
26

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

WAF Signature Generation from Real-Time Information on the Web

using Similarity to CVE

1st Masahito Kumazaki
Graduate School of Informatics

Nagoya University
Nagoya, Japan

Email: kumazaki@net.itc.
nagoya-u.ac.jp

2nd Yukiko Yamaguchi
Information Technology Center

Nagoya University
Nagoya, Japan

Email: yamaguchi@itc.
nagoya-u.ac.jp

3rd Hajime Shimada
Information Technology Center

Nagoya University
Nagoya, Japan

Email: shimada@itc.
nagoya-u.ac.jp

4th Hirokazu Hasegawa
Information Security Office

Nagoya University
Nagoya, Japan

Email: hasegawa@icts.
nagoya-u.ac.jp

Abstract—Zero-day attacks and attacks based on publicly dis-
closed vulnerability information are major threats to network se-
curity. To cope with such attacks, it is important to collect related
information and deal with vulnerabilities as soon as possible. We
have developed a system that collects vulnerability information
related to web applications from real-time open information on
the web, such as that found on Twitter and other discussion-
style web sites, and generates web application firewall (WAF)
signatures for them. In this study, first, we collected vulnerability
information containing a specified keyword from the National
Vulnerability Database (NVD) data feed and generated WAF
signatures automatically. Then, we examined the suitability of the
WAF signature generation from one tweet. Finally, we extracted
tweets that might contain vulnerability information and labeled
them using a filtering algorithm. We then further experimented
on gathering and extracting vulnerability information for a target
web application. First, we gathered past Common Vulnerabilities
and Exposures (CVE) descriptions of the target web application
and used them to generate a Doc2Vec model and word vectors.
We also used the trained Doc2Vec model to generate word
vectors gathered from open information sources such as Twitter,
Stack Overflow, and Security StackExchange. After that, we
extracted vulnerability information for the target web application
by calculating the cosine similarity between the word vectors of
the open information and the CVE descriptions. Experimental
results demonstrated that our Doc2Vec-based extraction process
can be easily adapted to individual web applications.

Keywords–Web Application Firewall(WAF); Zero-day Attack;
Vulnerability Information; Real-time Information.

I. INTRODUCTION

We first review the results of the vulnerability information
filtering method based on pattern matching that we introduced
in our previous work presented in SECURWARE 2020 [1].

Web applications are recognized as an important part of
the social infrastructure, and the average person uses a variety
of such applications every day. At the same time, cyberattacks
are increasing year by year and are now widely recognized
as a significant threat to the social infrastructure. There are
many cases of serious damage caused by such attacks, such
as classified information leakage by unauthorized access and
attacks that exploit vulnerabilities [2] [3].

Among cyberattacks, attacks that exploit published vulner-
abilities are particularly on the increase [4] [5]. In a recent case,
the number of detected attacks on Apache Struts 2 increased
immediately after the announcement of its vulnerability [6],
some of which resulted in personal information leakage due

to a lack of necessary countermeasures such as timely system
updates [7] [8]. Another major information security issue is
zero-day attacks, which occur before the release of vulner-
ability information or the provision of patches [20]. Google
Chrome suffered such a zero-day attack in 2019 [10].

The generally recommended countermeasure against such
cyberattacks is to apply fixed patches distributed by the vendor
in a timely manner. However, in the case of zero-day attacks,
there is an unprotected period before the patch is released.

We previously developed a web application firewall (WAF)
signature generation system using real-time information on the
web to mitigate zero-day attack problems [1]. Real-time infor-
mation sources such as Twitter are used for a variety of pur-
poses [11] [12], and they may contain the latest vulnerabilities
and emergency plans, which are useful for mitigating the prob-
lem before any formal vulnerability information or patches are
released. Our system automatically collects vulnerability infor-
mation to construct WAF signatures to mitigate the problems
until the release of formal countermeasures. Although there
are previous studies on the automatic generation of signatures
for intrusion detection systems (IDSs) [13] [14] [15], we focus
on WAF in this study because our target is web applications.
To acquire the latest vulnerability information from the web,
our system collects vulnerability information from real-time
data feeds on social networking services (SNSs), web forums
for security technologies discussion, and similar sites. After
cleansing the collected data, the system checks for associated
vulnerable web applications and generates WAF signatures for
them.

In this paper, we demonstrate the effectiveness of our pro-
posal on a practical level as an extension of the basic proof of
concept provided in our previous work [1]. We first discuss the
results of the vulnerability information filtering method based
on pattern matching for multiple information sources. Further,
as a method for generating an extraction model for individual
web applications, we introduce a method using the similarity of
word vectors generated by a Doc2Vec model trained with past
Common Vulnerabilities and Exposures (CVE) descriptions.

To evaluate the WAF signature generation from the vul-
nerability information part, we performed an experiment with
vulnerability information provided by the National Vulnera-
bility Database (NVD) [16] and a specific tweet. First, we
extracted the vulnerability information including a specified
keyword related to the target web application and performed
automatic generation of the WAF signature, as a proof of

27

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concept. Then, we collected vulnerability information from
Twitter, a well-known SNS and real-time information source,
and attempted to generate WAF signatures from the tweets.
Finally, we examined the extraction of tweets that included
vulnerability information of the target web application by
means of a pattern matching approach. The results of these
investigations demonstrated the efficiency of the proposed
system.

We next performed a practical experiment in which vulner-
ability information of the target web application was extracted
using a text processing framework. First, we gathered past
vulnerability information of the target web application from the
description section of a CVE as reference data. We used these
reference data to train a Doc2Vec model to extract vulnerability
information words of the target web application and then
utilized the trained model to generate reference word vectors
with text data from the CVE description. Then, we collected
vulnerability information from open information such as SNS
(e.g., Twitter) and web forums for discussion on security tech-
nologies (e.g., Stack Overflow). We generated word vectors
from the text part of the open information gathered with the
trained Doc2Vec model and treated them as open information
vectors. Finally, we performed similarity calculations between
the reference vectors and the open information vectors. If an
open information vector had a large similarity to the reference
vectors, we treated the text correlated to the open information
vector as containing vulnerability-related information.

