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Abstract— In multi-tenancy cloud environments, physical 

resources are transparently shared by multiple Virtual 

Machines (VMs) belonging to multiple users. Implementing an 

efficient access control mechanism in such environments can 

prevent unauthorized access to the cloud resources. In this 

paper, we propose an access control mechanism called 

CloudGuard that provides scalable and secure access control to 

the cloud in the context of multi-tenancy cloud environments. 

Such a mechanism prevents malicious tenants from generating 

and sending unauthorized traffic to the cloud network. 

Numerical results show that CloudGuard offers better system 

throughput in critical or high-risk multi-tenancy cloud network 

environments, where the amount of intrusion traffic is high. 

Keywords-access control; cloud computing; hypervisor; multi-
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I.  INTRODUCTION 

Cloud computing is a flexible and cost-effective platform 
for providing business and consumer services over the 
Internet [1][2][3]. Such a platform is utilized by multiple 
customers who share computing resources, including CPU 
time, network bandwidth, data storage space, with other users, 
which refers to multi-tenancy [4]. By multi-tenancy, Clouds 
provide simultaneous, secure hosting of services for various 
customers utilizing the same infrastructure resources [5][6]. 
However, in multi-tenancy cloud environments, one customer 
can gain unauthorized access to the information of other 
customers. In this context, it is important to control the access 
of network entities to such information. 

Access control is a security feature that controls how users 
and systems communicate and interact with other systems and 
resources. In general, there are three types of access control: 
physical access control, technical access control and 
administrative access control [7][8]. Physical access control 
refers to the implementation of security measures in a defined 
structure in order to prevent unauthorized access to sensitive 
materials. Examples of such control include: security guards, 
picture IDs, locked and dead-bolted steel doors, biometrics, 
closed-circuit surveillance cameras and motion or thermal 
alarm systems. Technical access control employs the 
technology as a basis for controlling the access to sensitive 
information throughout a physical structure and over a 
network. Examples of technical access control are: 

encryption, smart cards, network authentication, Access 
Control Lists (ACLs), and file integrity auditing software. 
Administrative access control defines the human factors of 
security. All levels of the personnel within an organization are 
involved in such control. Administrative access control also 
determines which users have access to which resources and 
information. 

The above types of access control can be integrated into 
security architectures in order to preserve the integrity, 
confidentiality and availability of resources that are collocated 
in multi-tenancy cloud environments. In this paper, we 
investigate the use of technical access control for proposing a 
secure access control mechanism in the context of multi-
tenancy cloud environments. Such a mechanism will prevent 
malicious insiders from generating and sending unauthorized 
traffic to the cloud network. 

The rest of the paper is organized as follows. Section II 
introduces the context and background related to access 
control in multi-tenancy cloud environments. Section III 
discusses the main existing methods and models for 
controlling access in multi-tenancy cloud environments. 
Section IV presents the main assumptions and principles of 
the proposed architecture. Section V illustrates and explains a 
use case scenario. Section VI evaluates the performance of the 
proposed access control architecture in terms of latency and 
system throughput. Section VII gives some concluding 
remarks and perspectives. 

II. CONTEXT AND BACKGROUND 

As illustrated in Figure 1, a multi-tenant cloud service 
provider has three essential elements: the cloud manager, the 
hypervisor and the Virtual Machines (VMs) [9]. The cloud 
manager is a console of management provided for clients in 
order to manage their cloud infrastructure, which means 
creating, shutting down, or starting the instances. The 
hypervisor, also called Virtual Machine Manager (VMM), 
allows multiple operating systems (guests or virtual machines) 
to run concurrently on a host server. Its main responsibility is 
to manage the application’s operating systems (OSs) and their 
use of the system resources (e.g., CPU, memory and storage). 
Its role is to control the host processor and resources, and also 
to allocate what is needed to each operating system. 
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Figure 1.  A model for a multi-tenant cloud service provider [9]. 

