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Abstract—Along with the growth in the usage of software in
almost every aspect of human life, the risks associated with
software security vulnerabilities also increase. The number of
average daily published software vulnerabilities exceeds the
human ability to cope with it; hence, various threat models
to generalize the threat landscape have been developed. The
most prevalent threat model MITRE ATT&CK proved to be a
valuable tool for the security analyst to perform cyber threat
intelligence, red and blue teaming, and so on. However, the
security analyst must prioritize his/her defense by manually
mapping the daily published threat information to the adversarial
techniques listed in MITRE ATT&CK for his/her day-to-day
operation. This paper proposes a method to automatically map
the cyber threat information using a multi-label classification
approach. We conducted four experiments using three publicly
available datasets to train and test seven multi-label classification
methods and one pre-trained language model in six evaluation
measures. According to our estimate, the LabelPowerset method
with Multilayer Perceptron as the base classifier performs best
in our experiment.

Keywords–Multi-label classification; MITRE ATT&CK; Cyber
Threat.

I. INTRODUCTION

In our previous work [1] we experimented with various
multi-label classification methods to evaluate the performance
to automatically map the vector representations of vulnera-
bility description to adversary techniques and tactics. In this
work, we extend the scope to map cyber threat information,
including the vulnerability description to the same adversarial
techniques.

The digital age has presented various opportunities to
society along with different challenges. One of the biggest
challenges comes with the risk of cyber-attack, data breaches
and loss of intellectual property, etc. Software security vulner-
ability is one of the most significant factors behind these chal-
lenges. According to the US National Vulnerability Database
(NVD), the total number of reported vulnerabilities as of June
2020 is 146,000 [2], and this number is increasing year by
year. In 2019 alone, 20,362 vulnerabilities are reported on
NVD, which is a 17.6% increase from 2018 (17,308) and

44.5% increase from 2017 (14,086), and the trend is likely
to be upwards [3].

Given this large number of reported vulnerabilities, track-
ing individual vulnerabilities is nearly impossible. Hence,
various approaches and threat models are developed to gen-
eralize the threat landscape and ease the burden of a security
analyst. One of the most commonly used approaches is a
curated knowledge base called MITRE ATT&CK® that enlists
adversary behaviors, including their tactics and techniques
based on real-world observations. It is a robust framework
commonly used as a threat model in adversary emulation, red
and blue teaming, and cyber threat intelligence practices [4].
MITRE ATT&CK generalizes the adversary attack techniques
and tactics based on the common weaknesses of the systems
without mentioning specific products or vulnerabilities.

Even though the MITRE ATT&CK proved to be a helpful
framework, the need to identify the specific threat that in-
dividual vulnerability poses in the adversarial landscape still
exists. In layperson’s terms, MITRE ATT&CK is the playbook
of steps that house robbers would take to rob a house (e.g.,
find open access), and software security vulnerability is the
weaknesses of the house security (e.g., an unlocked door or
broken window). For effective defense, the house owner needs
to combine this information, the most common approaches that
house robbers use, and the weaknesses of his/her house to
better understand the situation and prioritize his/her defenses.

This paper proposes a method to automatically map the
cyber threat information, including vulnerability description
to adversary techniques and tactics. Since a specific threat or
vulnerability can be associated with more than one adversarial
technique, we believe developing a multi-label classification
model that can infer the adversarial techniques to a given threat
would be suitable. Since every vulnerability has associated
textual description, we believe using the features of this text;
a classic multi-label classification algorithm could produce a
result that could be useful for a practical purpose.

Mapping threat information to adversarial tactics and tech-
niques requires a certain level of expertise and domain knowl-
edge. Thus, it may consume a considerable amount of time for
the security analyst. In our previous work [1] we experimented
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with a limited dataset to demonstrate the method, and the
LabelPowerset method with Multilayer Perceptron as base
classifier performed best. In this paper, we extend the work
by including an additional and more comprehensive dataset
and state-of-the-art language model Bidirectional Encoder
Representations from Transformers (BERT) and compared the
results. By utilizing such existing tools and data, we believe
the task of mapping threat information could be automated to
spare the human analyst from manual labor. Hence, the paper
aims to seek the possibilities to automate the mapping of threat
information to adversarial techniques by exploring the existing
tools and evaluating them with different datasets.

This work aims to extend the scope of the [1] with
additional datasets and methods and explore the possibilities to
gain further insight into the current knowledge in the security
domain.

The specific contributions of the paper are as follows:

1) To propose an approach to automate the mapping of
threat information to adversarial technique.

2) Explore and experiment with various multi-label clas-
sification methods and language models to compare
the performance.

The remainder of this paper is organized as follows.
Section II will review the related research and how this paper
differs in its approach. In Section III, we will briefly discuss
the background information to be used for this research.
In Section IV, the experimental dataset used in this study
will be described, and in Section V, the experimental setup
of the proposed multi-label classification approach will be
discussed. In Section VI, we will show the experimental result
and corresponding analysis, and finally, we will conclude by
discussing the implications of this result in Section VII.

II. RELATED WORK

There have been various studies related to the content of
this work. But to the best of our knowledge, using a language
model on multi-label classification task of text-based threat
information to map to adversarial technique has not been
published yet.