In section II of this paper, we describe the background
of our study, namely, the existing countermeasures. In section
III, we present our proposed system and the architectures with
which it is implemented. In section IV, we describe the exper-
iments we performed to evaluate the implemented system. In
section V, we discuss additional real-time information sources.
Section VI presents the pattern matching-based extraction for
target web applications and section VII shows the word vector
similarity-based extraction with the Doc2Vec model trained
using past CVE descriptions. We conclude in section VIII with
a brief summary.

II. BACKGROUND

Existing countermeasures against zero-day attacks include
defense-in-depth solutions that combine multiple security ap-
pliances such as firewalls, IDS/intrusion prevention system
(IPS)-based allow/deny lists, and so on. However, if they are
based on static rules, these countermeasures may result in an
unprotected period against attacks. To mitigate the damage
caused by zero-day attacks, we previously proposed a WAF
signature generation system that uses real-time information on
the web. Specifically, the proposed system generates a WAF
signature for blocking access to a vulnerable web application
when it discovers from real-time information on the Internet
that the application contains vulnerability information. As a
result, the unprotected time against attacks is shortened and
the damage will ideally be mitigated.

A. WAF (Web Application Firewall)
Web applications are becoming more complicated year by

year, and as such it is getting harder to detect vulnerabilities
in their implementations. Therefore, WAFs are often used as
a security measure to protect web applications from ingress
traffic and to mitigate attacks that exploit vulnerabilities [17].

A WAF can be installed in multiple locations, such as a
host type installed on a web server, a network type installed
on a communication path to the web server, or a cloud
type using WAF services on a cloud provided by the cloud
service provider. By setting rules to prevent attacks aimed
at typical web application vulnerabilities, we can protect the
web server from attacks that target a specific vulnerability.
Some WAFs enable users to set their own rules for specific
attacks, which makes it possible to prevent zero-day attacks
by applying custom signatures. In general, a WAF use the
following basic functions to prevent external attacks and notify
the administrator.

Analyzing
Analyze Hypertext Transfer Protocol (HTTP)
communication based on a detection pattern de-
fined in an allow/deny list.

Processing
Perform pass-through processing, error process-
ing, replacement processing, blocking processing,
and so on. Judgement is based on the result of the
analysis function.

Logging
Record WAF activity. An audit log records any
detected unauthorized HTTP communication and
its processing method. An operation log records
WAF operation information and error information.

B. ModSecurity
ModSecurity is an open-source host type WAF software

provided by Trustwave. It has the following functions.

• Recording and auditing of whole HTTP traffic
• Real-time monitoring of HTTP traffic
• Flexible enough rule engine to act as an external patch

for web applications
• Can be embedded as a module of web server software

Apache, IIS, and NGINX

Also, the Open web application Security Project (OWASP)
[18] provides a Core Rule Set (CRS) that includes signatures
for typical cyberattacks for ModSecurity. In the experiments
later in this study, we use ModSecurity as the WAF for our
proposed system to take advantage of the flexibility of the rule
engine and the versatility of the module.

C. Doc2Vec
Doc2Vec is an advanced implementation of the Paragraph

Vector proposed by Mikolov et al. [19]. It can vectorize a
variety of different-length texts without losing the word order
or semantics. However, with some text it is not preferable to
keep the word order, so in the current Doc2Vec framework
the user can choose either a mode that does not keep the word
order, called the distributed memory model of paragraph vector
(PV-DM), or a mode that does keep the word order, called
the distributed bag-of-words paragraph vector (PV-DBOW).
Before vectorizing text to prepare it for processing, we can
train the Doc2Vec model with training samples. This is one of
the advantages of Doc2Vec compared to prior neural network
approaches for word embedding.

One of the applications for Doc2Vec is a similarity calcu-
lation between documents. With this application, by applying

28

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Real-time information sources

API Identification Timestamp
Twitter [20] ✓ ✓ ✓

Stack Overflow [21] ✓ ✓ ✓
Reddit [22] ✓ ✓ ✓
teratail [23] × ✓ ✓

Security StackExchange [24] ✓ ✓ ✓

a vector similarity calculation method (e.g., cosine distance) to
vectors obtained from documents, we can obtain a similarity
value between documents.

III. PROPOSED SYSTEM

The proposed system consists of the following four mod-
ules:

(1) Collection module
(2) Cleansing module
(3) Signature generation module
(4) Notification generation module.

Figure 1 shows the architecture of the proposed system and its
data flow.

First, the collection module collects vulnerability informa-
tion from real-time information sources such as SNS (Fig. 1
(1)). After that, the proposed system performs data cleansing
on the collected data (Fig. 1 (2)). Finally, the proposed system
generates WAF signatures and set them (Fig. 1 (3)). At the
same time, the proposed system generates a notification file
for the administrator (Fig. 1 (4)).

In this system, it is assumed that the administrator registers
the names of the web applications and their version informa-
tion into the system beforehand. It is on the basis of this
registered information that the system extracts vulnerability
information from the Internet.

A. Collection module

The proposed system generates WAF signatures from the
real-time information sources shown in Table I. All these
sources are equipped with IDs and timestamps. The collection
module collects vulnerability information from the sources and
saves their ID, timestamp, and body. Subsequent processes will
require these IDs and timestamps to identify the articles and
the date of publication.

B. Cleansing module

The proposed system performs data cleansing on collected
data to remove duplicate information and get the necessary
information. The cleansing module extracts the following at-
tributes from text and web page. The system uses the following
attributes for generating WAF signatures.