 
A VM is an isolated guest operating system installation 

within a normal host operating system. In this context, each 
client may have one or more VMs, as one physical server can 
host several VMs. In such an environment, one client can send 
unlimited amount of traffic to another client. Accordingly, a 
malicious agent can rent a VM on the same host where the 
target VM resides. This malicious agent can send 
unauthorized traffic to the target VM and violate the security 
of the target VM [10]. Intrusion traffic is the amount of traffic 
that is generated by a malicious VM, and the target of such 
traffic is to penetrate the vulnerabilities of the destination VM. 
In principle, intrusion traffic is unpredictable in a multi-
tenancy cloud network. 

The unauthorized traffic may contain some script or 
malware which violates the confidentiality or the integrity of 
the target VM data. Sending such traffic to another VM makes 
it possible to perform other sorts of attacks. For instance, a 
malicious agent who owns a VM can perform VM Hopping 
over another user who is co-located at the same host. With 
VM hopping, an attacker has the control of one VM and tries 

to gain the control of another VM. VM hopping allows an 
attacker to move from one virtual server to the next one, or 
even to gain the root access to the physical hardware. VM 
hopping is a considerable threat because several VMs can run 
on the same host, which makes them the targets for the 
attacker. By performing this attack, a malicious user can 
violate the security and steal the data of other users who are 
located at the same server while compromising the hypervisor 
file system [11]. 

In addition, the malicious insider can perform Denial of 
Service (DoS) attacks. These kinds of attacks exhaust the 
resources of the cloud network, such as bandwidth and 
computing power, by sending large amount of unauthorized 
traffic to other VMs. 

III. EXISTING METHODS AND MODELS 

In this section, we discuss the main existing methods and 
models for controlling access in the context of multi-tenancy 
cloud environments. 
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A. Distributed access control 

The Distributed Access Control (DAC) architecture was 
proposed by Thomas et al. [12]. As illustrated in Figure 2, 
such an architecture has three main components: the Cloud 
Service Provider (CSP), the Cloud Service Consumer (CSC), 
and the Identity Provider (IdP). The CSC requests the 
resources or services hosted by the CSPs. In this stage, the 
CSC should be first authenticated to ensure that unauthorized 
users do not access the services from the CSP. The main 
responsibility of the CSP is to host and to provide various 
services or resources to the CSCs. As a result, for avoiding 
illegal and unauthorized access by CSCs, proper authorization 
and authentication of CSCs are required. 
 

 

Figure 2.  Distributed Access Control architecture [12]. 

Moreover, in DAC architecture, the IdP plays a great role 
since it generates identity tokens to the users. By using this 
identity token, a user can request the access to the cloud. Such 
a user may subscribe to services from multiple CSPs to meet 
the resource requirements. In this case, a federated identity 
management approach is required. The CSCs can use the 
identity tokens generated by the IdPs and these cloud users 
can exchange such tokens with various CSPs in the federation 
[12]. 

Analysis and results of DAC architecture reveal that using 
such an architecture is important in the domain of distributed 
applications or service computing. However, this model has 
some limitations. In particular, there is no effective 
mechanism which meets all access control requirements. 

B. Adaptive access algorithm 

Wenhui et al. [13] added trust management to the Role-
Based Access Control (RBAC) in order to propose an adaptive 
access algorithm for cloud environments. This model is based 
on loyalty, i. e., a user is restricted only when its behavior 
contains malicious behavior. More specifically, the user 
request is first analyzed, and based on trust evaluation, the 
user becomes dynamically authorized. Here, user’s trust is 
calculated according to user’s behavior. In other words, the 
user access to the resource is dynamically based on 
calculation. As a result, by establishing dynamic mapping 

between roles and trust values, this model is able to determine 
the security level and control the user’s access to the 
resources. 

The trust-role-based-access control model claims that it 
can efficiently control user’s malicious behavior. However, 
this model depends on the trust values, as the trust evaluation 
process needs to be improved in order to become widely used. 

C. Multi-tenancy access control model 

Multi-Tenancy Access Control Model (MTACM) is a 
security architecture which embeds the security duty 
separation principle in multi-tenancy cloud environments 
[14]. The main idea of MTACM is based on limiting the 
management privilege of CSP and letting the customers 
manage the security of their own business. In this model, the 
duty separation mechanism between cloud service provider 
and cloud customer is handled by a management module. 
However, the management module is not user-friendly for 
customers, as the cloud customer has to take care of the data 
security. 

