
71

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Access Control Architecture for

Securing Multi-Tenancy Cloud Environments

Ronald Beaubrun

Department of Computer Science and Software Engineering

Laval University

Quebec, Canada

e-mail: ronald.beaubrun@ift.ulaval.ca

Alejandro Quintero

Department of Computer and Software Engineering

Polytechnique Montreal

Montreal, Canada

e-mail: alejandro.quintero@polymtl.ca

Abstract— In multi-tenancy cloud environments, physical

resources are transparently shared by multiple Virtual

Machines (VMs) belonging to multiple users. Implementing an

efficient access control mechanism in such environments can

prevent unauthorized access to the cloud resources. In this

paper, we propose an access control mechanism called

CloudGuard that provides scalable and secure access control to

the cloud in the context of multi-tenancy cloud environments.

Such a mechanism prevents malicious tenants from generating

and sending unauthorized traffic to the cloud network.

Numerical results show that CloudGuard offers better system

throughput in critical or high-risk multi-tenancy cloud network

environments, where the amount of intrusion traffic is high.

Keywords-access control; cloud computing; hypervisor; multi-

tenancy; security, virtual machine.

I. INTRODUCTION

Cloud computing is a flexible and cost-effective platform
for providing business and consumer services over the
Internet [1][2][3]. Such a platform is utilized by multiple
customers who share computing resources, including CPU
time, network bandwidth, data storage space, with other users,
which refers to multi-tenancy [4]. By multi-tenancy, Clouds
provide simultaneous, secure hosting of services for various
customers utilizing the same infrastructure resources [5][6].
However, in multi-tenancy cloud environments, one customer
can gain unauthorized access to the information of other
customers. In this context, it is important to control the access
of network entities to such information.

Access control is a security feature that controls how users
and systems communicate and interact with other systems and
resources. In general, there are three types of access control:
physical access control, technical access control and
administrative access control [7][8]. Physical access control
refers to the implementation of security measures in a defined
structure in order to prevent unauthorized access to sensitive
materials. Examples of such control include: security guards,
picture IDs, locked and dead-bolted steel doors, biometrics,
closed-circuit surveillance cameras and motion or thermal
alarm systems. Technical access control employs the
technology as a basis for controlling the access to sensitive
information throughout a physical structure and over a
network. Examples of technical access control are:

encryption, smart cards, network authentication, Access
Control Lists (ACLs), and file integrity auditing software.
Administrative access control defines the human factors of
security. All levels of the personnel within an organization are
involved in such control. Administrative access control also
determines which users have access to which resources and
information.

The above types of access control can be integrated into
security architectures in order to preserve the integrity,
confidentiality and availability of resources that are collocated
in multi-tenancy cloud environments. In this paper, we
investigate the use of technical access control for proposing a
secure access control mechanism in the context of multi-
tenancy cloud environments. Such a mechanism will prevent
malicious insiders from generating and sending unauthorized
traffic to the cloud network.

The rest of the paper is organized as follows. Section II
introduces the context and background related to access
control in multi-tenancy cloud environments. Section III
discusses the main existing methods and models for
controlling access in multi-tenancy cloud environments.
Section IV presents the main assumptions and principles of
the proposed architecture. Section V illustrates and explains a
use case scenario. Section VI evaluates the performance of the
proposed access control architecture in terms of latency and
system throughput. Section VII gives some concluding
remarks and perspectives.

II. CONTEXT AND BACKGROUND

As illustrated in Figure 1, a multi-tenant cloud service
provider has three essential elements: the cloud manager, the
hypervisor and the Virtual Machines (VMs) [9]. The cloud
manager is a console of management provided for clients in
order to manage their cloud infrastructure, which means
creating, shutting down, or starting the instances. The
hypervisor, also called Virtual Machine Manager (VMM),
allows multiple operating systems (guests or virtual machines)
to run concurrently on a host server. Its main responsibility is
to manage the application’s operating systems (OSs) and their
use of the system resources (e.g., CPU, memory and storage).
Its role is to control the host processor and resources, and also
to allocate what is needed to each operating system.

72

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Hypervisor

Cloud
manager

Agent

Tenant 1 Tenant 2

VM VM VM VM

vSwitch

App1 App2 App1 DB1

Agent Agent Agent Agent

VLAN VLAN

Tenant 1

VM VM VM VM

vSwitch

www DB2 App3 DB3

Agent Agent Agent Agent

VLAN VLAN

Tenant 3

Hypervisor

Cloud DB

Cloud
user

Malicious
agent

Cloud

Figure 1. A model for a multi-tenant cloud service provider [9].