• Application name

• Vulnerability type

• Version information

• Vulnerability identification information such as a
Common Vulnerabilities and Exposures (CVE)-ID

C. Signature generation module
If the web application name that is used for operating web

application system is included among the attributes extracted
by the cleansing module, the system generates a WAF signa-
ture to block HTTP requests to that application and applies it
to the WAF. It also notifies the notification generation module
that the signature has been generated.

D. Notification generation module
The proposed system generates a notification and sends it to

the administrator. This notification includes information such
as the name and version of the vulnerable web application. We
expect that when the vulnerability is resolved (e.g., applying a
patch), this notification will remind the administrator to remove
the signature.

IV. INITIAL EXPERIMENTS

We conducted the following initial evaluation experiments.
For the target web application to collect vulnerability in-
formation, we used WordPress as a keyword for extracting
vulnerability information due to its known history of many
vulnerabilities.

A. Experiment 1: WAF signature generation using CVE infor-
mation

First, as a proof of concept, we implemented the proposed
system shown in Figure 1 with Python 3.6.8 and AWK scripts
and examined the automatic generation of WAF signatures
using NVD data feeds instead of real-time information.

1) Processing Method: The collection module (Fig. 1 (1))
obtained information from the NVD data feed, which contains
CVEs, on a daily basis. The cleansing module (Fig .1 (2))
checked whether the keyword was included in the Common
Platform Enumeration (CPE) name for each vulnerability
information on the data feed. The following data were then
extracted.

1) CVE-ID
2) CPE name

The CPE name is a name that identifies the platform
[25].

cpe:2.3:[Part]:[Vendor]:[Product]:[Version]
:[Update]:[Edition]:[SW Edition]:[Target SW]
:[Target HW]:[Language]:[Other]

In this experiment, we used [Part] and [Product]
from the CPE name. [Part] represents a product type
with one character, where ‘a’ is an application, ‘o’ is
an operating system, and ‘h’ is hardware. [Product]
is the product name.

3) Version information

We extracted these data and stored them into JavaScript
Object Notation (JSON) format.

Next, the signature generation module (Fig. 1 (3)), we
generated a signature for ModSecurity from the extracted
information to prevent access to the web application. With
reference to ModSecurity_41_xss_attacks.conf and
ModSecurity_41_sqlinjection_attacks.conf
from ModSecurity’s CRS, we added the following signatures.

• VARIABLES: REQUEST COOKIES|!REQUEST
COOKIES:/ utm/|REQUEST COOKIES NAMES|
ARGS NAMES|ARGS|XML:/

29

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1

WAF

Internet

System opaeration

Web
server

Admin

Proposed system

Real-time
information

NotificationCollection
module

Cleansing
module

Notification
generation

module

Signature
generation

module

HTTP requests

Collected
data

WAF signature

WAF signature

Attributes

(4)
(1)

(3)(2)

Figure 1. System architecture and data flow

WordPress: 17

Other applications: 3
• Import export

WordPress users
• WordPress download

manager
• WordPress ultra Simple

shopping cart

Figure 2. Extracted information in Experiment 1

• OPERATOR: Regular expression using web applica-
tion names

• ACTIONS: phase:2,block,msg:’application name in-
jection.’,severity:’2’,id:’15000+line number’

In addition, we generated text files to provide notification
about the signature generation in the notification generation
module (Fig.1 (4)).

2) Results: We performed this process once daily for ten
days from December 21, 2019 to December 30, 2019.

Since the results for all days during the collection period
were the same, we present the result of a single day as an
example in Figure 2.

The results of the automatically generated WAF signatures
are shown in Figure 3. The signature for WordPress was gener-
ated from 17 cases of WordPress vulnerability information and
other signatures were generated from one case corresponding
to each application.

3) Consideration: The generated signatures show that, in
addition to the signature for the actual WordPress application,
other applications that include“wordpress”in their name have
been blocked as well. These redundant rules place an additional

1 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
import_export_wordpress_users" "phase:2,block,msg:’
WordPress injection.’severity:’2’,id:’15001’"

2 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
wordpress" "phase:2,block,msg:’WordPress injection.’
severity:’2’,id:’15002’"

3 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
wordpress_download_manager" "phase:2,block,msg:’
WordPress injection.’severity:’2’,id:’15003’"

4 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
wordpress_ultra_simple_paypal_shopping_cart" "phase:2,
block,msg:’WordPress injection.’severity:’2’,id
:’15004’"

Figure 3. Generated WAF signature in Experiment 1

TABLE II. Extracted attributes of the tweets

Key Type Description
id Int64 tweet id as an integer.

created at String The time when the tweet was created.
username String User name who posted the tweet.

text String The tweet contents in UTF-8 format.
urls List Uniform Resource Locators (URLs) in the tweet1.

burden on the WAF. To overcome this limitation, we need to
improve the signature generation rule and fine-tune it.

B. Experiment 2: Generation of WAF signatures using twitter
feed

Next, to investigate the possibility of WAF signature gen-
eration from real-time vulnerability information, we collected
tweets from twitter feeds, chose one tweet, and generated a
WAF signature from it. The tweets were collected using an
Application Programming Interface (API) search by setting
the query parameters to “wordpress”. The chosen tweet is
shown in Figure 4. The proposed system uses the information
from tweets listed in Table II from tweets, so we extracted the
following information.

• id: 1200259525707796482

30

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. The tweet used in Experiment 2

1 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
wordpress" "phase:2,brock,msg:’WordPress XSS.’severity
:’2’,id:’15001’"

Figure 5. Generated WAF signature in Experiment 2

• created at: 2019-11-29 03:45:45
• username: Vulmon Vulnerability Feed
• text: CVE-2017-9061\n\nIn WordPress before 4.7.5,

a cross-site scripting (XSS) vulnerability exists when
attempting to upload very large files, because the error
message does not properly restrict presentation of the
filena...\n\nhttps://t.co/anaw5-QSAoa”

• urls: [http://vulmon.com/vulnerabilitydetails?qid=
CVE-2017-9061]

1) Method and results: A visual check of the web appli-
cation and vulnerability information contained in the tweet
resolved the following attributes from the text.