D. Role-based multi-tenancy access control 

Role-Based Multi-Tenancy Access Control (RB-MTAC) 
applies identity management to determine user’s identity and 
applicable roles [15]. Such a model combines two important 
concepts in access control under multi-tenancy access 
environment: identity management and role-based access 
control. In this context, Yang et al. [15] believe that this 
combination makes it easier to manage privileges that protect 
the security of application systems and data privacy. 
Providing a set of privileges and identity management 
schemes for corporations in cloud computing environment is 
the main contribution of this security model. 

This scheme can be used to easily change employee 
privileges when a personnel member leaves an organization 
or when we want to grant employees more access without the 
need to modify all employee privileges one by one. However, 
RB-MTAC is not independent, and for implementing it in a 
cloud computing system, a directory service is needed. 

E. CloudPolice 

Popa et al. [16] proposed CloudPolice, a system that 
implements a hypervisor-based access control mechanism for 
multi-tenancy cloud environments. CloudPolice operations 
are illustrated in Figure 3. More specifically, when a source 
VM initiates a new flow, the source hypervisor sends a control 
packet to the destination hypervisor. This control packet 
specifies the security group to which the source VM belongs 
(Step 1). As soon as the control packet reaches the source 
hypervisor, it will be checked by the destination hypervisor to 
verify the policy for the group of the destination VM (Step 2). 
If the policy allows the traffic, then the state of the traffic will 
be created for this flow by the destination hypervisor. 
However, if the traffic is not allowed or should be rate-limited, 
the control packet will be sent back to the source hypervisor 
to block or rate limit the flow or the VM (Step 3). 
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Figure 3.  Overview of CloudPolice operations [16]. 

 
Since hypervisors are generally trusted, network-

independent, close to VMs and fully software programmable, 
CloudPolice seems to be effective to prevent denial of service 
(DoS) attacks from malicious agents who send unauthorized 
traffic to their targets. As a result, CloudPolice acts as stateful 
firewalls and creates a state for each flow. 

However, there are several major concerns for the 
feasibility of CloudPolice. The first concern is the ability for 
the hypervisor to act on per flow state, as the hypervisor 
should be ready to act on every single flow. The second 
concern is the ability to install new state with low enough 
latencies for new traffic flows, as we should make sure that 
the hypervisor is able to create a state for each new incoming 
flow very fast. As a result, the hypervisor should be able to 
create states for all new flows without latency (or at least with 
acceptable latency) and also act on the states that already exist 
in the buffer. Also, CloudPolice imposes overheads in the 
system, as the destination hypervisor receives all the traffic 
and decides to pass or drop the traffic based on the security 
attributes of the target virtual machines.  

IV. THE PROPOSED ARCHITECTURE 

This section defines the main assumptions, as well as the 
design and principles of the proposed architecture. 

A. Main assumptions 

The proposed architecture deals with the concept of Inter-
VM traffic, which is the transmission of any data packet to 
and from one virtual machine. In other words, when the 
hypervisor encounters inter-VM traffic, the traffic does not 
pass through the physical switch or router, as the virtual 
switch that is located at the hypervisor forwards the packet to 
the destination VM. At this point, the following assumptions 
need to be done: 

 

• The virtual machines and physical servers are co-
located at the same cloud provider. If the entire 
system is not part of the Cloud, then for sending 
traffic to another Cloud, the traffic should pass 
through a real router or firewall. In this case, the 

policies that are implemented in the firewall should 
be enforced. 

• Each physical server has only one hypervisor. In this 
case, the security attributes and access control lists of 
all virtual machines that belong to a physical server 
are located at one hypervisor. If we have multiple 
hypervisors on a physical server, we should apply an 
extra process for realizing which hypervisor contains 
the access control lists of certain virtual machines. 

• Each physical server is hosting at least one tenant, and 
each tenant has at least one virtual machine. Since 
each virtual machine should be registered as a tenant, 
if a tenant is registered in the Cloud, a virtual machine 
should be assigned to that tenant. 

