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Abstract—Critical infrastructure systems have recently become 
more vulnerable to attacks on their data systems through 
internet connectivity. If an attacker is successful in breaching a 
system’s defenses, it is imperative that operations are restored 
to the system as quickly as possible. This research focuses on 
damage assessment and recovery following an attack. We 
review work done in both database protection and critical 
infrastructure protection and establish our own definitions of 
how damage affects the relationships between data and 
software. Then, we propose a model using a graph construction 
to show the cascading effects within a system after an attack. We 
also present an algorithm that uses our graph to compute an 
optimal recovery plan that prioritizes the most important 
damaged components first so that the vital modules of the 
system become functional as soon as possible. This allows for the 
most critical operations of a system to resume while recovery for 
less important components is still being performed. Lastly, we 
show results from simulations using our algorithm on data 
graphs with various parameters. 

Keywords-critical infrastructure; damage assessment; 
recovery. 

I. INTRODUCTION 
Critical infrastructure systems are those that are 

considered extremely critical to the functioning of a 
government or a country. As described in [2], critical 
infrastructures are like the vital organs of a body that need to 
perform their own roles for the human body to function 
efficiently and painlessly. The US Department of Homeland 
Security [3] declares that such systems are “so vital to the 
United States that their incapacity or destruction would have 
a debilitating impact on our physical or economic security or 
public health or safety.” Therefore, the protection and smooth 
functioning of our nation’s critical infrastructures are 
indispensable and cannot be ignored. 

These systems are becoming prime targets of attackers – 
primarily state actors and organized crime – and a major 
attack on one can cripple the economy of the victim nation.  
These systems are also more likely to be connected to the 
internet now to provide benefits like cost reduction (where 
large systems can be remotely managed over the public 
network), increased capability (by providing sufficient 
computing resources for infrastructure hardware with less 
capability power), and improved efficiency and transaction 
speed.  This connectivity unfortunately makes it easier for 
attackers to hack into these systems. Consider the New York 
Times report about the attack on Colonial Pipeline [4]. While 

the details of the attack are not yet disclosed, a group of 
cybercriminals was able to compromise data systems using 
the internet, which resulted in Colonial Pipeline shutting 
down their pipeline. This outage affected mass transit and 
other industries across the entire U.S. East Coast and exposed 
a lack of preparation for such a crisis. This illustrates how an 
external system can have a relationship with a critical 
infrastructure system and how such relationships can be 
exploited to carry out an attack. 

It is clear from past incidents and recent reports [5]-[8], 
(to cite just a few) that attacks on critical infrastructures are 
occurring frequently, which indicates that prevention 
mechanisms are not enough to stop them.  Thus, it is of 
utmost importance to aggressively prepare for post-attack 
activities, which include damage assessment and recovery 
mechanisms that are critical to making the affected systems 
available at full functioning mode as soon as possible.  This 
research aims at meeting this important goal. 

We propose a framework that models damage spread 
within a set of data objects based on object dependencies and 
prioritizes making repairs to the most critical objects first. 
The framework is based on some of the models explored in 
critical infrastructure protection and uses a version of 
previously proposed repair methods that is modified to focus 
on meeting specific goals when determining the order in 
which repairs are made. 

The rest of the paper is an extension of the work in [1] 
and is organized as follows.  Section 2 offers some work 
performed in this area.  Section 3 defines the problem that we 
aim to build our model for. In section 4, the types of 
relationships that exist in data systems are explained. We 
provide details on our model in section 5, which includes 
three subsections to explain our definitions, model 
description, and algorithm. We then show experiments using 
our model and present the results in section 6. Section 7 
concludes our work. 

