

Simulation and Analysis of Tracing Damage Paths and Repairing Objects in
Critical Infrastructure Systems

Justin Burns, Brajendra Panda, and Thanh Bui
Computer Science and Computer Engineering Department

University of Arkansas
Fayetteville, AR 72701 USA

email: {jdb083, bpanda, tbui}@uark.edu

Abstract—Critical infrastructure systems have recently become
more vulnerable to attacks on their data systems through
internet connectivity. If an attacker is successful in breaching a
system’s defenses, it is imperative that operations are restored
to the system as quickly as possible. This research focuses on
damage assessment and recovery following an attack. We
review work done in both database protection and critical
infrastructure protection and establish our own definitions of
how damage affects the relationships between data and
software. Then, we propose a model using a graph construction
to show the cascading effects within a system after an attack. We
also present an algorithm that uses our graph to compute an
optimal recovery plan that prioritizes the most important
damaged components first so that the vital modules of the
system become functional as soon as possible. This allows for the
most critical operations of a system to resume while recovery for
less important components is still being performed. Lastly, we
show results from simulations using our algorithm on data
graphs with various parameters.

Keywords-critical infrastructure; damage assessment;
recovery.

I. INTRODUCTION
Critical infrastructure systems are those that are

considered extremely critical to the functioning of a
government or a country. As described in [2], critical
infrastructures are like the vital organs of a body that need to
perform their own roles for the human body to function
efficiently and painlessly. The US Department of Homeland
Security [3] declares that such systems are “so vital to the
United States that their incapacity or destruction would have
a debilitating impact on our physical or economic security or
public health or safety.” Therefore, the protection and smooth
functioning of our nation’s critical infrastructures are
indispensable and cannot be ignored.

These systems are becoming prime targets of attackers –
primarily state actors and organized crime – and a major
attack on one can cripple the economy of the victim nation.
These systems are also more likely to be connected to the
internet now to provide benefits like cost reduction (where
large systems can be remotely managed over the public
network), increased capability (by providing sufficient
computing resources for infrastructure hardware with less
capability power), and improved efficiency and transaction
speed. This connectivity unfortunately makes it easier for
attackers to hack into these systems. Consider the New York
Times report about the attack on Colonial Pipeline [4]. While

the details of the attack are not yet disclosed, a group of
cybercriminals was able to compromise data systems using
the internet, which resulted in Colonial Pipeline shutting
down their pipeline. This outage affected mass transit and
other industries across the entire U.S. East Coast and exposed
a lack of preparation for such a crisis. This illustrates how an
external system can have a relationship with a critical
infrastructure system and how such relationships can be
exploited to carry out an attack.

It is clear from past incidents and recent reports [5]-[8],
(to cite just a few) that attacks on critical infrastructures are
occurring frequently, which indicates that prevention
mechanisms are not enough to stop them. Thus, it is of
utmost importance to aggressively prepare for post-attack
activities, which include damage assessment and recovery
mechanisms that are critical to making the affected systems
available at full functioning mode as soon as possible. This
research aims at meeting this important goal.

We propose a framework that models damage spread
within a set of data objects based on object dependencies and
prioritizes making repairs to the most critical objects first.
The framework is based on some of the models explored in
critical infrastructure protection and uses a version of
previously proposed repair methods that is modified to focus
on meeting specific goals when determining the order in
which repairs are made.

The rest of the paper is an extension of the work in [1]
and is organized as follows. Section 2 offers some work
performed in this area. Section 3 defines the problem that we
aim to build our model for. In section 4, the types of
relationships that exist in data systems are explained. We
provide details on our model in section 5, which includes
three subsections to explain our definitions, model
description, and algorithm. We then show experiments using
our model and present the results in section 6. Section 7
concludes our work.

II. RELATED WORKS
This paper aims to examine methods and frameworks

used for database and critical infrastructure protection and
apply them towards protecting a set of data objects. This
section describes some of the publications that are relevant to
our proposed framework. Various types of critical
infrastructure objects are described in [17]. The focus of our
work falls under network and network nodes, which are
defined as a “structure with one dominating dimension”, and

20

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

junctions within the network, respectively. Furthermore, [18]
establishes the concept of resilience, a cyclical process by
which a system undergoes recovery, adaptation, and
prevention between attacks. Turning this concept into a
concrete value that can be used in risk assessment has been a
point of interest in protecting systems [20]. Efforts have also
been made to quantify vulnerability as a measurement that
can be used to determine how frequently or severely a system
can be at risk [19]. One of the major works on damage
assessment and recovery within a database uses data
dependency to find data affected by an attack to optimize
recovery [9]. While this method relies on the direct
relationships between data items, an alternate model to
recover data from an attack instead uses the transaction log
for assessment [10].

Kotzanikolaou et al. describe a model in [11] that assists
in risk assessment for possible scenarios that can result in
cascading failures within a CI system. For critical
infrastructures with data-rich operations, the use of Cyber-
Physical Systems can cause new vulnerabilities as described
in [12]. Their model analyzes threats that can appear due to
these vulnerabilities and analyzes the potential cascading
damage they can cause. System dynamics modeling can also
be used to analyze disruptive events to characterize such
disruptions to critical infrastructure by risk assessment and
various impact factors as shown in [13].

Rehak et al. [14] model an infrastructure system as
elements and linkages with different types of relationships
establishing dependencies and interdependencies. They note
that these elements can have varying criticality, causing some
elements to cascade more damage into the system than others
in the event of a failure. This work is important because by
establishing criticality, they quantify damage within a
system. We use this concept of criticality later in this paper
to direct the optimal repair path of data objects.