• All access control lists are defined and stored in the 
hypervisor. 

• In its startup process, a hypervisor sends an update 
message to the other hypervisors that are located at 
the same Cloud. This update message contains the IP 
address and the ID of virtual machines that are located 
at that hypervisor. 

 

B. Architecture principles 

The principles of the proposed architecture are based on 
control packets, which is the core element for verifying 
security permissions of virtual machines in multi-tenancy 
cloud environments. In the following, we explain the main 
elements of the proposed access control architecture, which is 
illustrated in Figure 4: 
 

• Source (Src.) VM is a virtual machine that is installed 
on the source hypervisor, as the latter is located at the 
physical source server. The source VM is then 
sending traffic packets to a virtual machine in the 
same Cloud called Dst. VM. 

• Destination (Dst.) VM is installed at the destination 
hypervisor, and this hypervisor is located at the 
destination physical server. 

• A data packet is a packet that the source VM wants to 
send to the destination VM. 
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Figure 4.  Principles of the proposed architecture. 

 

• A control packet is a special packet that is generated 
by the source hypervisor. Its content represents the 
specifications of the source and destination VMs. 

• Incoming/outgoing traffic filter is a lightweight IDS 
that is integrated in the hypervisor. It compares the 
control packet with the access control lists of 
destination VM. 

• An access control list is a set of security permission 
that defines the level of security of each virtual 
machine. 

 

C. Architecture design 

The main goal of the proposed architecture is to block and 
drop undesired packets as close as possible of the source 
hypervisor. As illustrated in Figure 4, when the source VM 
sends traffic to the destination VM, such traffic has to pass 
through the source hypervisor. As soon as a data packet 
reaches the hypervisor, it generates a control packet which 
consists of the necessary information for access control 
checking, such as the source IP address, the destination IP 
address, the port numbers, as well as the protocol type. Such 
a control packet has to be sent to the destination hypervisor 
which checks its content and decides whether the traffic can 
be delivered to the destination hypervisor. If the source VM is 
permitted to send the so-called traffic to the destination VM, 
the destination hypervisor adds a pass or drop value to the 
control packet payload, and sends it back to the source 
hypervisor. According to this value, the source hypervisor 
threats the awaiting traffic. 

As illustrated in Figure 5, the process starts when a VM 
initiates to send some traffic to another VM. As soon as such 
traffic is received by the source hypervisor, it checks the 
packet and looks for the destination address that is located at 
the inserted IP packet header. If the destination address 
belongs to a virtual machine in the same cloud, we will have 
two possibilities. The first case considers that the destination 
address is located at the same physical server. In this case, the 
architecture checks the access control policy of the destination 
VM, and can decide whether to pass or drop the traffic. The 
second case occurs when the destination address is located at 

a different physical server. In this case, the source hypervisor 
generates and sends the control packet to the destination 
hypervisor. Then, it waits for the response control packet. 
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Figure 5.  General mechanism flowchart. 

 
Beside such possibilities, there may be an exception, when 

the destination address does not belong to any VM in this 
Cloud, which means that the source and destination addresses 
belong to two devices that are not co-located at the same 
Cloud. In this case, the architecture only has to pass the traffic 
to the default gateway of the source hypervisor (router, switch 
or firewall). 
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The main part of the mechanism starts if the destination 
address belongs to a VM that is located at a destination 
hypervisor. In this case, the whole traffic should wait until the 
source hypervisor generates and sends a control packet to the 
destination hypervisor. Hence, the decision will be made 
based on the response control packet. Figure 6 shows the main 
tasks of the destination hypervisor when it receives the control 
packet from the source hypervisor. More precisely, the 
destination hypervisor selects one of the following actions: 

 

• Insert a pass value to the control packet if the access 
control policy of the destination VM matches, and 
accept the traffic from the source VM. 

• Insert a drop value to the control packet if the access 
control policy of the destination VM does not match, 
as the source VM is not authorized to send the traffic 
to the destination VM. 