A. Threat intelligence and MITRE ATT&CK framework
There has been an attempt to use a multi-label classification

approach to map cyber threat intelligence reports to adversarial
techniques and tactics. Legoy et al. implemented a tool called
rcATT. This system predicts tactics and techniques related
to given cyber threat reports and outputs the results using
Structured Threat Information eXpression (STIX) format [5].
They focused on extracting MITRE ATT&CK techniques and
tactics from cyber threat reports. They used more straight-
forward approaches for text representation and classification
algorithms. In contrast, we focused on mapping the threat
information to the same framework, though using more neural
and deep learning approaches.

Also, extracting general Tactics, Techniques, and Proce-
dures (TTP) from cyber threat information is gaining some
attention. Husari et al. developed a system to automate Cyber
Threat Intelligence (CTI) analytics that learns attack patterns
[6]. They combined Natural Language Processing (NLP) and
Information Retrieval (IR) techniques to extract threat actions
from threat reports based on their semantic relationships.

Their focus was to extract actionable TTP from threat reports,
whereas our focus is to identify the adversarial techniques that
can exploit the specific threat.

Apart from extracting an adversarial technique from textual
documents, some studies have directly mapped the malware
behavior to the MITRE ATT&CK framework. Oosthoek et al.
did the automated analysis of 951 unique families of Windows
malware and mapped them onto the MITRE ATT&CK frame-
work [7]. They generated a behavior signature of the malware
in the sandbox and mapped the signature to the corresponding
MITRE ATT&CK technique. Their work focused on mapping
the malware based on its behavior to the adversarial techniques
defined in the MITRE ATT&CK framework. In contrast, our
focus is to map the threat information that the adversary could
exploit to the same techniques through its textual representa-
tion.

Some researchers have been working on the information
provided by the MITRE ATT&CK framework to improve
the adversarial predictions. Al-Shaer et al. presented their
statistical machine learning analysis on Advanced Persistent
Threat (APT) and software attack data reported by MITRE
ATT&CK to infer and predict the techniques the adversary
might use [8]. They associated adversarial techniques using
hierarchical clustering with 95% confidence, providing sta-
tistically significant and explainable technique correlations.
Our focus is to correlate individual threat information to
the adversarial techniques and create a model that can be
used to map new threats to the MITRE ATT&CK framework
automatically.

There have also been works on classifying the vulnera-
bility information based on its textual description. Huang et
al. proposed an automatic vulnerability classification model
built on Term Frequency-Inverse Document Frequency (TF-
IDF), Information Gain (IG), and deep neural network [9].
They validated their model with CVE descriptions of the
National Vulnerability Database and compared them to the
performances of SVM, Naive Bayes, and kNN algorithms. We
are also attempting to classify the vulnerability information
based on its textual description. Still, Huang et al. focused
on a multi-class classification that each vulnerability belongs
to a specific category. In contrast, we attempt to classify a
vulnerability or threat information into multiple adversarial
techniques simultaneously.

Hemberg et al. proposed an open-source, relational graph-
ing tool BRON which links MITRE ATT&CK, CWE, CAPEC,
and CVE information to gain further insight from available
threat intelligence in [10]. Their proposed method correlated
those publicly accessible information sources to make it more
usable for the analysts and systematically hunt the threat.
Our approach is similar by associating the available threat
information with a publicly accessible knowledge base of
MITRE ATT&CK to assist the human analysts.

Zhou et al. proposed a method to automatically identify
Indicators of Compromise (IOC), an essential artifact of cyber
threat intelligence using a neural-based sequence labeling
model to identify IOCs from cybersecurity reports [11]. The
model used attention mechanism and token spelling features
to identify low-frequency IOCs from long sentences of the
cybersecurity reports. We are also using an attention-based
pre-trained model to determine the associated technique in the
threat information.
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B. Multi-label classification using language models
Medina et al. created and analyzed a text classification

dataset from United Nation’s Sustainable Development Goals
[12]. They experimented with various multi-label classifica-
tion methods and pre-trained language models, and according
to their estimation, the pre-trained language model BERT
showed the best performance. Similarly, Sovrano et al. pro-
posed to utilize the Text Similarity Approach using Term
Frequency-Inverse Document Frequency (TF-IDF) and pre-
trained sentence embedding framework Universal Sentence
Encoder (USE) [13]. In this work, we use a similar approach
of labeling threat information in text format by embedding it
through USE and applying multi-label classification models on
top of it. Also, we compared those results with the performance
of the BERT language model, which used its own embedding
layers instead of USE.

Liu et al. proposed to utilize deep learning to Extreme
Multi-label Text Classification (XMTC) task with a family of
new Convolutional Neural Network (CNN) models tailored for
multi-label classification task [14]. Their approach successfully
scaled to the most extensive datasets of 6 benchmark datasets
and consistently produced the best or the second-best results on
all the datasets. Their focus was the multi-label classification
performance on the extreme setting, i.e., too many labels to
predict. Pal et al. proposed to correlate the labels in multi-
label classification task through attention-based graph neural
network [15]. The attention in their model allowed the system
to assign different weights to neighbor nodes per label, thus,
allowing it to learn the dependencies among labels.

Since the inception of the BERT language model, there
have been various attempts to train and utilize it for specific do-
mains, especially in a multi-label classification task. Lee et al.
described a patent classification system created by fine-tuning
the BERT language model [16]. Their model outperformed the
state-of-the-art results in classifying the patent claims in multi-
label settings. Similarly, Adhikari et al. presented DocBERT
for document classification task [17]. By minimizing cross-
entropy and binary cross-entropy loss, DocBERT achieved
state-of-the-art results across four popular datasets in single-
label and multi-label tasks.

Although there have been various attempts to utilize dif-
ferent language models in a multi-label classification setting,
its potential has yet to be fully explored in the cybersecurity
domain.