II. RELATED WORKS 
This paper aims to examine methods and frameworks 

used for database and critical infrastructure protection and 
apply them towards protecting a set of data objects. This 
section describes some of the publications that are relevant to 
our proposed framework. Various types of critical 
infrastructure objects are described in [17]. The focus of our 
work falls under network and network nodes, which are 
defined as a “structure with one dominating dimension”, and 
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junctions within the network, respectively. Furthermore, [18] 
establishes the concept of resilience, a cyclical process by 
which a system undergoes recovery, adaptation, and 
prevention between attacks. Turning this concept into a 
concrete value that can be used in risk assessment has been a 
point of interest in protecting systems [20]. Efforts have also 
been made to quantify vulnerability as a measurement that 
can be used to determine how frequently or severely a system 
can be at risk [19]. One of the major works on damage 
assessment and recovery within a database uses data 
dependency to find data affected by an attack to optimize 
recovery [9]. While this method relies on the direct 
relationships between data items, an alternate model to 
recover data from an attack instead uses the transaction log 
for assessment [10].  

Kotzanikolaou et al. describe a model in [11] that assists 
in risk assessment for possible scenarios that can result in 
cascading failures within a CI system. For critical 
infrastructures with data-rich operations, the use of Cyber-
Physical Systems can cause new vulnerabilities as described 
in [12]. Their model analyzes threats that can appear due to 
these vulnerabilities and analyzes the potential cascading 
damage they can cause. System dynamics modeling can also 
be used to analyze disruptive events to characterize such 
disruptions to critical infrastructure by risk assessment and 
various impact factors as shown in [13].  

Rehak et al. [14] model an infrastructure system as 
elements and linkages with different types of relationships 
establishing dependencies and interdependencies. They note 
that these elements can have varying criticality, causing some 
elements to cascade more damage into the system than others 
in the event of a failure. This work is important because by 
establishing criticality, they quantify damage within a 
system. We use this concept of criticality later in this paper 
to direct the optimal repair path of data objects.  

We also consider models that assist with recovery during 
an attack. In [15], an algorithm is proposed to restore 
damaged element paths by recursively breaking down 
demand flows into simpler problems. They use a centrality 
metric to rank damaged nodes and determine which ones 
should be repaired first and expand on the use of centrality to 
make repair decisions in further work [16]. We use the 
concept of centrality to rank data objects in a case where two 
or more are equally critical. In our algorithm, we also utilize 
their method of simplifying damage paths to find the fastest 
route to restoring intermediate data objects.  However, the 
novelty of our approach is twofold: we must repair all 
components within the system because data objects cannot 
have computations rerouted, unlike the network components 
in the work we have reviewed, and we aim to restore the most 
important components first so that their functions can be 
restored while repairs to the system are still ongoing. 

III. PROBLEM DEFINITIONS 
On the occasion when an adversary information attack 

succeeds, the victim must have the capability to degrade 

gracefully and recover damaged data and/or services in real-
time if it is to survive.  It is necessary to immediately carry 
out damage assessment and recovery process in order to bring 
the systems to working states.  Otherwise, the damage would 
spread to other unaffected systems that are interconnected.  
This happens when a valid user or an unaffected system 
module reads a damaged object during its computation and 
updates another object based on the compromised value, 
causing the latter damaged as well. As time goes on, more 
and more objects become affected in this manner causing the 
spread of damage to fan-out through the system quickly.   

State-of-the-art assessment and recovery currently exist 
in types of critical infrastructure other than data systems. A 
review of threats that influence how critical infrastructures 
are protected is done in [22]. Among other threats, important 
ones that affect this research are cyber-attacks and cascading 
effects. A data system is especially vulnerable to the 
cascading effects of a cyber-attack, because of the nature of 
constant updates being made between different systems using 
data. In [21], a dynamic inoperability input-output model is 
introduced to determine how damage in one part of a system, 
such as power plants, water collectors, and transmitters can 
ultimately cascade down to end-users of the system. This 
method, as well as other similar methods in [23] and [24], 
primarily focus on physical threats to critical infrastructure. 
This research focuses on applying the same kind of resilience 
to data operations of critical infrastructures to protect them 
from digital threats.  

For damage assessment and recovery purposes 
information about all processes that have been executed must 
be stored in the log (more on this presented later).  This will 
help in determining the relationships among the processes, 
thus helping in establishing the damage trail.  Moreover, 
during recovery, the operations of processes that have spread 
the damage have to be undone and then redone in order to 
produce the correct states of affected objects.  The problems 
with existing systems are: (1) They do not store process 
execution information in the log, and they purge the log 
periodically, (2) their recovery mechanisms are not designed 
to undo the effects of executed processes, (3) the size of the 
log, as it must not be purged, will make it almost impossible 
to continue the recovery process in real-time, and (4) during 
the damage assessment and recovery process, the system 
remains unavailable to users.  This delay induces a denial-of-
service attack, which is highly undesirable in time-critical 
applications that the critical infrastructures are designed to 
provide.  Due to the massive amount of data in the log that 
needs to be processed, the problem becomes even worse. 