• Insert a null value to the control packet if the 
destination address is not found in the destination 
hypervisor. This may happen if the control packet is 
sent to the hypervisor by mistake, or if the VM 
destination is migrated to another hypervisor, whereas 
the source hypervisor is not informed about such 
migration. 

 
After inserting the proper value to the control packet, the 

destination hypervisor returns the edited control packet to the 
source hypervisor. The response control packet contains the 
decision and the action to be taken for the traffic. In the case 
of a drop value, the source hypervisor drops the traffic right 
away, as such traffic will not even exit the hypervisor, which 
means no wasted and unnecessary traffic in the network. 
Consequently, the network bandwidth does not suffer from 
extra and unwanted traffic. Finally, the pass value indicates 
that the access control policy matches between the source and 
destination, whereas the source VM and the traffic will pass 
throughout the destination hypervisor. 

V. A USE CASE SCENARIO 

In this section, we analyze a use case scenario which 
enables to tackle the problem of sending unauthorized traffic 
to a VM in the context of multi-tenancy cloud environments. 
This scenario is illustrated in Figure 7, where a public Cloud 
is connected to the Internet, using a router and three physical 
servers that are connected to a layer-2 switch. In this scenario, 
the function of the router is to route the internal cloud traffic 
to the Internet. Apparently, the router serves as a controller, 
enabling the networked devices to talk to each other 
efficiently.  

In this scenario, there are 3 physical servers, as well as 10 
virtual machines. These virtual machines belong to 4 tenants. 
The multi-tenancy topology of this Cloud is as follows: 

• Server 1: Tenant 1 (VM1, VM2) and Tenant 2 (VM3); 

• Server 2: Tenant 1 (VM4, VM5) and Tenant 3 (VM6, 
VM7); 

• Server 3: Tenant 4 (VM8) and Tenant 3 (VM9, 
VM10). 

 
 

 

Figure 6.  Destination hypervisor’s tasks after control packet reception. 

It is important to mention that the process of controlling 
the access is executed in the hypervisors. In this context, the 
scenario has two phases: the first phase consists of generating 
control packets, whereas in the second phase, the destination 
hypervisor investigates the information and decides about the 
destiny of the packet. More specifically, in phase one of the 
scenario, the VM Source sends a traffic flow to the hypervisor 
source, as illustrated in stage 1 of Figure 8. Then, the source 
hypervisor generates a control packet. The content of this 
control packet is based on the traffic to be sent from source 
VM3 to destination VM8. 
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Figure 7.  A use case scenario for multi-tenancy cloud access control. 

 
 

 
 

Figure 8.  Illustration of phase one of the scenario. 

 
As illustrated in stage 2 of Figure 8, the source hypervisor 

sends the control packet to the destination hypervisor in order 
to check the access control policy of the VM destination. 

In phase two, the control packet arrives at the destination 
hypervisor which checks the access control lists (ACLs) to 
verify if VM3 is authorized to send traffic to VM8. If the 
ACLs related to VM8 match, the destination hypervisor sends 
back a pass value within the control packet (called response 

control packet) to the source hypervisor, as illustrated in stage 
3 of Figure 9. The response control packet enables the 
hypervisor source to decide what to do with the traffic that is 
waiting in the source hypervisor. Hence, if the security 
attributes of VM8 do not match the data packet, then the 
destination hypervisor sends a drop signal to the source 
hypervisor. 
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Figure 9.  Illustration of phase two of the scenario. 

 

VI. PERFORMANCE ANALYSIS 

In this section, we evaluate the performance of the 
proposed access control architecture that we call CloudGuard. 
More specifically, we will define the parameters that will 
enable to mathematically express the latency and system 
throughput. Then, we will present numerical results and 
analysis. 