We also consider models that assist with recovery during
an attack. In [15], an algorithm is proposed to restore
damaged element paths by recursively breaking down
demand flows into simpler problems. They use a centrality
metric to rank damaged nodes and determine which ones
should be repaired first and expand on the use of centrality to
make repair decisions in further work [16]. We use the
concept of centrality to rank data objects in a case where two
or more are equally critical. In our algorithm, we also utilize
their method of simplifying damage paths to find the fastest
route to restoring intermediate data objects. However, the
novelty of our approach is twofold: we must repair all
components within the system because data objects cannot
have computations rerouted, unlike the network components
in the work we have reviewed, and we aim to restore the most
important components first so that their functions can be
restored while repairs to the system are still ongoing.

III. PROBLEM DEFINITIONS
On the occasion when an adversary information attack

succeeds, the victim must have the capability to degrade

gracefully and recover damaged data and/or services in real-
time if it is to survive. It is necessary to immediately carry
out damage assessment and recovery process in order to bring
the systems to working states. Otherwise, the damage would
spread to other unaffected systems that are interconnected.
This happens when a valid user or an unaffected system
module reads a damaged object during its computation and
updates another object based on the compromised value,
causing the latter damaged as well. As time goes on, more
and more objects become affected in this manner causing the
spread of damage to fan-out through the system quickly.

State-of-the-art assessment and recovery currently exist
in types of critical infrastructure other than data systems. A
review of threats that influence how critical infrastructures
are protected is done in [22]. Among other threats, important
ones that affect this research are cyber-attacks and cascading
effects. A data system is especially vulnerable to the
cascading effects of a cyber-attack, because of the nature of
constant updates being made between different systems using
data. In [21], a dynamic inoperability input-output model is
introduced to determine how damage in one part of a system,
such as power plants, water collectors, and transmitters can
ultimately cascade down to end-users of the system. This
method, as well as other similar methods in [23] and [24],
primarily focus on physical threats to critical infrastructure.
This research focuses on applying the same kind of resilience
to data operations of critical infrastructures to protect them
from digital threats.

For damage assessment and recovery purposes
information about all processes that have been executed must
be stored in the log (more on this presented later). This will
help in determining the relationships among the processes,
thus helping in establishing the damage trail. Moreover,
during recovery, the operations of processes that have spread
the damage have to be undone and then redone in order to
produce the correct states of affected objects. The problems
with existing systems are: (1) They do not store process
execution information in the log, and they purge the log
periodically, (2) their recovery mechanisms are not designed
to undo the effects of executed processes, (3) the size of the
log, as it must not be purged, will make it almost impossible
to continue the recovery process in real-time, and (4) during
the damage assessment and recovery process, the system
remains unavailable to users. This delay induces a denial-of-
service attack, which is highly undesirable in time-critical
applications that the critical infrastructures are designed to
provide. Due to the massive amount of data in the log that
needs to be processed, the problem becomes even worse.

The goal of this research is to develop fast, accurate, and
efficient damage assessment and recovery techniques so that
critical information systems not only survive the attacks
gracefully but will continue to operate providing as many
vital services and functions as possible even before the
system is fully recovered. In the next section, we explain how
the relationships between different parts of critical systems
can affect the spread of damage.

21

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. TYPES OF DAMAGE DEPENDENCIES

Attacks can affect not only data systems, but also
software that produces data. This happens when the software
is maliciously changed to perform unintended actions. In this
section, we discuss possible attack scenarios involving
damaged data objects and software and how they can cascade
into other systems.

A. Data to Data Damage
Data objects are frequently dependent on other data

objects for computational updates. This makes their systems
vulnerable to malicious attacks and cascading damage. Once
a data object uses a damaged object to make a change, it
becomes damaged too. This can happen to as many objects
as the initially attacked objects have that are dependent on it.
Figure 1 shows an example of cascading damage between
data objects. If node C is targeted for an attack, then node E
will become damaged due to its dependency on C. Then, node
F and node G are also damaged because they are dependent
on E.

Figure 1: Cascading Damage from a Data Object

B. Software to Software Damage

If damaged software is used to influence computing done
by another software, then the output of that software is also
considered damaged. An example of a dependency between
software is the use of libraries for applications. A damaged
procedure within a library will result in damaged output for
any software that calls that procedure. One difficulty with
recovering from cascading damage from software to software
is that it may be difficult to identify which cross-software
calls used damaged procedures for computation. Consider a
program P that uses two library functions A and B. A is an
undamaged function and provides an undamaged output,
while B is damaged and results in a damaged output. Even
though we know the library is damaged, it is difficult to find
which functions within the library are specifically damaged
due to the library already being compiled into binary format.

Therefore, we do not know if A or B is damaged, and after the
library has been recovered, we must execute P entirely to
ensure that we get the correct output, which causes recovery
time to increase. After recovery, the resulting output from A
is unchanged, while the output from B is corrected to the
desired result. An example of software-to-software damage
is shown in Figure 2. Even though the data is correct, a
maliciously changed library can result in the software
changing the output data.

Figure 2: Cascading Damage from Software

C. Software to Data Damage

Any data changed by damaged software is also
considered damaged. This is the simplest scenario involving
damaged software because it is functionally the same as
cascading damage between two data objects. After the
software is repaired, any data that was damaged by the
software must be computed again to complete recovery.

D. Data to Software Damage

Software that uses damaged data will not become
damaged as a result. However, its output data will be
considered damaged. This is because once a program is
compiled, it cannot be changed by its input data. Therefore,
if a software uses incorrect data to produce a damaged output,
it is considered data-to-data damage instead. In Figure 3, a
damaged node A is used as input for computation in a
software. While the software itself is not damaged, its output
nodes D and E become damaged.

Figure 3: Cascading Damage from Data through Software

In the next section, we explain how our model can
identify and recover damage optimally in detail. While it is

22

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

important to consider the possibility of damaged software
affecting a system, our model focuses on the spread of
damage within data objects. This is because damage can
spread much faster through data objects than in software, and
usually does so more frequently. Furthermore, the software
can also be quickly fixed, while data objects are more
numerous and may need many computations to get the
desired output after repairs.