A VM is an isolated guest operating system installation

within a normal host operating system. In this context, each
client may have one or more VMs, as one physical server can
host several VMs. In such an environment, one client can send
unlimited amount of traffic to another client. Accordingly, a
malicious agent can rent a VM on the same host where the
target VM resides. This malicious agent can send
unauthorized traffic to the target VM and violate the security
of the target VM [10]. Intrusion traffic is the amount of traffic
that is generated by a malicious VM, and the target of such
traffic is to penetrate the vulnerabilities of the destination VM.
In principle, intrusion traffic is unpredictable in a multi-
tenancy cloud network.

The unauthorized traffic may contain some script or
malware which violates the confidentiality or the integrity of
the target VM data. Sending such traffic to another VM makes
it possible to perform other sorts of attacks. For instance, a
malicious agent who owns a VM can perform VM Hopping
over another user who is co-located at the same host. With
VM hopping, an attacker has the control of one VM and tries

to gain the control of another VM. VM hopping allows an
attacker to move from one virtual server to the next one, or
even to gain the root access to the physical hardware. VM
hopping is a considerable threat because several VMs can run
on the same host, which makes them the targets for the
attacker. By performing this attack, a malicious user can
violate the security and steal the data of other users who are
located at the same server while compromising the hypervisor
file system [11].

In addition, the malicious insider can perform Denial of
Service (DoS) attacks. These kinds of attacks exhaust the
resources of the cloud network, such as bandwidth and
computing power, by sending large amount of unauthorized
traffic to other VMs.

III. EXISTING METHODS AND MODELS

In this section, we discuss the main existing methods and
models for controlling access in the context of multi-tenancy
cloud environments.

73

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Distributed access control

The Distributed Access Control (DAC) architecture was
proposed by Thomas et al. [12]. As illustrated in Figure 2,
such an architecture has three main components: the Cloud
Service Provider (CSP), the Cloud Service Consumer (CSC),
and the Identity Provider (IdP). The CSC requests the
resources or services hosted by the CSPs. In this stage, the
CSC should be first authenticated to ensure that unauthorized
users do not access the services from the CSP. The main
responsibility of the CSP is to host and to provide various
services or resources to the CSCs. As a result, for avoiding
illegal and unauthorized access by CSCs, proper authorization
and authentication of CSCs are required.

Figure 2. Distributed Access Control architecture [12].

Moreover, in DAC architecture, the IdP plays a great role
since it generates identity tokens to the users. By using this
identity token, a user can request the access to the cloud. Such
a user may subscribe to services from multiple CSPs to meet
the resource requirements. In this case, a federated identity
management approach is required. The CSCs can use the
identity tokens generated by the IdPs and these cloud users
can exchange such tokens with various CSPs in the federation
[12].

Analysis and results of DAC architecture reveal that using
such an architecture is important in the domain of distributed
applications or service computing. However, this model has
some limitations. In particular, there is no effective
mechanism which meets all access control requirements.

B. Adaptive access algorithm

Wenhui et al. [13] added trust management to the Role-
Based Access Control (RBAC) in order to propose an adaptive
access algorithm for cloud environments. This model is based
on loyalty, i. e., a user is restricted only when its behavior
contains malicious behavior. More specifically, the user
request is first analyzed, and based on trust evaluation, the
user becomes dynamically authorized. Here, user’s trust is
calculated according to user’s behavior. In other words, the
user access to the resource is dynamically based on
calculation. As a result, by establishing dynamic mapping

between roles and trust values, this model is able to determine
the security level and control the user’s access to the
resources.

The trust-role-based-access control model claims that it
can efficiently control user’s malicious behavior. However,
this model depends on the trust values, as the trust evaluation
process needs to be improved in order to become widely used.

C. Multi-tenancy access control model

Multi-Tenancy Access Control Model (MTACM) is a
security architecture which embeds the security duty
separation principle in multi-tenancy cloud environments
[14]. The main idea of MTACM is based on limiting the
management privilege of CSP and letting the customers
manage the security of their own business. In this model, the
duty separation mechanism between cloud service provider
and cloud customer is handled by a management module.
However, the management module is not user-friendly for
customers, as the cloud customer has to take care of the data
security.

D. Role-based multi-tenancy access control

Role-Based Multi-Tenancy Access Control (RB-MTAC)
applies identity management to determine user’s identity and
applicable roles [15]. Such a model combines two important
concepts in access control under multi-tenancy access
environment: identity management and role-based access
control. In this context, Yang et al. [15] believe that this
combination makes it easier to manage privileges that protect
the security of application systems and data privacy.
Providing a set of privileges and identity management
schemes for corporations in cloud computing environment is
the main contribution of this security model.