III. BACKGROUND

Since this study is at the intersection of different fields, the
theoretical background knowledge is briefly explained in this
section.

A. Vulnerability Modeling
There have been several attempts to standardize the re-

porting and modeling of software security vulnerabilities or
weaknesses and threat landscape in general. In this section,
we will discuss a few relevant schemes for this study.

1) Common Vulnerabilities and Exposures: Common Vul-
nerabilities and Exposures (CVE) is a list of entries, each
containing an identification number, description, and at least
one public reference for publicly known cybersecurity vulner-
abilities [18]. CVE was launched in 1999 and now became

the standard naming convention to address interoperability
and disparate databases and tools. CVE entries, also called
CVEs, CVE IDs, and CVE numbers by the community, provide
common reference points so that cybersecurity products and
services can speak the same language. CVE is an international
cybersecurity community effort, and each new CVE entry is
assigned by CVE Numbering Authorities (CNAs).

The majority of the disclosed vulnerabilities are stored at
the NVD for centralized vulnerability management purposes.
The NVD is the U.S. government repository of standards-
based vulnerability management data and is known as the
de facto central database of software security vulnerabilities
[19]. CVEs stored at NVD proved to be a valuable resource
for vulnerability management and overall cybersecurity-related
research.

2) Common Attack Pattern Enumeration and Classifica-
tion: Common Attack Pattern Enumeration and Classifica-
tion (CAPEC) efforts provide a publicly available catalog of
common attack patterns that helps users understand how ad-
versaries exploit weaknesses in applications, and other cyber-
enabled capabilities [20]. CAPEC was established by the U.S
Department of Homeland Security in 2007 and continuously
evolved to include public participation and contributions.
CAPEC defines “Attack Patterns” as descriptions of adver-
saries’ common attributes and approaches to exploit known
weaknesses in cyber-enabled capabilities. Each attack pattern
captures knowledge about how specific parts of an attack are
designed and executed and provides guidance on mitigating
the attack’s effectiveness.

CAPEC differs from the MITRE ATT&CK framework to
focus on application security and enumerates exploits against
vulnerable systems. In contrast, the MITRE ATT&CK frame-
work focuses on network defense and provides a contextual
understanding of malicious behavior. CAPEC is mainly used
for application threat modeling and developer training and
education, whereas ATT&CK is used to compare network
defense capabilities and hunt new threats.

3) MITRE ATT&CK framework: Adversarial Tactics, Tech-
niques, and Common Knowledge (ATT&CK) was created
at MITRE corporation to systemically categorize adversary
behavior in September 2013 [4]. It was initially designed
to document and categorize post-compromise adversary TTPs
against Microsoft Windows systems and later added other plat-
forms called ATT&CK for Enterprise and publicly released in
May 2015. Subsequently, complementary models such as PRE-
ATT&CK, ATT&CK for Mobile, and ATT&CK for ICS have
been published in 2017 and 2020. The ATT&CK framework
consists of the following components:

• Adversary group: Known adversaries that are tracked
and reported in threat intelligence reports.

• Tactics: Tactics represent the adversary’s tactical ob-
jective: the reason for performing an action.

• Technique/Sub-Technique: Techniques represent
“how” an adversary achieves its tactic, whereas
Sub-technique further breaks down techniques into
more specific descriptions of actions to reach the
goal.

• Software: Software represents an instantiation of a
technique or sub-technique at the software level.
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Figure 1. MITRE ATT&CK components and their relationship.

• Mitigation: Mitigation represents security concepts
and technologies to prevent a technique or sub-
technique from being successfully executed.

The relationship between the components is visualized in
Figure 1.

The MITRE ATT&CK framework is constantly enriched
with techniques and sub-techniques. At the time of writing,
there are 266 techniques/sub-techniques of 12 tactics in the
MITRE ATT&CK Enterprise model, 174 techniques of 15
tactics in the PRE-ATT&CK and 79 techniques of 13 tactics
in ATT&CK for Mobile model.

B. Multi-label classification

Classification is the task of learning to classify the set of
examples that are from a set of disjoint labels L, |L|> 1. If
|L|= 2, then the learning problem is called a binary or single-
label classification and if |L|> 2, it is a multi-class classifi-
cation. In the case of multi-class classification, the example
should correspond to a single class or label. In contrast, in
multi-label classification, the examples are associated with a
set of labels Y ⊆ L [21]. According to Madjarov et al., the
multi-label classification methods could be of the following
categories [22].

1) Algorithm adaptation methods: The existing ma-
chine learning algorithms that are adapted, extended,
and customized for multi-label classification prob-
lems. The examples include: boosting, k-nearest
neighbors, decision trees, and neural networks.

2) Problem transformation methods: This method
transforms the multi-label classification into one or
more single-label classification or regression prob-
lems. It is further divided into categories as binary
relevance, label power-set, and pair-wise methods.

3) Ensemble classification: The ensemble methods are
developed on top of existing problem transformation
or algorithm adaptation methods. The examples in-
clude Random k-label sets (RAkEL) and ensembles
of pruned sets (EPS) etc.

C. Evaluation measures of multi-label classification
Since the multi-label classification task is different from

the traditional binary classification, the evaluation metrics to
measure the method’s performance also differ. The multi-
label classification measures generally fall into the following
categories according to [22].

1) Example based measures
2) Label based measures
3) Ranking based measures

The evaluation measures used in this study are briefly dis-
cussed below. In the definitions, yi denotes the set of true
labels for example xi and h(xi) denotes the set of predicted
labels for the same examples. N is the number of examples,
and Q denotes the total number of possible class labels.