• Application name: WordPress
• Vulnerability type: XSS
• Version information: 4.7.5 and earlier
• CVE-ID: CVE-2017-9061

We also checked the web page indicated by the URL but
could not obtain any additional attributes. As in experiment 1,
we generated a ModSecurity signature from these attributes,
which is shown in Figure 5.

2) Consideration: This experiment confirms that a WAF
signature could be generated from collected tweets. However,
we still need a method to select the relevant tweet. We expect
to be able to extract information such as the web application
name, its version, or the type of vulnerability through the
pattern matching approach.

V. CONSIDERATION OF ADDITIONAL SOURCES

Currently, the real-time information source is only Twitter,
and it could be prone to be disinformation. Therefore, we
explored the possibility of using other information sources,
which are listed in Table I.

To analyze whether these information sources are appropri-
ate sources or not, we reviewed discussions about the following
three WordPress vulnerabilities in the corresponding commu-
nities. These vulnerabilities are registered in the NVD and have
a high Common Vulnerability Scoring System (CVSS) score.

TABLE III. Number of search hits

2018-20148 2019-17669 2019-20041
Stack Overflow 10(-) 6(-) 10(-)

Reddit 2(-) 15(-) 11(-)
teratail 6(-) 6(-) 3(-)

Security StackExchange 2(-) 0(-) 2(-)

(): Number of search hits related CVEs

TABLE IV. Number of search hits in each knowledge community

Knowledge community\Year 2017 2018 2019 total
Stack Overflow 2,166 2,072 1,837 6,075

Reddit[cybersecurity] 31 172 266 469
Reddit[security] 16 60 151 227

teratail 241 196 172 609
Security StackExchange 1,166 1,072 768 4,006

• CVE-2018-20148 Published: December 14, 2018
• CVE-2019-17669 Published: October 17, 2019
• CVE-2019-20041 Published: December 27, 2019

Since we cannot collect information from teratail via API,
we searched the above vulnerabilities by means of a Google
search with the queries “WordPress” and “vulnerability”. The
duration of the search was set to one month before and after the
vulnerability announcement. The results are shown in Table III,
the numbers in parentheses refer to the number of search hits.
These results show that we could not obtain any information
about these vulnerabilities from these communities in a timely
manner.

In addition, the current system has some problems. As the
results shown in Table III are not suitable for a comparison of
each knowledge community, we tried additional exploration.
Specifically, we compared the number of search hits per site
using the Custom Search API provided by Google to see the
number of discussions about vulnerabilities in each knowledge
community. We set the query ”vulnerability” for all sites and
set the period from January 1, 2017 to December 31, 2019.
Since Reddit has a lot of topics that are not security-related, we
only explored two subreddits (“security” and “cybersecurity”).

The results are shown in Table IV. Among the knowledge
communities examined in this study, Stack Overflow and
Security StackExchange had the most active in discussions
about the vulnerability, so we conclude they can be used as a
good information source.

VI. FILTERING AND EXTRACTING TWEETS THROUGH
PATTERN MATCHING APPROACH

A. Description
In big data processing, we generally gather data from infor-

mation sources through the API of the services or perform web
scraping. However, data acquired in such a manner typically
contain a lot of totally unrelated information, which means we
have to perform a related information extraction or an unrelated
information elimination. To circumvent this issue, we propose
a filtering method based on regular expression. The method
first confirms the existence of specific information such as
application name and version number with regular expression
and then decides whether the information is related information

31

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or not. To determine the effectiveness of this method, we
performed an experiment with gathered tweets.

B. Experiment 3-1: Regular expression-based extraction with
tweet

First, on the basis of the results of Experiment 2, we ex-
tracted and filtered vulnerability information from the tweets.
We then used the twitter API to collect tweets every day for the
following period. After eliminating the duplicates, we further
processed 1,116 tweets.

• Collection period: From December 4, 2019 to Jan-
uary 8, 2020

• Search queries: “WordPress AND Vulnerability”,
“WordPress AND XSS”, and “WordPress AND injec-
tion”

To check the performance of the filter, we manually assigned
the following labels to the tweets based on the relevance to
the WordPress vulnerability.

0: WordPress vulnerability information
1: Other information

As a result of the manual labeling, 76 tweets regarding
WordPress vulnerabilities were identified. The remaining 1,040
tweets were mistakenly extracted since there URLs referred to,
e.g., a web page created using WordPress.

1) Method: We collected the attributes shown in Table II
from the tweet and filtered them on the basis of its text context
by pattern matching using regular expressions from the tweet’s
text and web page body indicated by the URL. The following
attributes were extracted from the tweet and stored in JSON
format.

• ID: tweet-id
• App name: If the string includes “wordpress” this

element is 1, otherwise 0.
• CVE: Extract the string “CVE-\d{4}-\d+” and store

it as a list.
• plugin / theme: If the string includes “plugin” or

“theme” this parameter is 1, otherwise 0.

From these attributes and a list of CVEs corresponding to
the target application, we automatically assigned an estimated
label for tweets in accordance with the flowchart shown in Fig-
ure 6. Each label corresponds to the following categorization
result.

0: WordPress vulnerability information
1: Other information

1-a: Does not included the string “wordpress”
1-b: Expected to be a WordPress plugin or theme
1-c: No WordPress vulnerability in CVE list

2: Unfiltered

2) Results: We implemented the filter in Python as per the
flowchart shown in Figure 6 and ran it on the 1,116 collected
tweets. The results are shown in Table V. As we can see,
our method filtered 597 tweets, 98.5% of which were filtered
correctly. However, 519 were unfiltered. By using the pattern
matching approach, the number of objects to analyze could be
reduced by half.