A. Parameter definition 

Let us first define the most important parameters that 
characterize the proposed access control architecture: 

Np: the number of packets transmitted from source VM to 
destination VM; 

Sp: the data size of each packet (bits); 
Nf: the number of traffic flows that are being transmitted 

from source VM to destination VM; 
Sf: the size of traffic flow (bits); 
T: the time taken by the traffic flow to be sent from source 

VM to destination VM (seconds); 
RTT: the time taken by a control packet to be sent from a 

source hypervisor to a destination hypervisor, and 
received back by the source hypervisor (seconds). 
This parameter also refers to as Round Trip Time; 

BW: The amount of data that can be carried from one point 
to another point in a given period in a Gigabit 
Ethernet (1 073 741 824 bits per second); 

Pi: the probability of having intrusion traffic. 
 

B. Packet latency 

We may now evaluate the latency of the proposed access 
control architecture and compare it with that of CloudPolice 
[16] that we studied Section III. While other different 
solutions may be found in the literature for comparison with 
the proposed architecture, CloudPolice is a hypervisor-based 
access control system that implements, like CloudGuard, the 
access control only within the hypervisor. In other words, both 

architectures are designed to enforce the access control list in 
the hypervisor. 

However, a major difference between such architectures is 
that with CloudGuard, the source hypervisor waits for the 
control packet response from the destination hypervisor. In 
this case, if the security policies of source VM and destination 
VM match, the source hypervisor passes the traffic toward the 
destination hypervisor. As a result, the destination hypervisor 
passes the traffic to destination VM. On the other hand, 
according to CloudPolice, the source hypervisor does not wait 
for the control packet response, as it sends the whole traffic to 
the destination hypervisor. When the traffic reaches the 
destination hypervisor, the security policies will be checked 
between the traffic and destination VM. In this case, if the 
traffic is authorized, it will continue its journey to destination 
VM. However, if the traffic does not match with the security 
attributes of destination VM, it will be ignored and dropped in 
the destination hypervisor.  

From the differences between CloudGuard and 
CloudPolice, we can generate two expressions for evaluating 
the latency related to each packet: one for the latency obtained 
with CloudGuard, and the other one for the latency obtained 
with CloudPolice. With CloudGuard, the control packet is 
generated by the source hypervisor, whereas the control 
packet response is generated by the destination hypervisor. 
When one VM wants to communicate with another VM in the 
same cloud environment, the source VM first sends the traffic 
to the source hypervisor. Then, the source hypervisor checks 
the destination address, and finds out the destination 
hypervisor on which the destination VM is hosted on.  

In the next step, the source hypervisor generates a control 
packet, and sends such control packet to the destination 
hypervisor. Then, it keeps the traffic, and does not let the 
traffic to be passed to the destination hypervisor, unless it 
receives back the control packet response from the destination 
hypervisor. In this stage, the responsibility of the destination 
hypervisor is to check the traffic security attributes with the 
security policies of destination VM. If the traffic is authorized, 
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the control packet response asks the source hypervisor to pass 
the traffic.  

As a result, for each traffic flow, one control packet needs 
to be generated with CloudGuard. Based on that, to evaluate 
the average packet latency, we need to multiply the number of 
traffic flows Nf with round trip time RTT. More specifically, 
to derive an expression for the latency, RTT is first added to 
the time it takes to transmit one traffic flow, while only 
considering non intrusion traffic. Then, we add this value to 
the round trip time of the control packet for intrusion traffic. 
Such process is repeated for each traffic flow in order to obtain 
the packet latency. Therefore, the average packet latency 
obtained with CloudGuard is expressed as follows: 

 

𝐷𝐶𝐺 = (𝑅𝑇𝑇 +  
𝑆𝑓

𝐵𝑊
 ) (1 −  𝑃𝑖) + 𝑅𝑇𝑇 × 𝑁𝑓 × 𝑃𝑖            (1) 

where RTT, Sf, BW, Pi and Nf are defined in subsection A. 
Let us now evaluate the average packet latency while 

considering CloudPolice. With such access control 
architecture, when a VM needs to communicate with another 
VM in the same cloud environment, the source VM sends the 
traffic to the source hypervisor. The source hypervisor checks 
the destination VM address and passes the traffic to the proper 
destination hypervisor where destination VM is hosted. Then, 
the destination hypervisor checks the traffic security attributes 
with the security policies of the destination VM. If the traffic 
is not authorized, the destination hypervisor generates a 
control packet, and sends it to the source hypervisor in order 
to inform the source hypervisor to block the next stream of the 
same traffic, or to limit the bandwidth that must be allocated 
to this traffic. Therefore, CloudPolice generates control 
packets only for intrusion traffic flows. As a result, the number 
of control packets that are generated depends on the 
probability of intrusion traffic.  