The goal of this research is to develop fast, accurate, and 
efficient damage assessment and recovery techniques so that 
critical information systems not only survive the attacks 
gracefully but will continue to operate providing as many 
vital services and functions as possible even before the 
system is fully recovered. In the next section, we explain how 
the relationships between different parts of critical systems 
can affect the spread of damage. 
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IV. TYPES OF DAMAGE DEPENDENCIES 

Attacks can affect not only data systems, but also 
software that produces data. This happens when the software 
is maliciously changed to perform unintended actions. In this 
section, we discuss possible attack scenarios involving 
damaged data objects and software and how they can cascade 
into other systems. 

A. Data to Data Damage 
Data objects are frequently dependent on other data 

objects for computational updates. This makes their systems 
vulnerable to malicious attacks and cascading damage. Once 
a data object uses a damaged object to make a change, it 
becomes damaged too. This can happen to as many objects 
as the initially attacked objects have that are dependent on it. 
Figure 1 shows an example of cascading damage between 
data objects. If node C is targeted for an attack, then node E 
will become damaged due to its dependency on C. Then, node 
F and node G are also damaged because they are dependent 
on E. 

 
Figure 1: Cascading Damage from a Data Object 

B. Software to Software Damage 

If damaged software is used to influence computing done 
by another software, then the output of that software is also 
considered damaged. An example of a dependency between 
software is the use of libraries for applications. A damaged 
procedure within a library will result in damaged output for 
any software that calls that procedure. One difficulty with 
recovering from cascading damage from software to software 
is that it may be difficult to identify which cross-software 
calls used damaged procedures for computation. Consider a 
program P that uses two library functions A and B. A is an 
undamaged function and provides an undamaged output, 
while B is damaged and results in a damaged output. Even 
though we know the library is damaged, it is difficult to find 
which functions within the library are specifically damaged 
due to the library already being compiled into binary format. 

Therefore, we do not know if A or B is damaged, and after the 
library has been recovered, we must execute P entirely to 
ensure that we get the correct output, which causes recovery 
time to increase. After recovery, the resulting output from A 
is unchanged, while the output from B is corrected to the 
desired result. An example of software-to-software damage 
is shown in Figure 2. Even though the data is correct, a 
maliciously changed library can result in the software 
changing the output data. 

 
Figure 2: Cascading Damage from Software 

C. Software to Data Damage 

Any data changed by damaged software is also 
considered damaged. This is the simplest scenario involving 
damaged software because it is functionally the same as 
cascading damage between two data objects. After the 
software is repaired, any data that was damaged by the 
software must be computed again to complete recovery. 

D. Data to Software Damage 

Software that uses damaged data will not become 
damaged as a result. However, its output data will be 
considered damaged. This is because once a program is 
compiled, it cannot be changed by its input data. Therefore, 
if a software uses incorrect data to produce a damaged output, 
it is considered data-to-data damage instead. In Figure 3, a 
damaged node A is used as input for computation in a 
software. While the software itself is not damaged, its output 
nodes D and E become damaged. 

 
Figure 3: Cascading Damage from Data through Software 

In the next section, we explain how our model can 
identify and recover damage optimally in detail.  While it is 
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important to consider the possibility of damaged software 
affecting a system, our model focuses on the spread of 
damage within data objects. This is because damage can 
spread much faster through data objects than in software, and 
usually does so more frequently. Furthermore, the software 
can also be quickly fixed, while data objects are more 
numerous and may need many computations to get the 
desired output after repairs. 

V. THE MODEL 
In this section, we describe our model in detail. The first 

subsection defines important graphs and metrics that we use 
for our model. In the next subsection, we describe how the 
model is built and is used to determine an optimal recovery 
plan. Finally, we describe the algorithm we use to implement 
our model. 