Out of the seven tweets that were not correctly filtered, six
were supposed to be labeled as 0 but were mistakenly labeled

Classification elements

0
Yes

App_name

CVE list 1

0

1
plugin/
theme

No
Otherwise

0Null

include WordPress
vulnerability

1

1-b 1-c

1-a

2

Figure 6. Flowchart of estimated label setting in Experiments 3-1 and 3-2

TABLE V. Filtering results of Experiment 3-1

Estimated label
0 1-a 1-b 1-c 2 total

0 13 0 6 0 57 76
Correct label 1 1 94 292 191 462 1,040

total 14 94 298 191 519 1,116

as 1-b. These were all weekly summaries of vulnerability
information for WordPress and related modules and contained
information about both WordPress and its plugins. This is
why the filter misjudged them as information about WordPress
plugins.

3) Consideration: The information required for the pro-
posed system is vulnerability information that is up-to-date or
has not been officially announced, which is included in the
tweets labeled as 2 in this experiment. Therefore, we need to
provide a way to extract the required information from these
tweets.

C. Experiment 3-2: Regular expression-based extraction with
other data

To determine the difference among data collection periods
and among data sources, we applied the regular expression-
based filtering procedure discussed in Section VI-B to the other
data. Table VI shows data sources and collection periods.

We performed regular expression-based filtering on the
main text of tweet and web page content pointed to by the
URL contained in the tweet. We also performed filtering on
question texts for Stack Overflow and Security StackExchange
data. We manually applied labels to Security StackExchange
data and compared these estimated labels provided by the flow
in Figure 6.

Table VII shows the filtering results with estimated labels.
The label descriptions are the same as those in Section VI-B.

TABLE VI. Source and collection period of Experiment 3-2

Source site Collection period Number
Tweet-2021 from February 19, 2021 to June 30, 2021 5,843
Tweet-2020 from March 2, 2020 to June 2, 2020 4,702

Stack Overflow from January 1, 2018 to December 31, 2020 48,377
Security StackExchange from January 1, 2018 to December 31, 2020 151

32

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. Filtering results of Experiment 3-2

0 1-a 1-b 1-c 2 total
Tweet-2021 224 572 1,165 1,276 2,606 5,843
Tweet-2020 33 565 1,615 601 1,888 4,702

Stack OverFrow 1 17,328 3,843 0 27,165 48,337
Security StackExchange 1 8 12 1 129 151

When we compared Tweet-2020 and Tweet-2021, we found
that we could filter and classify more than 60% of the data
regardless of the data gathering period. Tweet-2021 contained
seven times more WordPress vulnerability results (label 0)
than Tweet-2020. This difference comes from the fact that a
danger vulnerability CVE-2020-36326 (CVSS score: 9.8) was
announced in the Tweet-2021 gathering period, which affected
the number of WordPress vulnerability results.

We could filter and classify around 45% of the data
from Stack Overflow, and there was only one WordPress
vulnerability result. We speculate that community members
of Stack Overflow who have an interest in vulnerability may
also be members of Security StackExchange and asked about
it on the Security StackExchange side.

We could only filter and classify around 15% of the data
from Security StackExchange. This is presumably because
discussions on Security StackExchange are complicated or
higher level ones, such as ”How can I operate WordPress
to avoid security issues as much as possible?” and such
discussions do not contain specific version numbers or specific
plugins, which are required in the Figure 6 flow.

Table VII shows the relationship between manually applied
correct labels and estimated labels. As mentioned, only 15%
were classified, so we cannot include the remaining 85% in this
discussion. Eight CVEs were issued in the data gathering pe-
riod, but we only obtained one WordPress vulnerability result
(label 0). However, the version numbers listed in the results
were not a WordPress versions (i.e., they belonged to the other
application), so the results lacked version number information.
We clarify why these results were poor through a detailed
analysis of the Security StackExchange text data. First, the
texts here contained a lot more information than a tweet, which
means that one text data frequently contained vulnerability
discussions on multiple applications. Furthermore, we found
that many text data did not contain key phrases or version
numbers compared to tweets. On the other hand, we found
that some text contained detailed information such as ”problem
of illegal communication occurrence” and appeal reminders
about various problems. Such information might sometimes
include the first report of a zero-day vulnerability, so it may
be applicable to the WAF rule for zero-day vulnerability if we
can treat such information properly.

To conclude of this subsection, our findings indicate that
the filtering method we propose works well for tweets but
less well for Security StackExchange, which features longer
texts. We also found that the characteristics of the text data
in Security StackExchange differ significantly from those of
tweets, which may stem from the differing styles of the
knowledge communities.

TABLE VIII. Correct/estimated labels of Security StackExchange in
Experiment 3-2

estimated label
0 1-a 1-b 1-c 2 total

correct label
0 1 0 2 0 5 8
1 0 8 10 1 124 143

total 1 8 12 1 129 151

TABLE IX. Learning sources of Experiments 4-1 and 4-2

Data form Collection period No.
CVE WordPress From August 17, 2005 to June 15, 2021 564

CVE ALL1 From January 1, 2018 to December 31, 2018 16,511

VII. NARROWING DOWN USING DOC2VEC

A. Description
In this section, to automate the target web application vul-

nerability extraction, we propose a Doc2Vec-based method that
trains a Doc2Vec model with past vulnerability descriptions
and extracts vulnerability information from the latest open
information (e.g., tweets). We use the description sections
of CVEs as past vulnerability information sources. We first
gathered past CVE descriptions of the target web application
and used them to generate the Doc2Vec model and word
vectors. We also generated word vectors from large amounts
of open information gathered with the trained Doc2Vec model.
We then calculated the cosine similarity between individual
word vectors of open information and individual word vectors
of CVE descriptions. If a word vector of an open information
has a large similarity to word vectors of the past CVE vectors
of a target web application, we consider the open information
to contain vulnerability information of that application. To
eliminate the vulnerability information of other web appli-
cations, we also created a Doc2Vec model from entire CVE
descriptions and related word vectors. The final decision is
made on the basis of both similarities to the CVE description
of the target web application (high similarity) and similarities
to the whole CVE descriptions (low similarity).

