + k = 9 + 
2 + 6 = 17. Thus, the application of methods b) and d) have 
reduced the attack surface from 29 to 17. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is possible to further reduce the attack surface of Figure 

8, as follows: 
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Figure 8. DFD for ACCURES after changes, “F.D.A.” stands 
for “Flight details assigned” – used due to lack of space. All 
data are SD. 
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• Using method c), deny an attacker access to the SD 
link between process 3 and 4 by implementing 
MOD-CAN on one physical platform (see 
explanation for method c) above).  Similarly, deny 
access to the SD link between processes 6 and 7 by 
implementing MOD-EU on one physical platform. 
Finally, deny attacker access to the SD link between 
the Flights datastore and process 1 and the SD link 
between processes 1 and 2 by implementing MAIN 
on one physical platform. These changes were not 
seen as impacting performance or maintenance and 
were accepted. 

• Using method a), obfuscate the Flights data store. 
Next, obfuscate the 5 SD links that extend outside the 
modules. These links are: between “Flight data 
source” and the Flights datastore, between process 2 
and process 3, between process 2 and process 6, 
between “Customer” and process 4, and between 
“Customer” and process 7. These changes were 
deemed feasible. Consideration was also given to 
obfuscating or combining some of the processes, but 
this was not done as it would significantly impact 
performance.  

These changes do not alter the DFD in Figure 8. Table VI 
gives the remaining attacker accessible SD locations. The new 
attack surface is of size N = m + 2n + k = 0 + 0 + 6 = 6. The 
application of the methods in Section III-A has improved the 
security of sensitive data in the system by reducing the size of 
the attack surface from 29 to 6. 

TABLE VI.  REMAINING ATTACKER ACCESSIBLE SD LOCATIONS 

 Links Datastores Processes 
1   process 1 
2   process 2 
3   process 3 

4   process 4 
5   process 6 
6   Process 7 
 

V. RELATED WORK 
In this section, we refer to “attack surface” in the general 

sense.  
Most closely related to this work is this author’s previous 

work on reducing the attack surface [9][10]. However, this 
previous work differs from the current work in at least the 
following two ways: a) the previous work proposes a 
graphical model with which to identify the attack surface 
whereas the current work does not require any such model, 
and b) the previous work reduces the attack surface by 
requiring the developer to learn and modify the graphical 
model whereas the current work has no such requirement. 

Some of the following related works deal with attack 
surface identification and reduction at the code or binary 
levels, whereas this work deals with it at the architectural 
level. A few of these works reduce the attack surface by 
removing unnecessary code or features similar to the removal 

of SD locations in this work. A. Kurmus et al. [11] look at 
reducing the attack surface of commodity OS kernels by 
identifying code that is not used and removing it or 
preventing it from executing. T. Kroes et al. [12] investigate 
reducing the attack surface through dynamic binary lifting, 
removal of unnecessary features, and recompilation. R. Ando 
[13] presents work on attack surface reduction through call 
graph enumeration in which attackable call graphs are 
removed. S. N. Bukhari et al. [14] propose reducing the attack 
surface corresponding to cross-site scripting by employing 
secure coding practices. G.V. Neville-Neil [15] writes that 
“the best way to reduce the attack surface of a piece of 
software is to remove any unnecessary code”.  Obermeier et 
al. [16] propose to reduce the attack surface of next-
generation industrial control systems through the use of a 
dynamic security system that adapts the parameters of 
network and security controls according to underlying 
changes in the control system environment. This results in the  
security controls only allowing data transfer that is required 
by the control system, thus reducing the attack surface. 

The following works look only at identifying the attack 
surface. M. Sherman [17] investigates attack surfaces for 
mobile devices. This author claims that mobile devices 
exhibit attack surfaces in capabilities, such as 
communication, computation, and sensors, that are generally 
not considered in current secure coding recommendations. C. 
Theisen et al. [18] propose the use of risk-based attack 
surface approximation (RASA) which uses crash dump stack 
traces to predict what code may contain attackable 
vulnerabilities. Their goal is to help software developers 
prioritize their security efforts by providing them with an 
attack surface approximation. P. K. Manadhata and J. M. 
Wing [5] provide a much more detailed metric of attack 
surface than is defined in this work. Their metric may be 
considered as a measure of the size of the attack surface for 
all possible threats. Our definition of data attack surface may 
be considered as a subset of their definition. It is not possible 
to compare these two definitions in terms of accuracy or 
usefulness since they were defined with different purposes in 
mind. The same applies to any attempt to compare our 
definition with any other definition of attack surface.  