 

A. Definitions 
We first define the concept of information flow in a 

system.  This also defines dependencies among various 
objects in the system and is used in our graph-based model. 
Definition 1:  Given two objects Oi and Oj in a system, if the 
value of Oj is calculated using the value of Oi, we say that 
there is information flow from Oi to Oj.  Thus, Oj is said to be 
dependent on Oi and is denoted as Oi → Oj. 

The above definition helps in determining the spread of 
damage in the system.  That is, if an object is damaged, then 
all its dependent objects will be considered damaged.  During 
recovery, the parent (pre-cursor) object must be recovered 
before any of its dependent objects can be recovered. 

Next, we define a graph containing the set of objects and 
all possible paths among them. We call it Possible Paths 
graph and it spans the entire system of objects and all 
dependency paths among them. An example of this graph is 
shown in Figure 4(a).  

 
Figure 4a: The Possible Paths Graph (PPG) 

Definition 2:  Consider a system containing the set of objects 
O.  The Possible Paths Graph (PPG) is built by having a 
node Ni for each object in O.  There exists an edge Eij from 
Ni to Nj in the PPG if there is a possibility that information 
may flow from Ni to Nj, that is, Nj may be modified based on 
the value of Ni. 

The purpose of building a PPG is that it will help during 
the damage assessment preparation phase.  By assuming the 
point of attack one can identify the set of items that may be 

affected consequently. Thus, security officers can be 
prepared for different types of eventualities. 

The second set of objects contains the actual paths that 
were used to make changes in the system within a specified 
period, which for the purposes of the third graph that will be 
defined, is usually the time passed since an object has been 
damaged. This set is represented by the Active Paths Graph 
(APG), and all objects and dependencies in this set exist in 
the PPG. This graph will help in determining the damage flow 
in case of an attack.  Given an initial attack point (an object), 
one can determine which objects in the system may be 
affected by the attack and which ones will not be.  Therefore, 
the ability of the system to carry out its intended functions 
can be calculated.  That is, during the recovery process, the 
set of damaged objects will be made unavailable while the 
rest can be made accessible. Knowing which objects will 
remain unaffected, one will be able to identify what services 
the system will be able to offer while the recovery continues. 
Definition 3:  The Active Paths Graph (APG) contains nodes 
N and edges E such that for every Ni є N and every Eij є E, 
both Ni and Eij are also present in PPG, and Eij illustrates an 
actual information flow; that is Nj was updated based on the 
value of Ni. 

 
Figure 4b: The Active Paths Graph (APG) 

Figure 4(b) provides an example of an Active Paths 
Graph and as can be seen, it is a sub-graph of Figure 4(a).  As 
discussed before, once an initial attack point is determined, 
the APG will help in accurately determining the damage flow 
and the set of objects affected by the attack.  As discussed 
before, as time goes on, more and more objects will be 
affected as new objects will be updated based on the value of 
an affected object.  Thus, to stop the spread of damage, all 
affected objects must be quickly identified and taken offline 
as soon as possible.  This can be achieved by doing a flow 
assessment using the APG.  This leads to the concept of 
actual damage spread path showing exactly which objects 
were affected by an attack. If a system is damaged, we 
represent the spread of damage as the third set of objects, the 
Damage Spread Graph (DSG). The set of objects and 
dependencies in this graph must exist within the APG, as 
damage spread occurs when objects make changes based on 
their dependencies. Like how the APG is a subsection of the 
PPG, the DSG is a subsection of the APG. Figure 4(c) is an 
example of what a damage path may look like. It is important 
to note that over time, a damaged object will always cascade 
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its damage down to dependent nodes included in the APG.  
Definition 4 formally defines the DSG. 
Definition 4: A Damage Spread Graph (DSG) contains 
nodes N and edges E such that for every Ni є N and every Eij 
є E, both Ni and Eij are also present in APG and every node 
in N is damaged through an attack on the system.   Moreover, 
an edge Eij depicts that Ni was damaged first and then Nj was 
damaged through the flow of information from Ni to Nj. 