V. THE MODEL
In this section, we describe our model in detail. The first

subsection defines important graphs and metrics that we use
for our model. In the next subsection, we describe how the
model is built and is used to determine an optimal recovery
plan. Finally, we describe the algorithm we use to implement
our model.

A. Definitions
We first define the concept of information flow in a

system. This also defines dependencies among various
objects in the system and is used in our graph-based model.
Definition 1: Given two objects Oi and Oj in a system, if the
value of Oj is calculated using the value of Oi, we say that
there is information flow from Oi to Oj. Thus, Oj is said to be
dependent on Oi and is denoted as Oi → Oj.

The above definition helps in determining the spread of
damage in the system. That is, if an object is damaged, then
all its dependent objects will be considered damaged. During
recovery, the parent (pre-cursor) object must be recovered
before any of its dependent objects can be recovered.

Next, we define a graph containing the set of objects and
all possible paths among them. We call it Possible Paths
graph and it spans the entire system of objects and all
dependency paths among them. An example of this graph is
shown in Figure 4(a).

Figure 4a: The Possible Paths Graph (PPG)

Definition 2: Consider a system containing the set of objects
O. The Possible Paths Graph (PPG) is built by having a
node Ni for each object in O. There exists an edge Eij from
Ni to Nj in the PPG if there is a possibility that information
may flow from Ni to Nj, that is, Nj may be modified based on
the value of Ni.

The purpose of building a PPG is that it will help during
the damage assessment preparation phase. By assuming the
point of attack one can identify the set of items that may be

affected consequently. Thus, security officers can be
prepared for different types of eventualities.

The second set of objects contains the actual paths that
were used to make changes in the system within a specified
period, which for the purposes of the third graph that will be
defined, is usually the time passed since an object has been
damaged. This set is represented by the Active Paths Graph
(APG), and all objects and dependencies in this set exist in
the PPG. This graph will help in determining the damage flow
in case of an attack. Given an initial attack point (an object),
one can determine which objects in the system may be
affected by the attack and which ones will not be. Therefore,
the ability of the system to carry out its intended functions
can be calculated. That is, during the recovery process, the
set of damaged objects will be made unavailable while the
rest can be made accessible. Knowing which objects will
remain unaffected, one will be able to identify what services
the system will be able to offer while the recovery continues.
Definition 3: The Active Paths Graph (APG) contains nodes
N and edges E such that for every Ni є N and every Eij є E,
both Ni and Eij are also present in PPG, and Eij illustrates an
actual information flow; that is Nj was updated based on the
value of Ni.

Figure 4b: The Active Paths Graph (APG)

Figure 4(b) provides an example of an Active Paths
Graph and as can be seen, it is a sub-graph of Figure 4(a). As
discussed before, once an initial attack point is determined,
the APG will help in accurately determining the damage flow
and the set of objects affected by the attack. As discussed
before, as time goes on, more and more objects will be
affected as new objects will be updated based on the value of
an affected object. Thus, to stop the spread of damage, all
affected objects must be quickly identified and taken offline
as soon as possible. This can be achieved by doing a flow
assessment using the APG. This leads to the concept of
actual damage spread path showing exactly which objects
were affected by an attack. If a system is damaged, we
represent the spread of damage as the third set of objects, the
Damage Spread Graph (DSG). The set of objects and
dependencies in this graph must exist within the APG, as
damage spread occurs when objects make changes based on
their dependencies. Like how the APG is a subsection of the
PPG, the DSG is a subsection of the APG. Figure 4(c) is an
example of what a damage path may look like. It is important
to note that over time, a damaged object will always cascade

23

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

its damage down to dependent nodes included in the APG.
Definition 4 formally defines the DSG.
Definition 4: A Damage Spread Graph (DSG) contains
nodes N and edges E such that for every Ni є N and every Eij
є E, both Ni and Eij are also present in APG and every node
in N is damaged through an attack on the system. Moreover,
an edge Eij depicts that Ni was damaged first and then Nj was
damaged through the flow of information from Ni to Nj.

Figure 4c: The Damage Spread Graph (DSG)

Note that the edges between two objects may be
bidirectional or recursive. For example, if an object Oj can
have a dependency on object Oj and vice versa, then there
will be a bidirectional edge between Oj and Oj. Similarly, if
an object can be dependent on itself, it will result in a
recursive graph. To clarify, let us consider an object “salary”.
When an employee receives an increment that is based on a
percentage of the current salary of the employee, it causes the
new salary to be dependent on the old salary and is depicted
by using an edge from salary to salary itself. However, it
must be noted that, for simplicity, we use neither bidirectional
nor recursive edges in APG or DSG. Rather, when an object
is modified, we note that as a new version of the object, thus
creating a new node for the object with the version number.

To minimize the time needed to restore the most
important objects within a system of object dependencies, we
also define criteria used to determine the order in which
repairs are made:
Definition 5: The criticality of a node N is its predetermined
level of importance to the system’s functions. This must be
predetermined for the flexibility of the model to fit various
systems and align the model with the goals of each specific
system. For example, one system may need to prioritize
certain components that other systems do not. The criticality
of a component can be measured by various characteristics
such as the intensity or scope of an impact caused by its
failure as described in [14].

We assign a positive whole number to each node N to
represent criticality. A lower assigned value indicates higher
criticality. For example, a node Ni with a criticality of 2 would
be considered more important than a node Nj with a criticality
of 4. It is important to note that criticality values are not
unique, meaning multiple nodes can have the same criticality
value. When that happens, we use the following metric in the
next definition to serve as a first “tiebreaker”.
Definition 6: Objects that have more damaged dependencies
take longer to repair. Therefore, the repair time of a node N

is defined as how many inward-flowing edges Ei it is
receiving damage from.