B. Experimental setup
We performed an experiment to investigate the relationship

between the estimated label in Section VI and the similarity
obtained by the Doc2Vec-based method. Table IX lists the data
we used for training the Doc2Vec models. We gathered CVEs
of the target application (WordPress) that were announced from
August 17, 2005 to June 15, 2021 (CVE WordPress). We also
gathered all of the CVEs that were announced in 2018 (CVE
ALL). We collected the above CVEs using NVD’s REST API
[25].

We trained and created two Doc2Vec models: The one is
WP R model, which uses the description section of individual
CVE WordPress data, and ALL R model, which uses the de-
scription section of individual CVE ALL data. The Doc2Vec
parameters used for training are itemized below. A parameter

TABLE X. Verification data for Experiments 4-1 and 4-2

Data form Correction period No.
Tweet From December 4, 2019 to January 8, 2020 1,116

Security StackExchange From January 1, 2018 to December 31, 2020 151

33

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

value existing at the top is a default value and values existing
in the cases are varied during evaluations.

• DM: 1 (learn with PV-DM)
• Learning Rate: 0.025 (0.0012, 0.0025)
• Vector Size: 300 (30, 100, 450, 500, 600, 800, 1000)
• Min count: 10 (1, 2, 3, 5, 8, 15)

We performed word vector generation for the description
section of individual CVE ALL data with the ALL R model
and treat it as a summary of the description of individual
CVE ALL data. This word vector set is named V ALL.
Similarly, We performed word vector generation for the de-
scription section of individual CVE WordPress data with the
WP R model and treat it as a summary of the description
of individual CVE WordPress data. This word vector set is
named V WP.

As test data, we decided to use manually labeled tweet
data and Security StackExchange data. We did not used Stack
Overflow data because it contains quite a few vulnerability
discussion entries (as described in Section VI-C). Table X
lists the test data. We performed word vector generation on
individual tweet data for both Doc2Vec models and treat them
as a summaries of the individual tweet data. These word vector
sets are named V TW WP (generated with WP R model)
and V TW ALL (generated with ALL R model). Similarly,
we performed word vector generation for individual Security
StackExchange data for both Doc2Vec models and treat them
as a summaries of the individual Security StackExchange data.
These word vector sets are named as V SSE WP (gener-
ated with WP R model) and V SEE ALL (generated with
ALL R model).

Then, we calculated Similarity App and Similarity All
values for individual tweet data with the following two steps.
First, we chose a tweet data and calculated the cosine distance
between the V TW WP of the tweet data and an individual
V WP. Second, we calculated the average of the top-5 cosine
distance values and used it as the Similarity App value for
that tweet data. This procedure was performed for all tweet
data to obtain their Similarity App values. The same proce-
dure was also performed with V TW ALL and V ALL to
obtain Similarity All values for all tweet data. Similarity App
and Similarity All for Security Stack Exchange data were
generated using the same procedure with V WP, V ALL,
V SSE WP, and V SSE ALL.

Finally, we set the threshold value for both Similarity App
and Similarity All with the heuristic method and calculated the
below evaluation index, which is widely used in classification
experiment.

• True Positive (TP)
• False Positive (FP)
• True Negative (TN)
• False Negative (FN)
• Accuracy (Acc)
• Precision (Pre)
• True Positive Rate (TPR)
• False Positive Rate (FPR)
• True Negative Rate (TNR)
• False Negative Rate (FNR)

Similarity_App

Si
m
ila
rit
y_
Al
l

●: Not WordPress Vulnerability
★: WordPress Vulnerability

Parameters
• Learning Rate: 0.025
• Vector Size: 300
• Min_count: 5

Figure 7. Experriment 4-1: Scatter plot of similarity between tweets and
CVEs

C. Experiment 4-1: Results with tweets
Table XI shows the evaluation indices of tweet data with

the default Doc2Vec parameters and the parameters with top 2
accuracy. Tweet data contains a comparatively small number
words, so it adopts a smaller Vector Size value and smaller
Min count value. The best parameter in this experiment was
Vector Size = 300 and Min count = 5 with Similarity App ≥
0.95 and Similarity All < 0.8 threshold values. The result did
not change even in the short Vector Size value, which means
we can reduce the calculation cost by urilizing the shorter
Vector Size value (e.g., Vector Size = 30). When we reduced
the Min count to less than 5, the result became dramatically
worse. This result suggests that too small Min count will
include words that are unnecessary for the Doc2Vec model
and thereby lead to bad results. The learning rate parameters
affected quite a few of the results in this manner, so we had
to omit them.

Figure 7 shows the distribution of Similarity App and
Similarity All with the WordPress Vulnerability or Not Word-
Press Vulnerability label in the best parameter. The horizontal
axis denotes Similarity App and the vertical axis denotes
Similarity All. The blue star and red circle indicate that a
tweet data does or does not contain a WordPress vulnerability,
respectively. We can see that a large number of WordPress Vul-
nerability data are gathered near the Similarity App = 1.0 area.
However, a significant amount of Not WordPress Vulnerability
data is also gathered there, which indicates a high number
of false positive results. Similarity All can eliminate some of
the Not WordPress Vulnerability data. However, since V ALL
is generated from all of the CVEs, and as such contains
many security and vulnerability related words, WordPress data
has a comparatively large similarity to V ALL values, which
reduces the separation ability with Similarity All.