 
Figure 4c: The Damage Spread Graph (DSG) 

Note that the edges between two objects may be 
bidirectional or recursive.  For example, if an object Oj can 
have a dependency on object Oj and vice versa, then there 
will be a bidirectional edge between Oj and Oj.  Similarly, if 
an object can be dependent on itself, it will result in a 
recursive graph.  To clarify, let us consider an object “salary”.  
When an employee receives an increment that is based on a 
percentage of the current salary of the employee, it causes the 
new salary to be dependent on the old salary and is depicted 
by using an edge from salary to salary itself.   However, it 
must be noted that, for simplicity, we use neither bidirectional 
nor recursive edges in APG or DSG.  Rather, when an object 
is modified, we note that as a new version of the object, thus 
creating a new node for the object with the version number. 

To minimize the time needed to restore the most 
important objects within a system of object dependencies, we 
also define criteria used to determine the order in which 
repairs are made: 
Definition 5:  The criticality of a node N is its predetermined 
level of importance to the system’s functions. This must be 
predetermined for the flexibility of the model to fit various 
systems and align the model with the goals of each specific 
system. For example, one system may need to prioritize 
certain components that other systems do not. The criticality 
of a component can be measured by various characteristics 
such as the intensity or scope of an impact caused by its 
failure as described in [14]. 

We assign a positive whole number to each node N to 
represent criticality. A lower assigned value indicates higher 
criticality. For example, a node Ni with a criticality of 2 would 
be considered more important than a node Nj with a criticality 
of 4. It is important to note that criticality values are not 
unique, meaning multiple nodes can have the same criticality 
value. When that happens, we use the following metric in the 
next definition to serve as a first “tiebreaker”.  
Definition 6:  Objects that have more damaged dependencies 
take longer to repair. Therefore, the repair time of a node N 

is defined as how many inward-flowing edges Ei it is 
receiving damage from.  

When two or more objects are assigned the same 
importance, we choose to first repair the one that has a lower 
repair time. For example, consider two nodes Ni and Nj that 
are equally critical. If Ni needs 5 other nodes repaired to 
repair it, and Nj needs 3 other nodes to repair it, then we will 
repair Nj first, because its operation can be restored more 
quickly than that of Ni. 
Definition 7:  The centrality of a node N is the number of 
outward-flowing edges Eo it has.  

We use the above metric to decide the next object to 
repair when two or more are equal in both criticality and 
repair time. An object with a higher number of Eo will have 
higher centrality. Figure 5a and Figure 5b show two 
subsections of a DSG that highlights centrality. As shown in 
Figure 5a, N4 has three nodes that are dependent on it: N1, N2, 
and N3, while as Figure 5b depicts, N6 only has a single node 
N5 dependent on it. Assume that the repair algorithm has 
repaired the parent node(s) of N4 and that of N6.  To clarify 
the situation, N4 and N6 need not have the same parents; it is 
just that both are in line to be repaired next.  In this scenario, 
repairing N4 before N6 reduces the repair time for the three 
dependent nodes of N4 instead of only one of N6, which can 
make future repairs be performed faster. Therefore, N4 is 
considered to have a higher centrality than N6. 

 

 
Figure 5a: A parent node with high centrality 

 

 
Figure 5b: A parent node with low centrality 

 
Definition 8: The relationships between all nodes n in a data 
system can be expressed by an adjacency matrix Α, where 
each element represents an edge ei,j between nodes ni and nj 
such that the parent node is given by the element’s row and 
the child node is given by the element’s column. The value 
of each element is binary – if an edge going from one node to 
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another exists, then the value of its respective element is 1, 
otherwise, it is 0. Therefore, for each element 𝑎𝑎𝑖𝑖,𝑗𝑗 in Α: 

        𝑎𝑎𝑖𝑖,𝑗𝑗 = �1 if (𝑖𝑖, 𝑗𝑗) ∈  𝑁𝑁𝑖𝑖
0 if (𝑖𝑖, 𝑗𝑗) ∉  𝑁𝑁𝑖𝑖

.        (1) 

Figure 6 depicts the PPG shown in Figure 4a. as an 
adjacency matrix. Each cell with a value of 1 is an existing 
edge on the graph. For example, node D has 3 parent nodes 
and 2 child nodes. The edges coming from nodes A, B, and 
C are highlighted on D’s row. Likewise, its outgoing edges 
toward nodes F and G are highlighted on D’s column. All 
node relationships are translated this way, so as there are 8 
edges in the graph, there is also 8 highlighted elements in 
Figure 6. 