When two or more objects are assigned the same
importance, we choose to first repair the one that has a lower
repair time. For example, consider two nodes Ni and Nj that
are equally critical. If Ni needs 5 other nodes repaired to
repair it, and Nj needs 3 other nodes to repair it, then we will
repair Nj first, because its operation can be restored more
quickly than that of Ni.
Definition 7: The centrality of a node N is the number of
outward-flowing edges Eo it has.

We use the above metric to decide the next object to
repair when two or more are equal in both criticality and
repair time. An object with a higher number of Eo will have
higher centrality. Figure 5a and Figure 5b show two
subsections of a DSG that highlights centrality. As shown in
Figure 5a, N4 has three nodes that are dependent on it: N1, N2,
and N3, while as Figure 5b depicts, N6 only has a single node
N5 dependent on it. Assume that the repair algorithm has
repaired the parent node(s) of N4 and that of N6. To clarify
the situation, N4 and N6 need not have the same parents; it is
just that both are in line to be repaired next. In this scenario,
repairing N4 before N6 reduces the repair time for the three
dependent nodes of N4 instead of only one of N6, which can
make future repairs be performed faster. Therefore, N4 is
considered to have a higher centrality than N6.

Figure 5a: A parent node with high centrality

Figure 5b: A parent node with low centrality

Definition 8: The relationships between all nodes n in a data
system can be expressed by an adjacency matrix Α, where
each element represents an edge ei,j between nodes ni and nj
such that the parent node is given by the element’s row and
the child node is given by the element’s column. The value
of each element is binary – if an edge going from one node to

24

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

another exists, then the value of its respective element is 1,
otherwise, it is 0. Therefore, for each element 𝑎𝑎𝑖𝑖,𝑗𝑗 in Α:

 𝑎𝑎𝑖𝑖,𝑗𝑗 = �1 if (𝑖𝑖, 𝑗𝑗) ∈ 𝑁𝑁𝑖𝑖
0 if (𝑖𝑖, 𝑗𝑗) ∉ 𝑁𝑁𝑖𝑖

. (1)

Figure 6 depicts the PPG shown in Figure 4a. as an
adjacency matrix. Each cell with a value of 1 is an existing
edge on the graph. For example, node D has 3 parent nodes
and 2 child nodes. The edges coming from nodes A, B, and
C are highlighted on D’s row. Likewise, its outgoing edges
toward nodes F and G are highlighted on D’s column. All
node relationships are translated this way, so as there are 8
edges in the graph, there is also 8 highlighted elements in
Figure 6.

Since an adjacency matrix can be used to represent the
relationships between data nodes in a uniform manner, it is
used for our implementation of a damage assessment
algorithm, which will be covered in the next two subsections.

Figure 6: An adjacency matrix of Figure 4a.

B. Model Description
 The model uses the three graphs defined in the previous
section to construct a representation of a given system and its
sustained damage from the time of the initial attack. The PPG
is a preprocessed map of all components and dependency
paths within a system. We assume that we know how much
time has passed since the initial attack and build the APG by
including components and dependency paths that were used
in a transaction log in that period. By knowing the component
where the initial attack occurred, we build the DSG by tracing
the damage through the transaction log. For damage to spread
from one component to the next, it must follow two criteria:
1) there is a damage node Ni that has an edge Eij flowing from
it to node Nj and 2) Eij is used for a transaction while Ni is
damaged. For the DSG to exist, the initial attack must occur
within the APG, otherwise there is no cascading damage.

The goal of the model is to find the optimal sequence of
repairs to restore the most important operations of a system
as quickly as possible. We use the metrics defined in the
previous section to decide which components should be
repaired first. The first metric is criticality – the most critical
components must be restored first to resume important
operations. However, these components may also be
dependent on other components that are damaged. These

components must be repaired first before the base component
can be repaired. At this point, the same problem is applied to
the dependency components, and the most critical one is
chosen first. If there is a tie, then components with a lower
repair time are picked first. For example, a component that
has two damaged parent components will be prioritized over
a component with three or more damaged parent components
if both components are equally critical.

To clarify, let us consider the graph presented in Figure
7. As shown in the figure, nodes N1, N2, and N3 are dependent
on N4. Assume that the damage assessment method identified
N4 as damaged; thus, nodes N1, N2, and N3 are also identified
as damaged. During the recovery process, N4 was recovered
before the other three nodes. However, since it has three
dependents all of which are damaged, the question is, which
one should be repaired first. As our goal is to have the vital
functions of the system to be made available before the other
operations, our algorithm would choose the node among N1,
N2, and N3 having the most criticality.

Figure 7: Recovery sequence decision

Repair time is not affected by how the parent
components are ordered. For example, consider two
scenarios with nodes N1, N2, N3, and N4. In the first scenario,
node N1 is dependent on nodes N2, N3, and N4. In the second
scenario, node N1 is dependent on node N2, node N2 is
dependent on node N3, and node N3 is dependent on node N4.
In both scenarios, nodes N4, N3, and N2 must all be repaired
before node N1 can be repaired, so N1 will always have the
same repair time. In short, repair time can simply be
considered as the number of upstream components.
Similarly, the third metric, centrality, can be considered as
the number of downstream components. This is the third
metric used to determine repair order in case multiple
components are equal in criticality and repair time. This
metric is not prioritized over the first two because it does not
directly contribute toward the stated goals of our model, but
it can optimize future repairs by lowering the repair time of
more components than repairing other components would.