This scheme can be used to easily change employee
privileges when a personnel member leaves an organization
or when we want to grant employees more access without the
need to modify all employee privileges one by one. However,
RB-MTAC is not independent, and for implementing it in a
cloud computing system, a directory service is needed.

E. CloudPolice

Popa et al. [16] proposed CloudPolice, a system that
implements a hypervisor-based access control mechanism for
multi-tenancy cloud environments. CloudPolice operations
are illustrated in Figure 3. More specifically, when a source
VM initiates a new flow, the source hypervisor sends a control
packet to the destination hypervisor. This control packet
specifies the security group to which the source VM belongs
(Step 1). As soon as the control packet reaches the source
hypervisor, it will be checked by the destination hypervisor to
verify the policy for the group of the destination VM (Step 2).
If the policy allows the traffic, then the state of the traffic will
be created for this flow by the destination hypervisor.
However, if the traffic is not allowed or should be rate-limited,
the control packet will be sent back to the source hypervisor
to block or rate limit the flow or the VM (Step 3).

74

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Overview of CloudPolice operations [16].

Since hypervisors are generally trusted, network-

independent, close to VMs and fully software programmable,
CloudPolice seems to be effective to prevent denial of service
(DoS) attacks from malicious agents who send unauthorized
traffic to their targets. As a result, CloudPolice acts as stateful
firewalls and creates a state for each flow.

However, there are several major concerns for the
feasibility of CloudPolice. The first concern is the ability for
the hypervisor to act on per flow state, as the hypervisor
should be ready to act on every single flow. The second
concern is the ability to install new state with low enough
latencies for new traffic flows, as we should make sure that
the hypervisor is able to create a state for each new incoming
flow very fast. As a result, the hypervisor should be able to
create states for all new flows without latency (or at least with
acceptable latency) and also act on the states that already exist
in the buffer. Also, CloudPolice imposes overheads in the
system, as the destination hypervisor receives all the traffic
and decides to pass or drop the traffic based on the security
attributes of the target virtual machines.

IV. THE PROPOSED ARCHITECTURE

This section defines the main assumptions, as well as the
design and principles of the proposed architecture.

A. Main assumptions

The proposed architecture deals with the concept of Inter-
VM traffic, which is the transmission of any data packet to
and from one virtual machine. In other words, when the
hypervisor encounters inter-VM traffic, the traffic does not
pass through the physical switch or router, as the virtual
switch that is located at the hypervisor forwards the packet to
the destination VM. At this point, the following assumptions
need to be done:

• The virtual machines and physical servers are co-
located at the same cloud provider. If the entire
system is not part of the Cloud, then for sending
traffic to another Cloud, the traffic should pass
through a real router or firewall. In this case, the

policies that are implemented in the firewall should
be enforced.

• Each physical server has only one hypervisor. In this
case, the security attributes and access control lists of
all virtual machines that belong to a physical server
are located at one hypervisor. If we have multiple
hypervisors on a physical server, we should apply an
extra process for realizing which hypervisor contains
the access control lists of certain virtual machines.

• Each physical server is hosting at least one tenant, and
each tenant has at least one virtual machine. Since
each virtual machine should be registered as a tenant,
if a tenant is registered in the Cloud, a virtual machine
should be assigned to that tenant.

• All access control lists are defined and stored in the
hypervisor.

• In its startup process, a hypervisor sends an update
message to the other hypervisors that are located at
the same Cloud. This update message contains the IP
address and the ID of virtual machines that are located
at that hypervisor.

B. Architecture principles

The principles of the proposed architecture are based on
control packets, which is the core element for verifying
security permissions of virtual machines in multi-tenancy
cloud environments. In the following, we explain the main
elements of the proposed access control architecture, which is
illustrated in Figure 4:

• Source (Src.) VM is a virtual machine that is installed
on the source hypervisor, as the latter is located at the
physical source server. The source VM is then
sending traffic packets to a virtual machine in the
same Cloud called Dst. VM.

• Destination (Dst.) VM is installed at the destination
hypervisor, and this hypervisor is located at the
destination physical server.

• A data packet is a packet that the source VM wants to
send to the destination VM.

75

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Principles of the proposed architecture.

• A control packet is a special packet that is generated
by the source hypervisor. Its content represents the
specifications of the source and destination VMs.

• Incoming/outgoing traffic filter is a lightweight IDS
that is integrated in the hypervisor. It compares the
control packet with the access control lists of
destination VM.