1) Subset Accuracy: Subset Accuracy, also called as Exact
Match Ratio is the most strict metric, indicating the percentage
of samples that have all their labels classified correctly. It can
be calculated as shown in (1):

Accuracy(h) =
1

N

N∑
i=1

I(h(xi) = yi) (1)

where I(true) = 1 and I(false) = 0.
2) Micro averaged F1 score: Since the classification is on

multiple labels, the results have to be averaged out. Micro-
precision and micro-recall are the measures averaged over all
the example/label pairs. In the definitions below TPj , TNj

denote the number of True Positive and True Negative, FPj ,
FNj denote the number of False Positive and False Negative
examples per label λj when considered as binary classification.

Precision =

∑Q
j=1 TPj∑Q

j=1 TPj +
∑Q

j=1 FPj

(2)

Recall =

∑Q
j=1 TPj∑Q

j=1 TPj +
∑Q

j=1 FNj

(3)

The Micro averaged F1 Score is the harmonic mean
between micro-precision and micro-recall.

F1 =
2×microPrecision×microRecall
microPrecision+microRecall

(4)

3) Macro averaged F1 score: Macro-precision and macro-
recall are the measures averaged across all labels and defined
as shown in (5) and (6).

Precision =
1

Q

Q∑
j=1

TPj

TPj + FPj
(5)

Recall =
1

Q

Q∑
j=1

TPj

TPj + FNj
(6)

Macro-F1 is the harmonic mean between precision and recall,
where the average is calculated per label and then averaged
across all labels. If Pj and Rj are the precision and recall for
all λj ∈ h(xi) from λj ∈ yi then Macro F1 is defined as in
(7):

F1 =
1

Q

Q∑
j=1

2× Pj ×Rj

Pj +Rj
(7)
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4) Hamming loss: Hamming loss evaluates how many
times an example-label pair is misclassified, i.e., a fraction
of incorrectly predicted labels.

HammingLoss(h) =
1

N

N∑
i=1

1

Q
| h(xi)∆yi | (8)

where ∆ stands for the symmetric difference between two sets.
The smaller the Hamming loss better the model performance.

5) Ranking loss: Ranking loss evaluates the average frac-
tion of label pairs that are reversely ordered for the particular
example.

RankingLoss(h) =
1

N

N∑
i=1

| Di |
| yi || ȳi |

(9)

where
Di = {(λm, λn) | f(xi, λm) ≤ f(xi, λn), (λm, λn) ∈ yi×

ȳi)}, while ȳi)} denotes the complementary set of y in L. The
smaller the Ranking loss better the model performance.

6) Micro averaged Receiver Operating Characteristic:
Receiver Operating Characteristic (ROC) is a measure used
mainly in binary classification to study the output of a clas-
sifier. It is a probability curve that plots the True Positive
Rate (TPR) against False Positive Rate (FPR) at the various
threshold and essentially separates the signal from noise. ROC
is usually represented as the Area Under Curve (AUC) graph.
In order to use ROC in a multi-label setting, examples are
binarized per each label and averaged for aggregated contri-
butions of all classes to compute the Micro averaged metric.
Biggest data science online community Kaggle [23] uses Micro
averaged ROC score to evaluate the competitions in multi-label
problems. Hence, we decided to adopt this measure to evaluate
the performances of different models.

D. Language models in Natural Language Processing
Since natural language can not be absolutely formalized

in specific rules in a similar way as programming languages,
computational linguists approached it by specifying the model
of the language from the example texts. Thus, language
modeling became a crucial component of Natural Language
Processing (NLP) and used various statistical and probabilistic
techniques to determine the probability of a given sequence of
text to appear in a particular position.

The latest trend in NLP includes the utilization of a pre-
trained language model in a transfer learning setting. A pre-
trained language model is a language model which has been
fed a large amount of unannotated data. As a result, the model
learns the usage of various words and general rules of the
language. Then the model is transferred to a downstream task
where it is fed a smaller, task-specific dataset, through which
the model is fine-tuned to perform well on the task. It is
basically creating a machine equivalent of a “well-read” human
being.

Another significant advancement is transformer-based lan-
guage models. The attention mechanism is used to selectively
attend to some part of the input example, similar to humans
focusing on the object’s detail. The transformer is a novel
architecture introduced in [24] that was considered a break-
through in NLP. It relies on the self-attention mechanism to

compute the input and output representations by handling the
dependencies between them.

Current state-of-the-art results in NLP belong to the mod-
els such as Generative Pre-trained Transformer-3 (GPT-3)
[25], Bidirectional Encoder Representations from Transformers
(BERT) [26] and XLNet [27] that were based on the transfer
learning and transformer architecture.

This study used two pre-trained and one transformer-based
language model, namely Universal Sentence Encoder (USE)
and Bidirectional Encoder Representations from Transformers
(BERT). The pre-trained USE model is used to embed or
convert the text document into vector representations that could
be used to apply traditional multi-label classification methods.
In contrast, the pre-trained, transformer-based BERT model
is used as a standalone model that performs embedding and
classification in itself.

IV. EXPERIMENTAL DATASET

The amount and quality of the dataset used are essential to
the performance of the trained model. Hence, data has been
collected from different sources to represent the diverse nature
of the threat information.