More specifically, for evaluating the latency obtained with 
CloudPolice, we first need to multiply the number of intrusion 
traffic flows with RTT. Then, we need to evaluate the time it 
takes for intrusion traffic to pass to the network since the 
amount of intrusion traffic may technically consume the 
available network bandwidth. Based on that, we first calculate 
the round trip time RTT of all control packets. Then, RTT is 
added to the time that it takes to pass the intrusion traffic from 
source to destination. As a result, the average packet latency 
obtained with CloudPolice is expressed as follows:  

 

𝐷𝐶𝑃 = (𝑅𝑇𝑇 × 𝑃𝑖 + 
𝑆𝑓

𝐵𝑊
 (1 − 𝑃𝑖)) × 𝑁𝑓                 (2) 

where RTT, Pi, Sf, BW and Nf are defined in subsection A. 
 

C. System throughput 

In order to evaluate the proposed access control 
architecture, the system throughput is also taken into 
consideration. In this context, we develop two expressions for 
the system throughput: one expression for the system 
throughput with CloudGuard and another one for the system 

throughput with CloudPolice. For evaluating the first 
expression, we consider that CloudGuard generates a control 
packet for each traffic flow before passing such traffic to the 
destination hypervisor. The traffic remains in the source 
hypervisor until the source hypervisor receives back the 
control packet response. In this case, only authorized traffic 
flows can pass through the network.  

As a result, for evaluating the system throughput with 
CloudGuard, we first need to divide the number of traffic 
flows by the average latency. Then, we multiply the obtained 
results with the probability of not having intrusive traffic. The 
system throughput with CloudGuard is expressed as follows: 

 

𝑅𝐶𝐺 =
𝑆𝑓𝑁𝑓

𝐷𝐶𝐺

(1 − 𝑃𝑖)                                                         (3) 

where Sf, Nf, and Pi are defined in subsection A, whereas DCG 
is given by (1). 

Moreover, with CloudPolice, no control packet is sent 
before passing traffic packets to the destination hypervisor. In 
other words, all traffic flows pass from the source hypervisor 
to the destination hypervisor. As a result, such traffic flows 
include unwanted and unauthorized traffic. In this context, 
when evaluating the system throughput with CloudPolice, we 
should deduct from such traffic flows the amount of 
unauthorized traffic, since such unauthorized traffic that is 
generated by an intruder may occupy the available network 
bandwidth. Then, the number of traffic flows is divided by the 
average latency obtained in (2), as we multiply such a result 
with the amount of intrusion traffic. The obtained expression 
is valid for the situations where the probability of intrusion 
traffic is between 0 and 0.5. Further, because of the nature of 
CloudPolice, we consider the system throughput equal to zero 
if the probability of intrusion is between 0.5 and 1.  

As a result, the system throughput with CloudPolice is 
expressed as follows: 
 

𝑅𝐶𝑃 = {

𝑆𝑓𝑁𝑓

𝐷𝐶𝑃

(1 − 2𝑃𝑖), 𝑖𝑓 0 ≤ 𝑃𝑖 ≤ 0.5  

0,                    𝑖𝑓    0.5 < 𝑃𝑖 ≤ 1 

                                   (4) 

where Sf, Nf, and Pi are defined in subsection A, whereas DCP 
is given by (2). 
 

D. Numerical results and analysis 

For numerical results, we will compare the system 
throughput obtained with CloudGuard with that obtained with 
CloudPolice. For such comparison, MATLAB Release 2021b 
(R2021b) [17] will be used as a fundamental research tool that 
can mathematically computes the system throughput for both 
architectures according to several scenarios. In this context, a 
number of parameters must be calculated. 