• An access control list is a set of security permission
that defines the level of security of each virtual
machine.

C. Architecture design

The main goal of the proposed architecture is to block and
drop undesired packets as close as possible of the source
hypervisor. As illustrated in Figure 4, when the source VM
sends traffic to the destination VM, such traffic has to pass
through the source hypervisor. As soon as a data packet
reaches the hypervisor, it generates a control packet which
consists of the necessary information for access control
checking, such as the source IP address, the destination IP
address, the port numbers, as well as the protocol type. Such
a control packet has to be sent to the destination hypervisor
which checks its content and decides whether the traffic can
be delivered to the destination hypervisor. If the source VM is
permitted to send the so-called traffic to the destination VM,
the destination hypervisor adds a pass or drop value to the
control packet payload, and sends it back to the source
hypervisor. According to this value, the source hypervisor
threats the awaiting traffic.

As illustrated in Figure 5, the process starts when a VM
initiates to send some traffic to another VM. As soon as such
traffic is received by the source hypervisor, it checks the
packet and looks for the destination address that is located at
the inserted IP packet header. If the destination address
belongs to a virtual machine in the same cloud, we will have
two possibilities. The first case considers that the destination
address is located at the same physical server. In this case, the
architecture checks the access control policy of the destination
VM, and can decide whether to pass or drop the traffic. The
second case occurs when the destination address is located at

a different physical server. In this case, the source hypervisor
generates and sends the control packet to the destination
hypervisor. Then, it waits for the response control packet.

Start

Initiate traffic by a VM

Destination
Address located at the

same Hypervisor?

Generate control
packet

Check local access
control policies

Traffic reception by
Source Hypervisor

Destination
Address located at the same

Cloud?

Response
from Destination

Hypervisor?

Send control packet to
Destination Hypervisor

Drop the
packets

Access control
Policies match?

Access control
Policies match?

Forward traffic to
Switch or router

Yes No No

End

No

Yes

Forward traffic to
Destination VM

Yes

Yes

No

No

Yes

Figure 5. General mechanism flowchart.

Beside such possibilities, there may be an exception, when

the destination address does not belong to any VM in this
Cloud, which means that the source and destination addresses
belong to two devices that are not co-located at the same
Cloud. In this case, the architecture only has to pass the traffic
to the default gateway of the source hypervisor (router, switch
or firewall).

76

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The main part of the mechanism starts if the destination
address belongs to a VM that is located at a destination
hypervisor. In this case, the whole traffic should wait until the
source hypervisor generates and sends a control packet to the
destination hypervisor. Hence, the decision will be made
based on the response control packet. Figure 6 shows the main
tasks of the destination hypervisor when it receives the control
packet from the source hypervisor. More precisely, the
destination hypervisor selects one of the following actions:

• Insert a pass value to the control packet if the access
control policy of the destination VM matches, and
accept the traffic from the source VM.

• Insert a drop value to the control packet if the access
control policy of the destination VM does not match,
as the source VM is not authorized to send the traffic
to the destination VM.

• Insert a null value to the control packet if the
destination address is not found in the destination
hypervisor. This may happen if the control packet is
sent to the hypervisor by mistake, or if the VM
destination is migrated to another hypervisor, whereas
the source hypervisor is not informed about such
migration.

After inserting the proper value to the control packet, the

destination hypervisor returns the edited control packet to the
source hypervisor. The response control packet contains the
decision and the action to be taken for the traffic. In the case
of a drop value, the source hypervisor drops the traffic right
away, as such traffic will not even exit the hypervisor, which
means no wasted and unnecessary traffic in the network.
Consequently, the network bandwidth does not suffer from
extra and unwanted traffic. Finally, the pass value indicates
that the access control policy matches between the source and
destination, whereas the source VM and the traffic will pass
throughout the destination hypervisor.

V. A USE CASE SCENARIO

In this section, we analyze a use case scenario which
enables to tackle the problem of sending unauthorized traffic
to a VM in the context of multi-tenancy cloud environments.
This scenario is illustrated in Figure 7, where a public Cloud
is connected to the Internet, using a router and three physical
servers that are connected to a layer-2 switch. In this scenario,
the function of the router is to route the internal cloud traffic
to the Internet. Apparently, the router serves as a controller,
enabling the networked devices to talk to each other
efficiently.

In this scenario, there are 3 physical servers, as well as 10
virtual machines. These virtual machines belong to 4 tenants.
The multi-tenancy topology of this Cloud is as follows:

• Server 1: Tenant 1 (VM1, VM2) and Tenant 2 (VM3);

• Server 2: Tenant 1 (VM4, VM5) and Tenant 3 (VM6,
VM7);

• Server 3: Tenant 4 (VM8) and Tenant 3 (VM9,
VM10).