C. The Algorithm
 First, we discuss the primary objective of our work. Let
us consider the notations used in Table I.

25

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. NOTATIONS

Notations Descriptions
𝑃𝑃 = (𝑉𝑉,𝐸𝐸) Possible Path Graph
𝐴𝐴 = (𝑉𝑉𝐴𝐴,𝐸𝐸𝐴𝐴) Active Path Graph (𝑉𝑉𝐴𝐴 ⊆ 𝑉𝑉,𝐸𝐸𝐴𝐴 ⊆ 𝐸𝐸)
𝐷𝐷 = (𝑉𝑉𝐷𝐷,𝐸𝐸𝐷𝐷) Damage Spread Graph (𝑉𝑉𝐷𝐷 ⊆

𝑉𝑉𝐴𝐴,𝐸𝐸𝐷𝐷 ⊆ 𝐸𝐸𝐴𝐴)
𝐷𝐷 = (𝑉𝑉𝐶𝐶 ,𝐸𝐸𝐶𝐶) Critical Node Graph (𝑉𝑉𝐶𝐶 ⊆ 𝑉𝑉𝐷𝐷,𝐸𝐸𝐶𝐶 ⊆

𝐸𝐸𝐷𝐷)
𝛿𝛿𝑖𝑖𝑗𝑗 Decision to fix edge 𝑖𝑖 to 𝑗𝑗
𝛿𝛿𝑖𝑖 Decision to fix node 𝑖𝑖
𝑡𝑡𝑖𝑖 Time to fix node 𝑖𝑖
𝑐𝑐𝑖𝑖 Centrality of node 𝑖𝑖
𝑃𝑃𝑖𝑖𝑗𝑗 Dependency indicator of node 𝑖𝑖 and 𝑗𝑗

Our objective is to find min∑ 𝑡𝑡𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖∈𝑉𝑉𝐷𝐷 subject to
𝛿𝛿𝑖𝑖 ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑗𝑗∈𝑉𝑉𝐶𝐶 ≤ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝛿𝛿𝑗𝑗𝑗𝑗∈𝑉𝑉𝐶𝐶 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶 (2)
𝛿𝛿𝑖𝑖𝑐𝑐𝑖𝑖 ≥ ∑ 𝛿𝛿𝑖𝑖𝑗𝑗(𝑖𝑖,𝑗𝑗)∈𝐸𝐸𝐶𝐶 ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶 (3)
𝑃𝑃𝑖𝑖𝑗𝑗 ∈ {0,1} ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶 (4)
𝛿𝛿𝑖𝑖, 𝛿𝛿𝑖𝑖𝑗𝑗 ∈ {0,1} ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶 , (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝐶𝐶 (5)

 That is, the goal is to minimize the time required to fix
all critical nodes subjected to conditional constraints of the
system. To make sure that each preceding nodes of 𝑖𝑖 are fixed
before node 𝑖𝑖 being processed, condition (2) is used. For
example, if there is a node 𝑗𝑗 connecting to 𝑖𝑖 but in a prequel
order, the sum product of all nodes 𝑗𝑗 status and dependency
indicator 𝑃𝑃𝑖𝑖𝑗𝑗 should be greater or equal than the product of
sum of all dependency indicator 𝑃𝑃𝑖𝑖𝑗𝑗 with node 𝑖𝑖. To make
sure that there would not be more out-going flows than the
given capability of node 𝑖𝑖, equation (3) is imposed to make
sure the total out-going edge would not surpass the centrality
of node 𝑖𝑖. Conditions (4) and (5) were built to impose the
binary attribute of the dependency indicator 𝑃𝑃𝑖𝑖𝑗𝑗 , the decision
whether to fix node 𝑖𝑖 or edge from node 𝑖𝑖 to node 𝑗𝑗.
 The algorithms provided in this section use the model
described in the previous section to compute the optimal
order of repairs to restore the most important functions of a
system first. When an attack occurs, we expect an Intrusion
Detection System (IDS) to identify the attack and provide the
initial point of damage. The working principles of IDSs are
not within the scope of this work and so, not described here.
 Algorithm 1 creates the PPG from the system’s data. The
PPG must record all possible dependency paths, including
those that may not have been used by the system yet.
Therefore, it is necessary to consult the system’s designers so
the algorithm can be provided full information on the
system’s data objects to fully construct the PPG. As stated in
Definition 8, the PPG, APG, and DSG are all represented by
a binary adjacency matrix, where child nodes and parent
nodes are represented by the columns and rows, respectively.
Each element in one such matrix is the edge between the
given parent and child node, with a value of 1 indicating that
the edge does exist in the graph and a value of 0 indicating
that it does not exist.

Algorithm 1: Initializing the Possible Paths Graph
Result: Adjacency matrix 𝑀𝑀PPG representing the PPG
1 for each object 𝑂𝑂𝑥𝑥 and 𝑂𝑂𝑦𝑦 in the system

1.1 if edge 𝐸𝐸𝑥𝑥𝑦𝑦can exist
1.2 𝑀𝑀PPG(𝑥𝑥,𝑦𝑦) = 1
2 Return 𝑀𝑀PPG

 After receiving notification from an IDS, a precise
damage assessment is performed. If the damage assessment
process is unable to make accurate assessment, i.e., in case a
damaged node is not correctly identified, it and its dependent
nodes, which are also damaged, will remain unrecovered.
This will result in valid users or procedures reading them and
spreading damage by updating other objects, as discussed
earlier. For a detailed discussion on damage assessment, one
may review [9] and [10], which were developed particularly
for database systems. However, the methods are still
applicable to critical infrastructure systems. Below we
provide a basic mechanism to carry out the assessment.
 Damage assessment begins with the APG, which shows
the actual dependency relationships among the objects in the
system (Note that the APG can be built as transactions are
executed and dependencies are established among various
nodes of the PPG). Given the initial attack point, the
corresponding node is then marked as damaged. This is the
starting node of the DSG. Then by scanning the log from the
corresponding location of the attack point, transactions that
read the marked node are identified. Any objects written by
those transactions are then marked as damaged in the APG.
This process continues until the end of the log. Finally, all
unmarked nodes and the edges showing their dependencies
are removed. The resulting graph is the completed DSG.
 The APG is constructed in Algorithm 2. This algorithm
reads the transaction log and creates a node each time a new
data object is mentioned in the log. The object’s
dependencies are depicted as the node’s edges in the APG.
When an existing data object is updated, it becomes a new
object in the transaction log. As described earlier, this is done
to prevent recursive dependencies in the APG.
 Once damage assessment is carried out, recovery
procedure must begin immediately in order to make the
system operational quickly. We use Algorithm 3.1 as the
main procedure to initialize an object set for repairs. The
algorithm starts by initializing the set of damaged objects O.
Each node N within O consists of a system component and its
relationships with other nodes in O. As mentioned previously
under Definition 4, some system components may have
recursive or bidirectional dependencies between each other.
Therefore, system components can have repeat nodes within
O to represent their different versions. Each node is assigned
values for criticality, repair time, and centrality. Using those
metrics, the algorithm determines an initial target node N0
based on criticality. If there are two or more nodes with the
highest criticality, then the node with the lower repair time is
selected. In the event of another tie, the node with higher
centrality is selected. Further ties are broken by random