A. Data sources
We collected data from three different repositories that are

publicly available. The data sources are as follows:
1) ENISA: The European Union Agency for Cybersecurity

(ENISA) published a report in December 2019 titled State of
Vulnerabilities 2018/2019 [28]. The report aimed to provide
an insight into both the opportunities and limitations of the
vulnerability ecosystem. They collected in total 27,471 vul-
nerability information published during 1st January 2018 to
30th September 2019 from various data sources. As part of the
analysis of the collected data, the authors mapped the CVEs
to the MITRE ATT&CK technique using the common CAPEC
information found in both NVD and ATT&CK. The authors
generously made available the dataset they have analyzed
[29] and we utilized the CVE information mapped to MITRE
ATT&CK tactics and techniques for training and testing the
multi-label classification model.

The ENISA report dataset represents the vulnerability in-
formation in the form of CVE descriptions. It has 8,077 CVEs
that are mapped to 52 unique MITRE ATT&CK techniques
or, in this instance, labels. The mean length of the example
CVE description is 368 characters, and minimum/maximum
lengths are 40 and 3,655 characters long. For the purpose of
this experiment, this dataset will be denoted as ENISA in short.

2) TRAM: Threat Report ATT&CK Mapping (TRAM) is
a tool developed by MITRE to aid the analyst in mapping fin-
ished reports to ATT&CK. TRAM uses a Logistic Regression
model to predict the mapping of the ATT&CK technique for
a given report. MITRE generously released the source code
and the corresponding dataset used to train the model [30].
The dataset contains example sentences or phrases representing
specific techniques and maps them to one or more techniques.

The TRAM dataset represents the short threat information
in the form of sentences or phrases. It has 3,005 example
sentences mapped to 188 unique MITRE ATT&CK techniques.
The mean length of the example sentence is 84 characters, and
minimum/maximum lengths are 15 and 465 characters long.
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Figure 2. Most common techniques that have at least more than 200
examples associated with it.

For the purpose of this experiment, this dataset will be denoted
as TRAM in short.

3) rcATT: Legoy et al. implemented a tool called rcATT,
a system that predicts tactics and techniques related to given
cyber threat reports and described it in [5]. They collected
the threat reports referenced in the original MITRE ATT&CK
framework per each individual technique to train the tool. They
generously made their source code and the parsed threat reports
publicly available, and we believe it is the most accurate data
we could utilize in this experiment.

The rcATT represents the long descriptive information
in the form of threat reports. It has 1,490 example reports
mapped to 227 unique MITRE ATT&CK techniques. The
mean length of the example report is 19,270 characters, and
minimum/maximum lengths are 625 and 457,759 characters
long. For the purpose of this experiment, this dataset will be
denoted as rcATT in short.

Since the examples of the rcATT dataset are too long
for embedding framework, we trimmed the examples to a
maximum of 4,000 characters long to ease the computational
burden.

B. Dataset analysis
From 3 repositories, we collected a total of 12,572 exam-

ples mapped to 239 unique techniques. The characteristics of
each data repository and the combined dataset are shown in
Table I.

TABLE I. DATASET PROPERTIES.

Dataset Examples Techniques Length Type of example
ENISA 8,077 52 Medium CVE descriptions
TRAM 3,005 188 Short Sentences
rcATT 1,490 227 Long Threat reports

Combined 12,572 239 Mixed Mixed

The combined dataset is unevenly distributed in terms of
the technique association, and there are only 58 techniques
with more than 200 examples associated. In Figure 2, the
techniques with more than 200 examples associated are shown,
and we can see that technique T1148 - HISTCONTROL has
4,978 examples associated with it.

The examples of the combined dataset also have varying
characteristics. Figure 3 shows the top 10 instances of label

Figure 3. Number of techniques associated per example (top 10).

Figure 4. Text length distribution of the dataset.

associations. From Figure 3, we can see that majority of the
examples, i.e., 7,072 examples out of 12,572, has either 1 or
2 labels associated with them.

The length of the text in the combined dataset also greatly
varies. Figure 4 shows this variation in terms of the boxplot
graph. Note that the rcATT examples have been trimmed to
a maximum of 4,000 characters to ease the computational
burden. From Figure 4, we can see that at least 75% (third
quartile) of the examples are a less than 550 characters long,
and the estimated maximum value would be around 1,200
characters long.

In terms of the content of the examples, a quick analysis
using the wordcloud reveals that common words used in the
vulnerability descriptions or threat reports are the words that
are most repeated in the dataset. Figure 5 shows the wordcloud
analysis.

V. EXPERIMENTAL SETUP

Using the background information of Section III and the
experimental dataset discussed in Section IV, we conducted the
experiment to map the threat information to adversarial tech-
niques. Depending upon the experimental setup, we designed
the following two separate experiments.

• Converting the text information into its vector repre-
sentation and apply traditional multi-label classifica-
tion methods.

• Feed the BERT model with raw text to convert it
into its internal representation and performs multi-
label classification.
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Figure 5. Most common words in the dataset.

In this section, we will discuss the details of these environ-
mental differences.

A. Text representation in multi-label classification
To conduct the multi-label classification, we need to con-

vert the given text into numerical vectors, also known as
embeddings. Conventionally, vector embeddings were achieved
through shallow algorithms such as Bag of Words (BoW)
or Term Frequency-Inverse Document Frequency (TF-IDF).
These approaches have been superseded by predictive repre-
sentation models such as Word2Vec [31], GloVe [32], and
so on. The utilization of deep neural networks has been
proven to be superior in different fields. Thus, various studies
have adopted deep neural models to embed the text into
vector space, such as Facebook’s InferSent [33] and Universal
Sentence Encoder (USE) from Google Research. Perone et
al. evaluated different sentence embeddings, and Universal
Sentence Encoder outperformed InferSent in terms of semantic
relatedness and textual similarity tasks [34]. Therefore, for
this research, Universal Sentence Encoder has been utilized
to generate the vector embeddings of the text.