Figure 6. Destination hypervisor’s tasks after control packet reception.

It is important to mention that the process of controlling
the access is executed in the hypervisors. In this context, the
scenario has two phases: the first phase consists of generating
control packets, whereas in the second phase, the destination
hypervisor investigates the information and decides about the
destiny of the packet. More specifically, in phase one of the
scenario, the VM Source sends a traffic flow to the hypervisor
source, as illustrated in stage 1 of Figure 8. Then, the source
hypervisor generates a control packet. The content of this
control packet is based on the traffic to be sent from source
VM3 to destination VM8.

77

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. A use case scenario for multi-tenancy cloud access control.

Figure 8. Illustration of phase one of the scenario.

As illustrated in stage 2 of Figure 8, the source hypervisor

sends the control packet to the destination hypervisor in order
to check the access control policy of the VM destination.

In phase two, the control packet arrives at the destination
hypervisor which checks the access control lists (ACLs) to
verify if VM3 is authorized to send traffic to VM8. If the
ACLs related to VM8 match, the destination hypervisor sends
back a pass value within the control packet (called response

control packet) to the source hypervisor, as illustrated in stage
3 of Figure 9. The response control packet enables the
hypervisor source to decide what to do with the traffic that is
waiting in the source hypervisor. Hence, if the security
attributes of VM8 do not match the data packet, then the
destination hypervisor sends a drop signal to the source
hypervisor.

78

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Illustration of phase two of the scenario.

VI. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the
proposed access control architecture that we call CloudGuard.
More specifically, we will define the parameters that will
enable to mathematically express the latency and system
throughput. Then, we will present numerical results and
analysis.

A. Parameter definition

Let us first define the most important parameters that
characterize the proposed access control architecture:

Np: the number of packets transmitted from source VM to
destination VM;

Sp: the data size of each packet (bits);
Nf: the number of traffic flows that are being transmitted

from source VM to destination VM;
Sf: the size of traffic flow (bits);
T: the time taken by the traffic flow to be sent from source

VM to destination VM (seconds);
RTT: the time taken by a control packet to be sent from a

source hypervisor to a destination hypervisor, and
received back by the source hypervisor (seconds).
This parameter also refers to as Round Trip Time;

BW: The amount of data that can be carried from one point
to another point in a given period in a Gigabit
Ethernet (1 073 741 824 bits per second);

Pi: the probability of having intrusion traffic.

B. Packet latency

We may now evaluate the latency of the proposed access
control architecture and compare it with that of CloudPolice
[16] that we studied Section III. While other different
solutions may be found in the literature for comparison with
the proposed architecture, CloudPolice is a hypervisor-based
access control system that implements, like CloudGuard, the
access control only within the hypervisor. In other words, both

architectures are designed to enforce the access control list in
the hypervisor.

However, a major difference between such architectures is
that with CloudGuard, the source hypervisor waits for the
control packet response from the destination hypervisor. In
this case, if the security policies of source VM and destination
VM match, the source hypervisor passes the traffic toward the
destination hypervisor. As a result, the destination hypervisor
passes the traffic to destination VM. On the other hand,
according to CloudPolice, the source hypervisor does not wait
for the control packet response, as it sends the whole traffic to
the destination hypervisor. When the traffic reaches the
destination hypervisor, the security policies will be checked
between the traffic and destination VM. In this case, if the
traffic is authorized, it will continue its journey to destination
VM. However, if the traffic does not match with the security
attributes of destination VM, it will be ignored and dropped in
the destination hypervisor.

From the differences between CloudGuard and
CloudPolice, we can generate two expressions for evaluating
the latency related to each packet: one for the latency obtained
with CloudGuard, and the other one for the latency obtained
with CloudPolice. With CloudGuard, the control packet is
generated by the source hypervisor, whereas the control
packet response is generated by the destination hypervisor.
When one VM wants to communicate with another VM in the
same cloud environment, the source VM first sends the traffic
to the source hypervisor. Then, the source hypervisor checks
the destination address, and finds out the destination
hypervisor on which the destination VM is hosted on.

In the next step, the source hypervisor generates a control
packet, and sends such control packet to the destination
hypervisor. Then, it keeps the traffic, and does not let the
traffic to be passed to the destination hypervisor, unless it
receives back the control packet response from the destination
hypervisor. In this stage, the responsibility of the destination
hypervisor is to check the traffic security attributes with the
security policies of destination VM. If the traffic is authorized,

79

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the control packet response asks the source hypervisor to pass
the traffic.