26

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

selection. N0, along with O and the repair queue Q, are used
to make the first call to the recursive function Algorithm 3.2
at step 4.5. Algorithm 3.1 proceeds until O is completely
empty, and then the repair queue is finalized, and Q is printed.

As previously discussed, a node must have its parent
nodes repaired before it can be considered eligible for repairs.
Algorithm 3.2 ensures that nodes are scheduled for repairs in
the proper order while still adhering to the rules set for
determining priority. It does this by using a while loop to
check the currently selected node N for repair eligibility. If N
is eligible for repairs, then it is removed from O and Q is
updated, then returned. If N is not eligible, then O’, a
subsection of O made up of all dependency paths above the
currently selected node is created and used to find the next
highest priority node N’ within O’. Algorithm 3.2 is
recursively called using N’ and O’, which can either result in
the node’s repair or another node being selected for repair
again. The recursive nature of this algorithm ensures that
each time a decision needs to be made on which node needs
to be repaired next, it will prioritize criticality and efficiency
among all the nodes that can be repaired at any given step. In
this way, the bulk of the work done by the algorithm is
choosing the next object for repair within each iteration. Each
function call will result in one object being repaired and 𝑛𝑛 −
1 additional function calls, where 𝑛𝑛 is the number of nodes
within the set of nodes being passed. Since repaired objects
need to be removed from the DSG, function calls will need to
update and return the global DSG and Q.

Algorithm 2: Initializing the Actual Paths Graph
Result: Adjacency matrix 𝑀𝑀APG representing the APG
Parameters: transaction log T, containing the set of edges E that
were used to make updates
1 For each edge 𝐸𝐸𝑥𝑥𝑦𝑦 in T

1.1 𝑀𝑀APG(𝑥𝑥, 𝑦𝑦) = 1
2 Return 𝑀𝑀APG

Algorithm 3.1: Initialization for object set repair
Result: Queue of objects ordered by repair priority
1 Initialize set of damaged objects O
2 Preprocess object priority using criticality, repair
 time, and centrality
3 Initialize repair queue Q
4 while O has damaged nodes remaining
 4.1 Select the highest critical node(s) N within O
 4.2 if Two or more nodes are tied for highest
 criticality
 4.2.1 Select the node(s) N with the lowest repair
 time R within O
 4.3 if Two or more nodes are tied for lowest repair
 time
 4.3.1 Select the node(s) N with the highest
 centrality within O
 4.4 if Two or mode nodes are tied for highest
 centrality
 4.4.1 Select a single node at random from those
 still tied

 4.5 Update repair queue(N0, O, Q) → Q
5 Print Q
Algorithm 3.2: Recursive repair function
Result: Schedules a node N for repairs and returns the
updated repair queue Q
1 Update repair queue(Selected node N, object set O, repair queue
Q):
2 while Current object has unrepaired dependencies:
 2.1 Create subset of damaged nodes O’ of all nodes
 N’ and edges E’ that N is dependent on
 2.2 Select the highest critical node(s) N’ within O’
 2.3 if Two or more nodes are tied for highest
 criticality
 2.3.1 Select the node(s) N’ with the lowest
 repair time R within O
 2.4 if Two or more nodes are tied for lowest repair
 time
 2.4.1 Select the node(s) N’ with the highest
 centrality within O
 2.5 if Two or mode nodes are tied for highest
 centrality
 2.5.1 Select a single node at random from those
 still tied
 2.6 Update repair queue(N’0 , O’, Q) → Q
 2.7 Remove the most recent object in repair queue
 from O
3 Repair N
4 Add N to Q
5 Return Q

The algorithm produces a list of system nodes in the
order in which they should be repaired. Recovery procedure
then continues to the next step to begin repairs on the system.
It is important to note that while repairs are simulated by the
algorithm, the process for repairing the actual components of
the system is not within the scope of this work.

VI. EXPERIMENTS AND ANALYSIS

In this section we present the results from simulations
done using our model. We first describe the setup used for
our experiment, then present the results from each simulation
that we ran and explain the implications of the results.

A. Experiment Description

We evaluated the efficiency of our method by using it to
find the number of nodes needed to repair every critical node
in a DSG simulation with various parameters. The simulation
constructed a DSG with randomly assigned relationships
between nodes. The parameters used to build each DSG were
total nodes, percentage of critical nodes, maximum number
of parent nodes per node, and maximum number of children
nodes per node. After the DSG was built, the set of critical
nodes was randomly picked from the entire DSG for our
method to compute the repairs required to bring all critical
nodes back into a good state. For each simulation, 25
different sets of critical nodes were tested, and the average
number of required repairs was reported by the simulation.
We ran four experiments to test the changes to the number of

27

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

required repairs caused by changing each parameter. For
every experiment, we set the control variables to be 10,000
total nodes, 5% critical nodes, and a maximum of 6 parent
nodes and 6 child nodes per node. We compared our method
to modified versions of two common traversal algorithms:
breadth-first search (BFS) and depth-first search (DFS). The
BFS algorithm repaired nodes starting with all the root nodes,
then all the children of the root nodes, and then the next set
of child nodes until it reached the bottom. On the other hand,
DFS repairs a single parent node, then repairs one of its child
nodes, and repeats that process until it reaches a node with no
children. When that happens or if it has already repaired all
child nodes for a given node, it goes back up to the previous
node and repairs another child node. The exception to this
process is if a node has other parent nodes that have not been
repaired yet. The algorithm will break the traditional BFS or
DFS order to ensure that the node is eligible for repair. We
include the results for the BFS and DFS repair algorithms
with our own method.