D. Experiment 4-2: Results with Security StackExchange
Table XII shows the evaluation indices of Security Stack

Exchange data with the default Doc2Vec parameters and
parameters with top-2 accuracy. Security StackExchange data
contains a comparatively large number words, so it adopts

34

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XI. Metrics of Experiment 4-1: Difference by Vector Size and Min count.

TP FP TN FN Acc Pre TPR TNR FPR FNR
Vector: 300, Count: 10 66 722 317 11 34.3% 85.7% 8.4% 96.6% 3.4% 91.6%
Vector: 300, Count: 5 68 614 425 9 44.2% 88.3% 10.0% 97.9% 2.1% 90.0%
Vector: 30, Count: 5 70 637 402 7 42.3% 90.9% 9.9% 98.3% 1.7% 90.1%

TABLE XII. Metrics of Experiment 4-2: Difference by Vector Size.

TP FP TN FN Acc Pre TPR TNR FPR FNR
Vector: 300, Count: 10 5 44 99 3 68.9% 62.4% 10.2% 97.1% 2.9% 89.8%
Vector: 450, Count: 10 5 32 111 3 76.8% 62.5% 13.5% 97.3% 2.6% 86.5%
Vector: 600, Count: 10 6 57 86 2 60.9% 75.0% 9.5% 97.7% 2.3% 90.5%

Similarity_App

Si
m
ila
rit
y_
Al
l

●: Not WordPress Vulnerability
★: WordPress Vulnerability

Parameters
• Learning Rate: 0.025
• Vector Size: 450
• Min_count: 10

Figure 8. Experriment 4-2: Scatter plot of similarity between SSE and CVEs

a larger Vector Size value. The best parameter in this ex-
periment was Vector Size = 450 and Min count = 10 with
Similarity App ≥ 0.98 and 0.54 < Similarity All < 0.64
threshold values. We conclude that the default Vector Size is
not sufficient to represent a large number words. When we
reduced Min count to less than 10, the result became worse.

Figure 8 shows the distribution of Similarity App and
Similarity All with WordPress Vulnerability or Not WordPress
Vulnerability labels in the best parameter. The organization of
the figure is identical to Figure 7. Similar to the results for the
tweet data, a lot of the Not WordPress Vulnerability data here
is gathered near the Similarity App = 1.0 area, which indicates
a high number of false positive results. This trend was stronger
than it was in the tweet data, as indicated by almost all of the
Not WordPress Vulnerability data in Figure 8 being distributed
close to Similarity App = 0.1. However, the Similarity All
values of WordPress Vulnerability data were comparatively
small, so we can omit the Not WordPress Vulnerability Data
by reducing the Similarity All threshold value compared to
the tweet data result. This characteristics is connected to the
higher accuracy result than that of the tweet data.

E. Relationship between negatives and word count in individ-
ual tweet data

As discussed in Section VII-B, since Doc2Vec-based classi-
fication could not classify negatives, it had a higher number of
false positive results, especially for tweet data. To analyze why

12

54

243

33

9
20 15

2 2
11

1 0 0 0 0
0

50

100

150

200

250

300

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Fr
eq

ue
nc

y

Word count

Parameters
• Learning Rate: 0.025
• Vector Size: 300
• Min_count: 5

Figure 9. Experriment 4-1: Histgram of true negatives

0 0

22

214

81

34 39

87

58
45

14 16
4 0 0

0

50

100

150

200

250

300

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Fr
eq

ue
nc

y

Word count

Parameters
• Learning Rate: 0.025
• Vector Size: 300
• Min_count: 5

Figure 10. Experriment 4-1: Histgram of false positives

this occurred, we examined the relationship between negatives
and word count in individual tweet data. Our hunch was that,
since tweet data cobtain fewer words, they might have been
comparatively harder to separate.

Figures 9 and 10 show the relationship between word
count and true negatives and false positives, respectively. The
horizontal axis denotes word count in bin size 4 and the vertical
axis denotes the frequency of an individual bin.

35

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As we can see in Figure 9, true negatives appeared more
frequently in comparatively lower word count areas (less than
16). In contrast, in Figure 10, we can see that false positives
were concentrated more on big word count areas (more than
16). These findings demonstrate that,contrary to our expection,
the proposed method is quite capable of separating small word
count data. If we can improve the classification result of the
higher word count area, the current false positive rate will
be mitigated. There are many approaches we could take for
making such an improvement, such as using a different model
with higher word count areas (e.g. utilizing a more complicated
text classification model).

F. Summary of Doc2Vec results
The regular expression-based classification discussed in

Section VI cannot classify large amounts of data, especially
in Security StackExchange data. In contrast, we found here
that Doc2Vec-based classification can perform classification
on whole data with moderate performance. Furthermore, it
can omit negatives with high accuracy in both datasets. Thus,
we recommend combining both regular expression-based and
Doc2Vec-based classifications with the following rules.

• Apply the Doc2Vec-based classification in the first
stage and omit data classified as negative.

• Apply the regular expression-based classification to
data classified as positive in the first stage.

VIII. CONCLUSION

In this paper, we proposed a WAF signature generation
system using real-time open information (e.g., SNS) to provide
early protection for web applications. To extract vulnerability
information from real-time open information, we developed
a regular expression-based filtering method and a Doc2Vec-
based similarity calculation method evaluated them with Twit-
ter and Security Stack Exchange data.

With the regular expression-based filtering method, we
could classify 60% of the tweet data as to whether it contained
information about vulnerability of the target web applica-
tion. However, we could only classify 10% of the Security
StackExchange data, as these data were comparatively long
and sometimes contained multiple vulnerabilities of several
different applications.