Since an adjacency matrix can be used to represent the 
relationships between data nodes in a uniform manner, it is 
used for our implementation of a damage assessment 
algorithm, which will be covered in the next two subsections. 

 
Figure 6: An adjacency matrix of Figure 4a. 

B. Model Description 
 The model uses the three graphs defined in the previous 
section to construct a representation of a given system and its 
sustained damage from the time of the initial attack. The PPG 
is a preprocessed map of all components and dependency 
paths within a system. We assume that we know how much 
time has passed since the initial attack and build the APG by 
including components and dependency paths that were used 
in a transaction log in that period. By knowing the component 
where the initial attack occurred, we build the DSG by tracing 
the damage through the transaction log. For damage to spread 
from one component to the next, it must follow two criteria: 
1) there is a damage node Ni that has an edge Eij flowing from 
it to node Nj and 2) Eij is used for a transaction while Ni is 
damaged. For the DSG to exist, the initial attack must occur 
within the APG, otherwise there is no cascading damage. 

The goal of the model is to find the optimal sequence of 
repairs to restore the most important operations of a system 
as quickly as possible. We use the metrics defined in the 
previous section to decide which components should be 
repaired first. The first metric is criticality – the most critical 
components must be restored first to resume important 
operations. However, these components may also be 
dependent on other components that are damaged. These 

components must be repaired first before the base component 
can be repaired. At this point, the same problem is applied to 
the dependency components, and the most critical one is 
chosen first. If there is a tie, then components with a lower 
repair time are picked first. For example, a component that 
has two damaged parent components will be prioritized over 
a component with three or more damaged parent components 
if both components are equally critical.  

To clarify, let us consider the graph presented in Figure 
7.  As shown in the figure, nodes N1, N2, and N3 are dependent 
on N4.  Assume that the damage assessment method identified 
N4 as damaged; thus, nodes N1, N2, and N3 are also identified 
as damaged.  During the recovery process, N4 was recovered 
before the other three nodes.  However, since it has three 
dependents all of which are damaged, the question is, which 
one should be repaired first. As our goal is to have the vital 
functions of the system to be made available before the other 
operations, our algorithm would choose the node among N1, 
N2, and N3 having the most criticality.   

 

 
Figure 7: Recovery sequence decision 

Repair time is not affected by how the parent 
components are ordered. For example, consider two 
scenarios with nodes N1, N2, N3, and N4. In the first scenario, 
node N1 is dependent on nodes N2, N3, and N4. In the second 
scenario, node N1 is dependent on node N2, node N2 is 
dependent on node N3, and node N3 is dependent on node N4. 
In both scenarios, nodes N4, N3, and N2 must all be repaired 
before node N1 can be repaired, so N1 will always have the 
same repair time. In short, repair time can simply be 
considered as the number of upstream components. 
Similarly, the third metric, centrality, can be considered as 
the number of downstream components. This is the third 
metric used to determine repair order in case multiple 
components are equal in criticality and repair time. This 
metric is not prioritized over the first two because it does not 
directly contribute toward the stated goals of our model, but 
it can optimize future repairs by lowering the repair time of 
more components than repairing other components would. 

C. The Algorithm 
 First, we discuss the primary objective of our work.  Let 
us consider the notations used in Table I. 
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TABLE I.  NOTATIONS 

Notations Descriptions 
𝑃𝑃 = (𝑉𝑉,𝐸𝐸) Possible Path Graph 
𝐴𝐴 = (𝑉𝑉𝐴𝐴,𝐸𝐸𝐴𝐴) Active Path Graph ( 𝑉𝑉𝐴𝐴 ⊆ 𝑉𝑉,𝐸𝐸𝐴𝐴 ⊆ 𝐸𝐸) 
𝐷𝐷 = (𝑉𝑉𝐷𝐷,𝐸𝐸𝐷𝐷) Damage Spread Graph ( 𝑉𝑉𝐷𝐷 ⊆