Figure 8a: Required repairs based on Total Nodes

Figure 8b: Required repairs based on Critical Node Percentage

B. Results and Analysis

We present two graphs for each round of simulations in
Figures 8 and 9. The former figure is a bar graph highlighting
the different in required repairs between our algorithm and
BFS and DFS traversals. Figure 9 shows the changes in the
percentage of nodes repaired between each parameter of a

simulation. Our results for required repairs based on total
nodes is shown in Figure 8. It shows that the required repairs
maintain a constant ratio between them and the total nodes
with the given control variables, as each experiment resulted
in a little less than 25% of the total nodes needing to be
repaired. Figure 8b shows the results for required repairs
needed for different percentages of critical nodes. We found
that while the number of required repairs increases as the
percentage of critical nodes increases, less additional repairs
are needed when the percentage is higher. Therefore, a high
number of critical nodes require less repairs per critical node
than a lower number of critical nodes. Figures 8c and 8d show
the change in required repairs for different maximums of
children and parent nodes per node respectively. We found
that with a low number of maximum children per node, more
repairs are required. This is because the system of nodes
becomes narrower in shape. In contrast, when there is a
higher maximum of parent nodes per node, the required
repairs see an increase. This indicates that a critical node is
more likely to have additional parent nodes, which would
require more repairs than a critical node with fewer parent
nodes. Across all graphs, we can see that targeting specific
nodes for repair drastically shortens the time needed to
recover critical functions, as the average required repairs for
the BFS and DFS algorithm in most simulations was slightly
less than the total number of nodes in the simulation.

Figure 8c: Required repairs based on Maximum Number of Child Nodes

Figure 8d: Required repairs based on Maximum Number of Parent Nodes

28

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. On BFS and DFS algorithms

Before running our simulations, we expected our
algorithm to outperform BFS and DFS searches due to it
specifically targeting critical nodes for repair first. However,
these two algorithms ended up traversing nearly the entire
system before repairing all critical nodes. The best way to
explain this is to consider the order by which each algorithm
repairs nodes as a static ordered list. Our algorithm sorts this
list after nodes are assigned criticality, so the final critical
node that needs to be repaired ends up being close to the front
of this list. On the other hand, BFS and DFS do not consider
criticality when sorting this list, so each node’s criticality on
their lists after sorting is effectively random. What
determines how many nodes need to be repaired is ultimately
the final critical node in the list, so the odds of this node not
being in the final thousand or even hundred nodes are quite
low. Therefore, BFS and DFS will need to repair almost all
the nodes except for when the percentage of critical nodes is
lower. When that happens, it is more likely that the final
critical node will be closer to the middle of the repair order
instead.

Figure 9a: Changes in required repairs based on maximum number of

parent nodes

Figure 9b: Changes in required repairs based on the percentage of critical

nodes

VII. CONCLUSION
In this research, we have presented a method to repair

data objects that prioritizes quick recovery for the most
important components of a system. This allows for the partial
restoration of functions during the recovery process with an
emphasis on restoring service to the most necessary
functions. This was first done by building out three graphs to

represent the entire system, what changes the system made
after an attack, and the cascading damage as a result of those
changes. Next, we developed an algorithm to optimally
schedule repairs by using those graphs to find damage paths
that affect the most critical nodes of a system and calculate
the fastest repair order to fully restore those nodes. Lastly, we
presented results from a simulation of our algorithm and the
effects on changing the parameters of the damage paths. Our
work is most applicable to protecting critical infrastructure
systems where services need to be restored as quickly as
possible to avoid economic or societal disruptions.

Further work includes considering the frequency at
which an object is used to update its dependencies. Objects
that are updated at a higher frequency would be prioritized as
more important. Additionally, a method to select the order of
repairs for non-critical objects after all critical objects have
been repaired is also needed.

Figure 9c: Changes in required repairs based on the maximum number of

child nodes per node

Figure 9d: Changes in required repairs based on the maximum number of

parent nodes per node

ACKNOWLEDGEMENT
This work has been supported in part by grant H98230-

20-1-0419 issued by the National Security Agency as part of
the National Centers of Academic Excellence in
Cybersecurity's mission to expand cybersecurity research and
education for the Nation.

29

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES
[1] J. Burns, B. Panda, T. Bui, “Modeling Damage Paths and

Repairing Objects in Critical Infrastructure Systems”, The
Fifteenth International Conference on Emerging Security
Information, Systems and Technologies SECUREWARE
2021, Athens, Greece, pp. 88-93, Nov. 14-18, 2021, ISBN 978-
1-61208-919-5

[2] E. Viganò, M. Loi. and E. Yaghmaei, “Cybersecurity of Critical
Infrastructure”, In Christen M., Gordijn B., Loi M. (eds), The
Ethics of Cybersecurity, The International Library of Ethics,
Law and Technology, vol. 21, SpringerLink.