As a result, for each traffic flow, one control packet needs
to be generated with CloudGuard. Based on that, to evaluate
the average packet latency, we need to multiply the number of
traffic flows Nf with round trip time RTT. More specifically,
to derive an expression for the latency, RTT is first added to
the time it takes to transmit one traffic flow, while only
considering non intrusion traffic. Then, we add this value to
the round trip time of the control packet for intrusion traffic.
Such process is repeated for each traffic flow in order to obtain
the packet latency. Therefore, the average packet latency
obtained with CloudGuard is expressed as follows:

𝐷𝐶𝐺 = (𝑅𝑇𝑇 +
𝑆𝑓

𝐵𝑊
) (1 − 𝑃𝑖) + 𝑅𝑇𝑇 × 𝑁𝑓 × 𝑃𝑖 (1)

where RTT, Sf, BW, Pi and Nf are defined in subsection A.
Let us now evaluate the average packet latency while

considering CloudPolice. With such access control
architecture, when a VM needs to communicate with another
VM in the same cloud environment, the source VM sends the
traffic to the source hypervisor. The source hypervisor checks
the destination VM address and passes the traffic to the proper
destination hypervisor where destination VM is hosted. Then,
the destination hypervisor checks the traffic security attributes
with the security policies of the destination VM. If the traffic
is not authorized, the destination hypervisor generates a
control packet, and sends it to the source hypervisor in order
to inform the source hypervisor to block the next stream of the
same traffic, or to limit the bandwidth that must be allocated
to this traffic. Therefore, CloudPolice generates control
packets only for intrusion traffic flows. As a result, the number
of control packets that are generated depends on the
probability of intrusion traffic.

More specifically, for evaluating the latency obtained with
CloudPolice, we first need to multiply the number of intrusion
traffic flows with RTT. Then, we need to evaluate the time it
takes for intrusion traffic to pass to the network since the
amount of intrusion traffic may technically consume the
available network bandwidth. Based on that, we first calculate
the round trip time RTT of all control packets. Then, RTT is
added to the time that it takes to pass the intrusion traffic from
source to destination. As a result, the average packet latency
obtained with CloudPolice is expressed as follows:

𝐷𝐶𝑃 = (𝑅𝑇𝑇 × 𝑃𝑖 +
𝑆𝑓

𝐵𝑊
 (1 − 𝑃𝑖)) × 𝑁𝑓 (2)

where RTT, Pi, Sf, BW and Nf are defined in subsection A.

C. System throughput

In order to evaluate the proposed access control
architecture, the system throughput is also taken into
consideration. In this context, we develop two expressions for
the system throughput: one expression for the system
throughput with CloudGuard and another one for the system

throughput with CloudPolice. For evaluating the first
expression, we consider that CloudGuard generates a control
packet for each traffic flow before passing such traffic to the
destination hypervisor. The traffic remains in the source
hypervisor until the source hypervisor receives back the
control packet response. In this case, only authorized traffic
flows can pass through the network.

As a result, for evaluating the system throughput with
CloudGuard, we first need to divide the number of traffic
flows by the average latency. Then, we multiply the obtained
results with the probability of not having intrusive traffic. The
system throughput with CloudGuard is expressed as follows:

𝑅𝐶𝐺 =
𝑆𝑓𝑁𝑓

𝐷𝐶𝐺

(1 − 𝑃𝑖) (3)

where Sf, Nf, and Pi are defined in subsection A, whereas DCG
is given by (1).

Moreover, with CloudPolice, no control packet is sent
before passing traffic packets to the destination hypervisor. In
other words, all traffic flows pass from the source hypervisor
to the destination hypervisor. As a result, such traffic flows
include unwanted and unauthorized traffic. In this context,
when evaluating the system throughput with CloudPolice, we
should deduct from such traffic flows the amount of
unauthorized traffic, since such unauthorized traffic that is
generated by an intruder may occupy the available network
bandwidth. Then, the number of traffic flows is divided by the
average latency obtained in (2), as we multiply such a result
with the amount of intrusion traffic. The obtained expression
is valid for the situations where the probability of intrusion
traffic is between 0 and 0.5. Further, because of the nature of
CloudPolice, we consider the system throughput equal to zero
if the probability of intrusion is between 0.5 and 1.