First, it is important to evaluate the size of traffic flows Sf. 
Based on [18], Sf may be expressed as follows: 

Sf = Sp ✕ Np    (5) 
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Figure 10.  System throughput comparison (CloudPolice vs CloudGuard). 

 
 

where Sp represents the packet size, and Np represents the 
number of packets transmitted from source VM to destination 
VM. We then consider packet sizes of 128 bytes (i.e., 1 024 
bits), and we assume that each traffic flow contains 1 000 
packets. As a result, the flow size considered for numerical 
results will be set to 1 024 000 bits. 

Another important parameter for numerical results is the 
number of traffic flows Nf that are sent from source VM to 
destination VM. In order to verify how CloudGuard and 
CloudPolice performs in different situations, we consider Nf 
as random numbers from 1 000 to 10 000, and we choose the 
same Nf value for system throughput comparison. 

Moreover, in [16], RTT is set to 1.5 ms with CloudPolice. 
Since the process of generating control packets with 
CloudPolice is similar to that of CloudGuard, we assume that 
RTT is the same for both access architectures, i.e., 1.5 ms. 
Further, as intrusion traffic is unpredictable in a multi-tenancy 
cloud network, the probability of intrusion traffic Pi will be 
chosen between 0 and 1 for numerical results. 

Figure 10 illustrates the system throughput comparison 
(CloudPolice vs CloudGuard) in function of Pi. We realize 
that, if the probability of intrusion is low (Pi < 0.3215), 
CloudPolice offers better system throughput than 
CloudGuard. Moreover, for Pi = 0.3215, both architectures 
have the same throughput, whereas when the amount of 
intrusion traffic is higher in the cloud system (Pi > 0.3215), 
results show that CloudGuard offers better system throughput 
than CloudPolice.  

Also, it is important to mention that a lot of intrusion 
traffic (Pi > 0. 5) completely paralyzes the cloud system with 
CloudPolice, since the system is unable to offer any 
throughput for Pi > 0. 5. Such results prove that CloudGuard 

is more appropriate than CloudPolice in high-risk multi-
tenancy cloud computing environments. In other words, 
CloudGuard is an effective security architecture which is 
suitable for high-risk environments. A high-risk multi-tenancy 
cloud computing environment refers to a cloud environment 
in which the system is the target of many attacks, as lots of 
intrusion attempts and unwanted traffic are being sent to the 
VMs. Financial institutions and game centers are examples of 
networks that are always targeted by attackers and malicious 
agents. On the other hand, one can hardly imagine a network 
environment with zero intrusion traffic, which means that Pi 
= 0. 

VII. CONCLUSION  

The access control architecture (called CloudGuard) 
proposed in this paper for multi-tenancy cloud environments 
satisfies a number of requirements, such as scalability and 
security. This architecture is scalable in the sense that, if the 
number of VMs grows, we only need to implement this 
architecture in the hypervisor of each physical server without 
any extra changes in the system. Besides that, the architecture 
enables to maintain the security of information in the cloud 
system by controlling the traffic sent from one hypervisor to 
another hypervisor and enforcing the security policies in the 
hypervisor.  

Using MATLAB R2021b, we built a mathematical model 
in order to evaluate CloudGuard performance. More 
specifically, we compared the system throughput obtained 
with CloudGuard with that obtained with CloudPolice. 
Numerical results prove that CloudGuard obviously offers 
better system throughput in critical or high-risk multi-tenancy 
cloud network environments, where the amount of intrusion 
traffic is high. As a result, CloudGuard leads to better 
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performance by avoiding unnecessary traffic and dedicating 
the cloud resources to necessary traffic.  

Future works will focus on intra-cloud traffic. In real 
world cloud environment, the traffic may pass through lots of 
intermediate devices, such as switches, routers and firewalls. 
In this context, when a VM needs to send traffic to another 
VM that is located at another Cloud, we need more complex 
access control updates between hypervisors that are located at 
different cloud environments. Hence, in the context of intra-
cloud traffic, the process of propagation of security attributes 
and updates between hypervisors should be taken into 
consideration. Future works will also focus on implementing 
a prototype of the proposed architecture on a real cloud 
environment. 
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