[3] Critical Infrastructure Security:
https://www.dhs.gov/topic/critical-infrastructure-security.
[retrieved: October 2021]

[4] D. E. Sanger and N. Perlroth, (2021, May 14). “Pipeline Attack
Yields Urgent Lessons about U.S. Cybersecurity”,
https://www.nytimes.com/2021/05/14/us/politics/pipeline-
hack.html. [retrieved: October 2021]

[5] A. Anastasios, “Is the Electric Grid Ready to Respond to
Increased Cyber Threats?”, https://www.tripwire.com/state-of-
security/ics-security/electric-grid-ready-increased-cyber-
threats/. [retrieved: October 2021]

[6] B. Barrett, “An Unprecedented Cyberattack Hit US Power
Utilities”, https://www.wired.com/story/power-grid-
cyberattack-facebook-phone-numbers-security-news/.
[retrieved: October 2021]

[7] K. O’Flaherty, “U.S. Government Issues Powerful Cyberattack
Warning as Gas Pipeline Forced into Two Day Shut Down”
https://www.forbes.com/sites/kateoflahertyuk/2020/02/19/us-
government-issues-powerful-cyberattack-warning-as-gas-
pipeline-forced-into-two-day-shut-down/#5f3061645a95.
[retrieved: October 2021]

[8] M. Lewis, “Cyberattack Forces Gas Pipeline Shutdown”,
https://www.jdsupra.com/legalnews/cyberattack-forces-gas-
pipeline-shutdown-76217/ [retrieved: October 2021]

[9] B. Panda and J. Giordano, “Reconstructing the Database after
Electronic Attacks. In: Jajodia S. (eds) Database Security XII.
IFIP — The International Federation for Information
Processing, vol. 14. Springer, Boston, MA, 1999.

[10] S. Patnaik and B. Panda, “Transaction-Relationship Oriented
Log Division for Data Recovery from Information Attacks”
Journal of Database Management, vol. 14. No. 2. pp. 27-41,
2003.

[11] P. Kotzanikolaou, M. Theoharidou, and D. Gritzalis,
“Cascading Effects of Common-Cause Failures in Critical
Infrastructures”. In: J. Butts and S. Shenoi (eds) Critical
Infrastructure Protection VII. IFIP Advances in Information
and Communication Technology, vol. 417, 2013. Springer,
Berlin, Heidelberg.

[12] J. Ding, Y. Atif, S. Andler, B. Lindström, and M. Jeusfeld,
“CPS-based Threat Modeling for Critical Infrastructure
Protection”. ACM SIGMETRICS Performance Evaluation
Review. 45. pp. 129-132, 2017. 10.1145/3152042.3152080.

[13] E. Canzani, H. Kaufmann, and U. Lechner, “Characterising
Disruptive Events to Model Cascade Failures in Critical
Infrastructures”, The Fourth International Symposium for ICS
& SCADA Cyber Security Research, Belfast, Northern
Ireland, 2016.

[14] D. Rehak, J. Markuci, M. Hromada, and K. Barcova,
“Quantitative Evaluation of the Synergistic Effects of Failures
in a Critical Infrastructure System”, International Journal of
Critical Infrastructure Protection, vol. 14, pp. 3-17, 2016.
ISSN 1874-5482

[15] N. Bartolini, S. Ciavarella, T. F. La Porta, and S. Silvestri,
"Network Recovery after Massive Failures," 46th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 97-108, 2016.

[16] S. Ciavarella, N. Bartolini, H. Khamfroush, and T. Porta,
(2017). “Progressive Damage Assessment and Network
Recovery after Massive Failures,” IEEE INFOCOM 2017 –
IEEE Conference on Computer Communications, pp. 1-9,
2017.

[17] J. Štoller and P. Dvořák, "Basic Types of Critical
Infrastructure Objects," 2019 International Conference on
Military Technologies (ICMT), pp. 1-7, 2019. doi:
10.1109/MILTECHS.2019.8870031.

[18] D. Rehak, P. Senovsky, and M. Hromada, “Analysis of
Critical infrastructure Network. Z. Chan, m. Dehmer, F.
Emmertsteib, and Y. Shi, Modern and interdisciplinary
problems in network science: a translation research
perspective. 1. Boca Raton, FL, USA: CRC Press, pp. 143-
171, 2018. ISBN 978-0-8153-7658-3.

[19] M. Luskova, M. Titko, and B. Leitner, “Multilevel Approach
to Measuring Societal Vulnerability due to Failure of Critical
Land Transport Infrastructure”, The World Multi-Conference
on Systematics, Cybernetics and Informatics, Miami, FL, July
2016.

[20] B. Genge, P. Haller, I. Kiss, “A Framework for Designing
Resilient Distributed Intrusion Detection Systems for Critical
Infrastructures”, International Journal of Critical
Infrastructure Protection, vol. 15, pp. 3-11, 2016. ISSN 1874-
5482, https://doi.org/10.1016/j.ijcip.2016.06.003.

[21] X. He, E. Cha, “Modeling the Damage and Recovery of
Interdependent Critical Infrastructure Systems from Natural
Hazards”, Reliability Engineering & System Safety, vol. 177,
pp. 162-175, 2018. ISSN 0951-8320,
https://doi.org/10.1016/j.ress.2018.04.029.

[22] R. Osei-Kyei, V. Tam, M. Ma, F. Mashiri, “Critical Review
of the Threats Affecting the Building of Critical Infrastructure
Resilience”, International Journal of Disaster Risk Reduction,
vol. 60, 2021, ISSN 2212-4209,
https://doi.org/10.1016/j.ijdrr.2021.102316.

[23] Y. Fang and G. Sansavini, “Optimum Post-disruption
Restoration under Uncertainty for Enhancing Critical
Infrastructure Resilience”, Reliability Engineering & System
Safety, vol. 185, pp. 1-11, 2019. ISSN 0951-8320,
https://doi.org/10.1016/j.ress.2018.12.002.

[24] M. Xu, M. Ouyang, Z. Mao, X. Xu, “Improving Repair
Sequence Scheduling Methods for Post-disaster Critical
Infrastructure Systems”, Computer Aided Civil and
Infrastructure Engineering, vil. 34, pp. 506–522, 2019.
https://doi.org/10.1111/mice.12435

30

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