As a result, the system throughput with CloudPolice is
expressed as follows:

𝑅𝐶𝑃 = {

𝑆𝑓𝑁𝑓

𝐷𝐶𝑃

(1 − 2𝑃𝑖), 𝑖𝑓 0 ≤ 𝑃𝑖 ≤ 0.5

0, 𝑖𝑓 0.5 < 𝑃𝑖 ≤ 1

 (4)

where Sf, Nf, and Pi are defined in subsection A, whereas DCP
is given by (2).

D. Numerical results and analysis

For numerical results, we will compare the system
throughput obtained with CloudGuard with that obtained with
CloudPolice. For such comparison, MATLAB Release 2021b
(R2021b) [17] will be used as a fundamental research tool that
can mathematically computes the system throughput for both
architectures according to several scenarios. In this context, a
number of parameters must be calculated.

First, it is important to evaluate the size of traffic flows Sf.
Based on [18], Sf may be expressed as follows:

Sf = Sp ✕ Np (5)

80

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. System throughput comparison (CloudPolice vs CloudGuard).

where Sp represents the packet size, and Np represents the
number of packets transmitted from source VM to destination
VM. We then consider packet sizes of 128 bytes (i.e., 1 024
bits), and we assume that each traffic flow contains 1 000
packets. As a result, the flow size considered for numerical
results will be set to 1 024 000 bits.

Another important parameter for numerical results is the
number of traffic flows Nf that are sent from source VM to
destination VM. In order to verify how CloudGuard and
CloudPolice performs in different situations, we consider Nf
as random numbers from 1 000 to 10 000, and we choose the
same Nf value for system throughput comparison.

Moreover, in [16], RTT is set to 1.5 ms with CloudPolice.
Since the process of generating control packets with
CloudPolice is similar to that of CloudGuard, we assume that
RTT is the same for both access architectures, i.e., 1.5 ms.
Further, as intrusion traffic is unpredictable in a multi-tenancy
cloud network, the probability of intrusion traffic Pi will be
chosen between 0 and 1 for numerical results.

Figure 10 illustrates the system throughput comparison
(CloudPolice vs CloudGuard) in function of Pi. We realize
that, if the probability of intrusion is low (Pi < 0.3215),
CloudPolice offers better system throughput than
CloudGuard. Moreover, for Pi = 0.3215, both architectures
have the same throughput, whereas when the amount of
intrusion traffic is higher in the cloud system (Pi > 0.3215),
results show that CloudGuard offers better system throughput
than CloudPolice.

Also, it is important to mention that a lot of intrusion
traffic (Pi > 0. 5) completely paralyzes the cloud system with
CloudPolice, since the system is unable to offer any
throughput for Pi > 0. 5. Such results prove that CloudGuard

is more appropriate than CloudPolice in high-risk multi-
tenancy cloud computing environments. In other words,
CloudGuard is an effective security architecture which is
suitable for high-risk environments. A high-risk multi-tenancy
cloud computing environment refers to a cloud environment
in which the system is the target of many attacks, as lots of
intrusion attempts and unwanted traffic are being sent to the
VMs. Financial institutions and game centers are examples of
networks that are always targeted by attackers and malicious
agents. On the other hand, one can hardly imagine a network
environment with zero intrusion traffic, which means that Pi
= 0.

VII. CONCLUSION

The access control architecture (called CloudGuard)
proposed in this paper for multi-tenancy cloud environments
satisfies a number of requirements, such as scalability and
security. This architecture is scalable in the sense that, if the
number of VMs grows, we only need to implement this
architecture in the hypervisor of each physical server without
any extra changes in the system. Besides that, the architecture
enables to maintain the security of information in the cloud
system by controlling the traffic sent from one hypervisor to
another hypervisor and enforcing the security policies in the
hypervisor.

Using MATLAB R2021b, we built a mathematical model
in order to evaluate CloudGuard performance. More
specifically, we compared the system throughput obtained
with CloudGuard with that obtained with CloudPolice.
Numerical results prove that CloudGuard obviously offers
better system throughput in critical or high-risk multi-tenancy
cloud network environments, where the amount of intrusion
traffic is high. As a result, CloudGuard leads to better

81

International Journal on Advances in Security, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/security/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance by avoiding unnecessary traffic and dedicating
the cloud resources to necessary traffic.

Future works will focus on intra-cloud traffic. In real
world cloud environment, the traffic may pass through lots of
intermediate devices, such as switches, routers and firewalls.
In this context, when a VM needs to send traffic to another
VM that is located at another Cloud, we need more complex
access control updates between hypervisors that are located at
different cloud environments. Hence, in the context of intra-
cloud traffic, the process of propagation of security attributes
and updates between hypervisors should be taken into
consideration. Future works will also focus on implementing
a prototype of the proposed architecture on a real cloud
environment.