The sentence embeddings from USE produce good task
performance with little task-specific training data. Thus, we
decided to utilize a Deep Averaging Network (DAN)-based
USE model introduced in [35] to represent the threat infor-
mation in numerical vectors so that traditional multi-label
classification methods could be applied. The model takes
English sentences of variable lengths as input and produces
512 fixed-dimensional vector representations of the sentences
as output [36].

B. Multi-label classification model selection
The 512 fixed-dimensional vectors generated by USE are

treated as features for the classifier. To determine the suitable
model to map the threat information to MITRE ATT&CK
techniques, we experimented with 1 Algorithm Adaptation, 3
Problem Transformation, and 1 Ensemble multi-label classifi-
cation methods using the open-source library scikit-multilearn
[37]. The experimented methods are listed below.

• Multi-label k-Nearest Neighbors (MlkNN) is the
adaptation of the popular k-nearest neighbors (kNN)

algorithm to the multi-label classification task and
an example of the Algorithm adaptation method. We
estimated the number of neighbors k to be most
optimal when k = 3 where 1 ≤ k ≤ 30 when
optimized for macro-average F1 measure.

• LabelPowerset is a Problem Transformation method
that transforms a multi-label problem into a multi-
class problem with one multi-class classifier trained
on all unique label combinations. It maps each com-
bination to a unique id number and performs multi-
class classification using the classifier as a multi-class
classifier and combination ids as classes.

• ClassifierChain is also a Problem Transformation
method. The classifiers are linked along a chain where
the i-th classifier deals with the binary relevance
problem associated with its label. The feature space of
each link in the chain is extended with the 0/1 label
associations of all previous links.

• BinaryRelevance is the well known one-against-all
method. It learns one classifier for each label using
all the examples labeled with that label as positive and
remaining as negative. And while making a prediction,
each binary classifier predicts whether its label is
relevant for the given example or not. It is an example
of the Problem Transformation method.

• RAndom k-labELsets multi-label classifier
(RAkELd) is an Ensemble method that divides the
label space into equal partitions of size k, trains a
LabelPowerset classifier per partition, and predicts by
summing the result of all trained classifiers.

The methods mentioned above use traditional classification
algorithms for the multi-label classification task. Since neural
networks have been proven to be superior in almost every
task, we also experimented with more neural approaches
as multi-label classification algorithms. Since the multi-label
classification task of our experiment does not require the
sequential input or memory state of the input, we experimented
with a simple Multilayer Perceptron (MLP) neural model to
conduct the classification. Szymański et al. included a wrapper
in a scikit-multilearn library that allows any Keras or PyTorch
compatible backend to be used to solve multi-label problems
through problem-transformation methods [38]. We utilized it
to conduct the same experiment with neural methods. The
following lists the neural methods we used along with their
basic parameters.

• LabelPowerset (neural) LabelPowerset method with
the Multilayer Perceptron as the base classifier. It has
two hidden layers, and the softmax function is used
for activation.

• BinaryRelevance (neural) BinaryRelevance method
with the Multilayer Perceptron as base classifier. It
has two hidden layers, and the sigmoid function is
used for activation.

In Section VI, we will discuss the evaluation results of
these different methods.

C. BERT
BERT is designed to learn deep bidirectional representa-

tions from an unlabeled text by jointly conditioning both the
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left and right contexts in contrast to the previous attempts of
predicting a token in a unidirectional (left-to-right, right-to-
left) way [26]. BERT achieves bidirectionality by using a pre-
training objective called a Masked Language Model (MLM).
Before feeding the text sequence to a model, BERT replaces
15% of the words in each training example with a [MASK]
token. Then, the task of the model is to predict the original
token based on the non-masked tokens. In addition to the MLM
task, BERT also employs the Next Sentence Prediction (NSP)
task, where the model takes a pair of sentences and then tries
to predict whether the second sentence is subsequent to the
first. The model is fed 50% of the subsequent sentences during
the training while the other 50% of sentences are ordered
randomly.

To successfully train with MLM and NSP tasks, BERT
preprocesses the input text according to the following steps.

1) A special [CLS] token is placed at the beginning of
the first sentence, and a [SEP] token is placed right
before the second.

2) Token embeddings, where dense embeddings for each
token, including [CLS] and [SEP], will be learned.

3) Sentence embeddings indicate which tokens belong
to which sentence. This process is similar to token
embeddings; however, vocabulary size is limited to
only two words.

4) Positional embeddings are borrowed from the original
transformer paper [24]. Since the transformer is not
recurrent, it needs to learn the sequential information
with the help of positional embeddings.

BERT has been pre-trained on BookCorpus (800M words) and
English Wikipedia (2,500M words) with the goal of minimiz-
ing the combined loss of MLM and NSP tasks. Fine-tuning
BERT on a classification task is relatively straightforward by
simply adding a linear layer on top of the transformer output
for the first [CLS] token. Applying BERT to downstream tasks
involves fine-tuning for the task-specific data.