With the Doc2Vec-based method, we could classify both
tweet data and Security StackExchange data with moderate
accuracy, especially when it came to extracting true positive
data (i.e., data that actually discussed the vulnerability of the
target web application). However, there were still a number of
false positive results, and it requireed further classification of
data rated as positive.

On the basis of these findings, we proposed a sequential use
of both methods. In the first stage, we perform the Doc2Vec-
based filtering is applied to omit data rated as negative, as
those data contain almost no actually positive data. In second
stage, regular expression-based filtering is applied to perform
detailed classification for extracting actually positive data.

We also examined the relationship between word count
and classification accuracy in data rated as negative in the
Doc2Vec-based method. We found that the proposed method
could classify small word count areas well enough but strug-
gled with larger word count areas. It should be possible to

significantly reduce the number of false positives if we use a
more complicated text classification algorithm or advancement
of future text classification algorithm.

With the advancement of text classification algorithms
expected in the future, our proposed method shows good
potential for generating WAF signatures and will be beneficial
for protecting web applications from attacks following offi-
cial vulnerability notifications, especially in case of zero-day
vulnerability.

REFERENCES

[1] M. Kumazaki, Y. Yamaguchi, H. Shimada, H. Hasegawa, “WAF
Signature Generation with Real-Time Information on the Web,” In
Proceedings of the 14th International Conference on Emerging Security
Information, Systems and Technologies (SECURWARE 2020), ISBN:
978-1-61208-821-1, pp. 40-45, November 2020.

[2] Significant Cyber Incidents — Center for Strategic and International
Studies
https://www.csis.org/programs/technology-policy-program/
significant-cyber-incidents [retrieved: July, 2020]

[3] The 15 biggest data breaches of the 21st century | CSO Online
https://www.csoonline.com/article/2130877/
the-biggest-data-breaches-of-the-21st-century.html [retrieved: August,
2020]

[4] 10 Major Security Threats 2019 — Information-Technology Promo-
tion Agency (IPA), Japan https://www.ipa.go.jp/files/000076989.pdf [re-
trieved: July, 2020]

[5] Think Fast: Time Between Disclosure, Patch Release and Vulnerability
Exploitation ̶ Intelligence for Vulnerability Management, Part Two |
FireEye Inc
https://www.fireeye.com/blog/threat-research/2020/04/
time-between-disclosure-patch-release-and-vulnerability-exploitation.
html [retrieved: August, 2020]

[6] Attacks Heating Up Against Apache Struts 2 Vulnerability | Threatpost
https://threatpost.com/attacks-heating-up-against-apache-struts-2-
vulnerability/124183/ [retrieved: July, 2020]

[7] US House of Representatives Committee on Oversight and Government
Reform, “The Equifax Data Breach”, Majority Staff Report 115th
Congress, 2018.
https://republicans-oversight.house.gov/wp-content/uploads/2018/12/
Equifax-Report.pdf [retrieved: July, 2020]

[8] GMO Payment Gateway, “Apology and Report for Leak of Personal
InformationDueto Unauthorized Access”, 2017.
https://www.gmo-pg.com/en/corp/newsroom/pdf/170310 gmo pg en.
pdf [retrieved: July, 2020]

[9] Committee on National Security Systems, “Committee on National
Security Systems(CNSS) Glossary”, CNSSI No. 4009, 2015

[10] Chrome Releases: Stable Channel Update for Desktop
https://chromereleases.googleblog.com/2019/03/
stable-channel-update-for-desktop.html [retrieved: July, 2020]

[11] T. Sakaki, O. Makoto, and M. Yutaka, “Earthquake shakes Twitter users:
real-time event detection by social sensors.”, In Proceedings of the 19th
international conference on World wide web, pp. 851-860, 2010.

[12] O. Oh, M. Agrawal, and H. R. Rao, “Information control and terror-
ism:Tracking the mumbai terrorist attack through twitter.”, Information-
Systems Frontiers, vol. 13, no. 1, pp. 33 ‒ 43, 2011.

[13] S. More, M. Matthews, A. Joshi, and T. Finin, “A Knowledge-Based
Approach To Intrusion Detection Modeling.”, In Proceedings of 2012
IEEE Symposium on Security and Privacy Workshops, pp. 75-81, May
2012.

[14] C. Kreibich and J. Crowcroft, “Honeycomb: Creating Intrusion Detec-
tion Signatures Using Honeypots.”, SIGCOMM Computer Communi-
cation Review., Vol. 34, No. 1, pp. 51-56, January 2004.

[15] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated Worm
Fingerprinting.”, In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation, pp.4-4, December 2004.

[16] NVD - Home
https://nvd.nist.gov/ [retrieved: October, 2020]

36

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[17] K. Lawrence and L. Luo, “Interactive management of web application
firewall rules.”, U.S.Patent, No. 9,473,457, 2016

[18] OWASP Foundation | Open Source Foundation for Application Security
https://owasp.org/ [retrieved: October, 2020]

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” arXiv:1301.3781, January
2013.

[20] Twitter
https://twitter.com [retrieved: October, 2020]

[21] Stack Overflow - Where Developers Learn, Share, & Build Careers
https://stackoverflow.com [retrieved: October, 2020]

[22] reddit: the front page of the internet https://www.teratail.com [retrieved:
October, 2020]

[23] teratail teratail.com [retrieved: October, 2020]
[24] Information Security Stack Exchange https://security.stackexchange.

com/ [retrieved: October, 2020]
[25] B. Cheikes, D. Waltermire, and K. Scarfone, “Common platform enu-

meration: Naming specification version 2.3”, NIST Interagency Report
7695, pp.11-13, 2011.

[26] NVD - New NVD CVE CPE API and SOAP Retirement https://nvd.nist.
gov/General/News/New-NVD-CVE-CPE-API-and-SOAP-Retirement