REFERENCES

[1] R. Beaubrun and A. Quintero, “A Secure Access Control
Architecture for Multi-Tenancy Cloud Environments,”
CLOUD COMPUTING 2021: The Twelfth International
Conference on Cloud Computing, GRIDs, and Virtualization,
18-22 Apr. 2021, pp. 48-53.

[2] K. Hashizume, D. G. Rosado, E. Fernández-Medina, and E. B.
Fernandez, "An analysis of security issues for cloud
computing," Journal of Internet Services and Applications 4:5,
vol. 4, pp. 5-18, 2013.

[3] M. Auxilia and K. Raja, “Dynamic Access Control Model for
Cloud Computing,” Sixth International Conference on
Advanced Computing (lCoAC), 17-19 Dec. 2014, pp. 47-56.

[4] Z. Minqi, Z. Rong, X. Wei, Q. Weining, and Z. Aoying,
"Security and Privacy in Cloud Computing: A Survey," in 6th
International Conference on Semantics Knowledge and Grid
(SKG), Beijing, 1-3 Nov. 2010, pp. 105-112.

[5] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, "A
framework for native multitenancy application development
and management," in 9th International Conference on E-
Commerce Technology/4th International Conference on
Enterprise Computing, Ecommerce and E-Services, Tokyo, 23-
26 July 2007, pp. 551-558.

[6] G. Kappes, A. Hatzieleftheriou, and S. V. Anastasiadis.,
“Multitenant Access Control for Cloud-Aware Distributed
Filesystems,” IEEE Transactions on Dependable and Secure
Computing, Vol. 16, No. 6, pp. 1070-1085, 2019.

[7] S. Harris, CISSP All-in-One Exam Guide, Sixth ed. New York:
McGraw-Hill, 2013.

[8] K. Albulayhi, A. Abuhussein, F. Alsubaei, and F.T. Sheldon,
“Fine-Grained Access Control in the Era of Cloud Computing:
An Analytical Review,” 10th Annual Computing and
Communication Workshop and Conference (CCWC), 6-8 Jan.
2020, pp. 748–755.

[9] K. Benzidane, S. Khoudali, and A. Sekkaki, "Autonomous
Agent-based Inspection for inter-VM Traffic in a Cloud
Environment," in 7th International Conference for Internet
Technology and Secured Transactions (ICITST-2012),
London, 10-12 December 2012, pp. 656-661.

[10] S. J. De and S. Ruj, “Efficient Decentralized Attribute Based
Access Control for Mobile Clouds,” IEEE Transactions on
Cloud Computing, Vol. 8, No. 1, pp. 124-137, 2020.

[11] A. Jasti, P. Shah, R. Nagaraj, and R. Pendse, "Security in Multi-
Tenancy Cloud," in International Carnahan Conference on
Security Technology (ICCST), San Jose, CA, 5-8 October,
2010, pp. 35-41.

[12] M. V. Thomas and K. C. Sekaran, "An Access Control Model
for Cloud Computing Environments," in 2nd International
Conference on Advanced Computing, Networking and
Security (ADCONS), Mangalore, 15-17 Dec 2013, pp. 226-
231.

[13] W. Wenhui, H. Jing, S. Meina, and W. Xiaohui, "The design of
a trust and role based access control model in cloud
computing," in 6th International Conference on Pervasive
Computing and Applications (ICPCA), Port Elizabeth, 26-28
Oct. 2011, pp. 330-334.

[14] X.-Y. Li, Y. Shi, Y. Guo, and W. Ma, "Multi-Tenancy Based
Access Control in Cloud," in International Conference on
Computational Intelligence and Software Engineering (CiSE),
Wuhan, 10–12 Dec. 2010, pp. 1-4.

[15] S.-J. Yang, P.-C. Lai, and J. Lin, "Design Role-Based Multi-
tenancy Access Control Scheme for Cloud Services," in
International Symposium on Biometrics and Security
Technologies (ISBAST), Chengdu, 2–5 Jul 2013, pp. 273-279.

[16] L. Popa, M. Yu, S. Y. Ko, S. Ratnasamy, and I. Stoica,
"CloudPolice: Taking Access Control out of the Network," in
ACM Workshop on Hot Topics in Networks. HotNets,
Monterey, CA, USA, 20-21 Oct. 2010, pp. 1-6.

[17] Available from https://www.mathworks.com/

[18] Internet Engineering Task Force (IETF), “IPv6 Flow Label
Specification”, in Request for Comments (RFC): 6437, ISSN:
2070-1721, 2011.