For the purpose of this experiment, we used BERT-Base
uncased model, which contains 30,522 words. Since BERT
uses the WordPiece tokenization method, out of vocabulary
words are split into subwords, and a group of subwords rep-
resents the word. We adapted BERT’s sequence classification
class for the multi-label classification task using binary cross-
entropy with a logits loss function. The final model consisted
of the Input Embedding layer, 12 BERT attention layer, and
output layer as per the number of labels to be predicted. We
trained the model for ten epochs with a batch size of 8 and
sequence length of 512. The learning rate was kept to 3e-5, as
recommended in the original paper.

VI. EXPERIMENTAL RESULT

Using the experimental dataset discussed in Section IV, we
conducted four separate experiments, with each dataset and the
combined dataset of 12,572 examples. All the models have
been trained with randomly selected 66.6% examples of the
dataset and tested on the remaining 33.3% examples. Since the
dataset is limited in size, we evaluated the models with a 10-
fold cross-validation method. The only exception is in the case
of the BERT model due to its computationally costly nature.
In this section, we will review the results of each experiment
and analyze them.

A. ENISA dataset

The evaluation results for the ENISA dataset is listed in
Table II.

From the results listed in Table II, we could see that
LabelPowerset using the neural model as a base classifier, has
the best scores in 3 of the 6 measures, and BERT has the best
results in the remaining 3 measures. The nature of the ENISA
dataset is that it consists of quite uniform medium-length text
(CVE descriptions) and makes up more than 64% of the total
dataset. Hence, the results of this experiment may have the
most influence over the final outcome of the Combined dataset.

B. TRAM dataset

The evaluation results for the TRAM dataset is listed in
Table III.

From the results listed in Table III, we could see that
LabelPowerset using the neural model as a base classifier, has
the best scores in every measure except Ranking loss, in which
the neural BinaryRelevance model has a lead. Unfortunately,
we were not able to produce any meaningful result with the
BERT model using this dataset. Since the nature of the TRAM
dataset is short sentences and phrases, we assume that BERT
may not work very well with the short text. We reduced the
sequence length of the BERT model from 512 characters to
64 characters, but it did not yield any improvements. Since the
dataset has fewer examples associated with more labels than
the ENISA dataset, the resulting performances also seem to
have deteriorated.

C. rcATT dataset

The evaluation results for the rcATT dataset is listed in
Table IV.

From the results listed in Table IV, we could see that no
single model has superior performance in all the measures.
Since the nature of the rcATT dataset is long threat reports, it
could potentially improve the model performance. However, it
is clear that all the multi-label classification models perform
poorly compared to the previous two datasets in every except
one measure. This poor performance could be because the
size of the training and test data is small compared to the
other datasets (999 and 491 examples, respectively), and fewer
examples are associated with more techniques (1,490 examples
with 227 techniques).

D. Combined dataset

The evaluation results for the Combined dataset is listed in
Table V.

From the results listed in Table V, we could see that
LabelPowerset using the neural model as a base classifier,
has 3 out of 6 best results and BERT has 2, and neural
BinaryRelevance has the best score in Hamming loss only.
Since the combined dataset is the combination of 3 datasets,
the performances of the models fall within a range of the
best and worst results. We believe the results of the combined
dataset are reasonable performance and considered it as the
final experimental result.
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TABLE II. ENISA DATASET EXPERIMENTAL RESULT.

Micro Average Macro Average
Algorithm Accuracy score Prec. Rec. F1 Score Prec. Rec. F1 Score Hamm. loss Rank. loss Micro ROC
MlkNN 0.6079 0.7310 0.6193 0.6700 0.6225 0.4960 0.5403 0.1089 0.3617 0.7848
LabelPowerset 0.6028 0.7233 0.5640 0.6320 0.5756 0.5283 0.5014 0.1159 0.3754 0.7588
ClassifierChain 0.4993 0.5997 0.6201 0.6094 0.4219 0.4678 0.4224 0.1423 0.4330 0.7647
BinaryRelevance 0.3757 0.5937 0.6508 0.6205 0.4727 0.6096 0.4875 0.1424 0.3283 0.7765
RakelD 0.4235 0.6374 0.6133 0.6243 0.5070 0.5801 0.4937 0.1310 0.3446 0.7688
LabelPowerset (neural) 0.7363 0.7491 0.7464 0.7470 0.6681 0.6213 0.6316 0.0907 0.2503 0.8455
BinaryRelevance (neural) 0.5526 0.7821 0.7062 0.7415 0.6921 0.5873 0.6236 0.0882 0.2910 0.8313
BERT 0.7201 0.8269 0.7384 0.7801 0.6646 0.5930 0.6247 0.0742 0.2643 0.8524

TABLE III. TRAM DATASET EXPERIMENTAL RESULT.

Micro Average Macro Average
Algorithm Accuracy score Prec. Rec. F1 Score Prec. Rec. F1 Score Hamm. loss Rank. loss Micro ROC
MlkNN 0.5095 0.7194 0.5196 0.6031 0.2437 0.2045 0.2117 0.0037 0.4753 0.7593
LabelPowerset 0.6370 0.6470 0.6370 0.6420 0.2439 0.2544 0.2371 0.0039 0.3579 0.8175
ClassifierChain 0.0519 0.0746 0.1054 0.0873 0.0149 0.0486 0.0185 0.0120 0.8975 0.5491
BinaryRelevance 0.2612 0.3481 0.6983 0.4642 0.1787 0.2840 0.1974 0.0088 0.3048 0.8456
RakelD 0.2639 0.3533 0.6976 0.4686 0.1804 0.2840 0.1989 0.0086 0.3053 0.8453
LabelPowerset (neural) 0.6902 0.7019 0.6938 0.6978 0.2856 0.2897 0.2763 0.0033 0.3013 0.8461
BinaryRelevance (neural) 0.5271 0.7853 0.5803 0.6671 0.2764 0.2311 0.2420 0.0031 0.4156 0.7897
BERT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0054 1.0000 0.5000

TABLE IV. RCATT DATASET EXPERIMENTAL RESULT.