Software attack surface identification and reduction is 
closely related to software vulnerability analysis, where the 
greater part of research also appears to be at the code level. 
Perl et al. [19] use an SVM classifier to find vulnerabilities in 
code repositories. Li et al. [20] describe VulPecker, a tool that 
can find a specific vulnerability in source code. Pang et al. 
[21] describe predicting vulnerable software components 
using a method built on a deep neural network. Anand et al. 
[22] suggest a way of classifying security patterns based on 
the type of vulnerability they treat. Also in this vulnerabilities 
category but working at the architectural level is this author’s 
work, Yee [23], which deals with using a graphical model to 
identify and remove vulnerabilities during design. Yee [23] 
differs mainly from the current work in that it focuses on 
vulnerabilities found through risk analysis whereas the 
current work focuses on the data attack surface found by 
counting the attacker accessible SD locations in a model of 
the system such as its DFD. 
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Some works propose to increase security through attack 
surface expansion rather than attack surface reduction. For 
cloud services, T. Al-Salah et al. [24] propose three attack 
surface expansion approaches that use decoy virtual 
machines co-existing with the real virtual machines in the 
same physical host. They claim that simulation shows that 
adding the decoy virtual machines can significantly reduce 
the attackers’ success rate. For enterprise networks, K. Sun 
and S. Jajodia [25] propose a new mechanism that expands 
the attack surface, so that attackers have difficulty in 
identifying the real attack surface from the much larger 
expanded attack surface. Note that these works do not 
contradict reducing the attack surface to improve security, 
since the attack surface is not really expanded but only 
appears to be expanded due to the addition of decoys.  

VI. DISCUSSION 
It has been suggested that combining multiple SD 

locations into a single SD location using attack surface 
reduction method b) will result in a greater loss should the 
attacker target this combined location. However, recall that 
all SD locations on the data attack surface are attacker 
accessible. Therefore, the multiple locations existing prior to 
combining were all attacker accessible. But because of the 
greater attack surface prior to combining, it is more likely that 
all of those locations will be attacked than the single 
combined location. Note that prior to combining, the attacker 
will attack all the locations rather just a few, since there is no 
reason for him/her to stop until he/she gets all the SD. Thus, 
the likelihood of the single combined location being attacked 
after combining is less than the likelihood of the multiple 
locations being attacked prior to combining, and the potential 
data loss is the same both after combining and prior to 
combining. This shows the advantage of a smaller attack 
surface.  In addition, there is always the possibility of 
applying reduction method a) (make a SD location useless to 
the attacker) to the combined location, removing it from the 
data attack surface.  

Definition 3 describes the attacker accessible SD 
locations that make up the data attack surface as containing 
SD that is in the clear. It has been suggested that these 
locations can also contain encrypted SD since some attackers 
may still attack such locations, in order to obtain encrypted 
SD which they would then decrypt. While this is possible, our 
view in this work is that attackers would not attack such 
locations, since there are many other attacker accessible SD 
locations that contain SD in the clear. However, if we were 
to allow locations to contain encrypted SD, our attack surface 
reduction approach would be impacted as follows: reduction 
method a) would not be applicable to such locations, and such 
locations would remain part of the data attack surface, unless 
eliminated by methods b), c), or d). The overall impact would 
be slightly fewer opportunities to reduce the data attack 
surface.  

We admit that our choice of Ml = Mp = 1 and Md = 2 in 
Section II-B may not be accurate, but accuracy is not needed 
to show that the data attack surface is smaller after each 
reduction method is used. Nevertheless, these multiplier 
values do represent a reasonable approximation to the real 

values, which can only be ascertained with further research 
studies. Furthermore, perhaps the real values are not so 
important, since the true benefit of knowing the size of the 
data attack surface is to be able to use it for comparison and 
measurement purposes as a result of some improvement 
effort, i.e., the capabilities listed in the first paragraph of 
Section II-B, and our values already provide this benefit. 

VII. CONCLUSIONS AND FUTURE WORK 
This work has presented an easy way to identify and 

calculate the size of the attack surface for sensitive data held 
within an online computer system, based on finding attacker 
reachable SD locations in the system. This work has also 
introduced methods for reducing the attack surface that are to 
be applied at the architectural level early in the development 
cycle, prior to coding, as part of the Design for Security 
toolset.  

Applying the methods does not require developers to 
learn a new model or a new coding language. Apart from the 
methods themselves, which are straightforward, a minimal 
level of security knowledge is needed, in order to understand 
the concept of data attack surface, the purpose of the 
methods, and how they work. Knowledge of the computer 
system is the major requirement, but developers already have 
this knowledge. Although the methods themselves are 
straightforward, applying them can be challenging in terms 
of their impact on performance, ease of maintenance, and 
other factors, as mentioned above. However, the goal of 
applying the methods is not to obtain the smallest attack 
surface possible, but rather to reduce the attack surface while 
balancing the needs of performance, reliability, 
maintainability, and so on. Thus, it is quite acceptable not to 
have attained the smallest attack surface possible, so long as 
those other needs are satisfied. We expect the methods to be 
acceptable to developers and their management because of 
their practicality and ease of application.  

Future work includes improving the identification of the 
attack surface and the calculation of its size. In addition, we 
hope to refine the methods for reducing the attack surface 
from developer feedback, obtained perhaps through 
workshops and trials. Other future work consists of 
investigating new methods for reducing the attack surface 
and looking at tools that could indicate a method’s impact on 
such aspects as performance, reliability, ease of maintenance, 
and implementation costs. 
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