Micro Average Macro Average
Algorithm Accuracy score Prec. Rec. F1 Score Prec. Rec. F1 Score Hamm. loss Rank. loss Micro ROC
MlkNN 0.0174 0.3920 0.2730 0.3153 0.0724 0.0572 0.0559 0.0349 0.7509 0.6303
LabelPowerset 0.0121 0.2394 0.0822 0.1170 0.0302 0.0147 0.0147 0.0364 0.8898 0.5371
ClassifierChain 0.0007 0.1381 0.5541 0.2192 0.0432 0.2077 0.0604 0.1173 0.6798 0.7224
BinaryRelevance 0.0000 0.0988 0.5894 0.1678 0.0574 0.2796 0.0826 0.1724 0.6946 0.7108
RakelD 0.0000 0.1232 0.4974 0.1947 0.0598 0.1926 0.0780 0.1197 0.6777 0.6940
LabelPowerset (neural) 0.0302 0.2824 0.2195 0.2434 0.0918 0.0680 0.0687 0.0402 0.7848 0.6015
BinaryRelevance (neural) 0.0054 0.4737 0.2296 0.3058 0.0717 0.0431 0.0484 0.0316 0.7896 0.6109
BERT 0.0000 0.6042 0.0679 0.1222 0.0163 0.0063 0.0086 0.0187 0.9757 0.5335

TABLE V. COMBINED DATASET EXPERIMENTAL RESULT.

Micro Average Macro Average
Algorithm Accuracy score Prec. Rec. F1 Score Prec. Rec. F1 Score Hamm. loss Rank. loss Micro ROC
MlkNN 0.5460 0.7367 0.6104 0.6675 0.3183 0.2235 0.2501 0.0182 0.4044 0.8018
LabelPowerset 0.5468 0.6884 0.5162 0.5898 0.2975 0.1926 0.2124 0.0214 0.4255 0.7545
ClassifierChain 0.0230 0.0598 0.3319 0.1013 0.0439 0.2396 0.0444 0.1763 0.7215 0.5854
BinaryRelevance 0.1293 0.2448 0.7424 0.3681 0.1099 0.5133 0.1537 0.0762 0.3464 0.8359
RakelD 0.1258 0.3067 0.7139 0.4289 0.1313 0.4172 0.1738 0.0568 0.3356 0.8321
LabelPowerset (neural) 0.6631 0.7093 0.6948 0.7018 0.3353 0.2524 0.2701 0.0177 0.3123 0.8430
BinaryRelevance (neural) 0.4850 0.7776 0.6754 0.7229 0.3424 0.2480 0.2735 0.0155 0.3548 0.8347
BERT 0.4464 0.8420 0.6817 0.7534 0.1676 0.1363 0.1453 0.0130 0.5274 0.8389

E. Result analysis

The best results of the experiments measured by Micro
ROC are listed in Table VI along with the models which have
shown the best performance in at least two measures. The
results of Table VI and the dataset properties listed in Table
I show that the performances of the multi-label classification
deteriorate when the number of labels, in this instance, tech-
niques to be predicted, increases and could depend highly on
the number of examples used. Also, the length of the text
matters in which shorter text has a higher probability of correct
technique to be predicted.

We could conclude from the listed results that the La-
belPowerset method with Multilayer Perceptron as base classi-
fier performs best in most cases, and BERT comes in second.
Since running a BERT model requires a computationally
expensive environment, the neural LabelPowerset model would
be an ideal choice for predicting the adversarial techniques in
cyber threat information.

TABLE VI. COMBINED DATASET EXPERIMENTAL RESULT.

Dataset Best Micro ROC Best model
ENISA 0.8524 LabelPowerset (neural), BERT
TRAM 0.8461 LabelPowerset (neural)
rcATT 0.7224 None
Combined 0.8430 LabelPowerset (neural), BERT

VII. CONCLUSION

This paper proposed an approach to automatically map
the cyber threat information to adversary techniques in the
cybersecurity context. We converted various threat information
into vector space and experimented with different multi-label
classification methods, as well as a state-of-the-art language
model to identify the most suitable method to map the threat
information into MITRE ATT&CK adversarial techniques.
We used 12,572 examples from 3 open datasets to conduct
4 independent experiments to train and test 7 multi-label
classification methods and 1 pre-trained language model in 6
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evaluation measures.
According to the results of the experiments converting

threat information into vector space using a pre-trained USE
model and applying the neural LabelPowerset method to con-
duct multi-label classification to predict adversarial techniques
yielded the best results. State-of-the-art pre-trained language
model BERT performed second in which BERT’s internal
embedding represents the threat information, and the final layer
is fine-tuned for multi-label purposes.

Based on the experiment results, we believe that by embed-
ding the given threat information using Universal Sentence En-
coder and applying the LabelPowerset method with Multilayer
Perceptron as a base classifier, we could effectively predict the
adversarial techniques.

However, we acknowledge the limitations of the paper,
including the lack of explainability in the models so that the
labels it predicted could not be entirely analyzed with current
settings. Also, there has been some progress with the NLP and
language models since the experiments were first designed,
thus not reflected in this work. Those limitations are to be
addressed in future work.
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