𝑉𝑉𝐴𝐴,𝐸𝐸𝐷𝐷 ⊆ 𝐸𝐸𝐴𝐴) 
𝐷𝐷 = (𝑉𝑉𝐶𝐶 ,𝐸𝐸𝐶𝐶) Critical Node Graph (  𝑉𝑉𝐶𝐶 ⊆ 𝑉𝑉𝐷𝐷,𝐸𝐸𝐶𝐶 ⊆

𝐸𝐸𝐷𝐷) 
𝛿𝛿𝑖𝑖𝑗𝑗 Decision to fix edge 𝑖𝑖 to 𝑗𝑗 
𝛿𝛿𝑖𝑖 Decision to fix node 𝑖𝑖 
𝑡𝑡𝑖𝑖 Time to fix node 𝑖𝑖 
𝑐𝑐𝑖𝑖  Centrality of node 𝑖𝑖 
𝑃𝑃𝑖𝑖𝑗𝑗 Dependency indicator of node 𝑖𝑖 and 𝑗𝑗 

Our objective is to find min∑ 𝑡𝑡𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖∈𝑉𝑉𝐷𝐷  subject to  
𝛿𝛿𝑖𝑖 ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑗𝑗∈𝑉𝑉𝐶𝐶 ≤ ∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝛿𝛿𝑗𝑗𝑗𝑗∈𝑉𝑉𝐶𝐶   ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶          (2) 
𝛿𝛿𝑖𝑖𝑐𝑐𝑖𝑖 ≥  ∑ 𝛿𝛿𝑖𝑖𝑗𝑗(𝑖𝑖,𝑗𝑗)∈𝐸𝐸𝐶𝐶    ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶                         (3) 
𝑃𝑃𝑖𝑖𝑗𝑗 ∈ {0,1}    ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶                                    (4) 
𝛿𝛿𝑖𝑖, 𝛿𝛿𝑖𝑖𝑗𝑗 ∈ {0,1}   ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶 , (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝐶𝐶               (5) 

 That is, the goal is to minimize the time required to fix 
all critical nodes subjected to conditional constraints of the 
system. To make sure that each preceding nodes of 𝑖𝑖 are fixed 
before node 𝑖𝑖 being processed, condition (2) is used. For 
example, if there is a node 𝑗𝑗 connecting to 𝑖𝑖 but in a prequel 
order, the sum product of all nodes 𝑗𝑗 status and dependency 
indicator 𝑃𝑃𝑖𝑖𝑗𝑗  should be greater or equal than the product of 
sum of all dependency indicator 𝑃𝑃𝑖𝑖𝑗𝑗  with node 𝑖𝑖. To make 
sure that there would not be more out-going flows than the 
given capability of node 𝑖𝑖, equation (3) is imposed to make 
sure the total out-going edge would not surpass the centrality 
of node 𝑖𝑖. Conditions (4) and (5) were built to impose the 
binary attribute of the dependency indicator 𝑃𝑃𝑖𝑖𝑗𝑗 , the decision 
whether to fix node 𝑖𝑖 or edge from node 𝑖𝑖 to node 𝑗𝑗. 
 The algorithms provided in this section use the model 
described in the previous section to compute the optimal 
order of repairs to restore the most important functions of a 
system first. When an attack occurs, we expect an Intrusion 
Detection System (IDS) to identify the attack and provide the 
initial point of damage.  The working principles of IDSs are 
not within the scope of this work and so, not described here. 
 Algorithm 1 creates the PPG from the system’s data. The 
PPG must record all possible dependency paths, including 
those that may not have been used by the system yet. 
Therefore, it is necessary to consult the system’s designers so 
the algorithm can be provided full information on the 
system’s data objects to fully construct the PPG. As stated in 
Definition 8, the PPG, APG, and DSG are all represented by 
a binary adjacency matrix, where child nodes and parent 
nodes are represented by the columns and rows, respectively. 
Each element in one such matrix is the edge between the 
given parent and child node, with a value of 1 indicating that 
the edge does exist in the graph and a value of 0 indicating 
that it does not exist. 
 

Algorithm 1: Initializing the Possible Paths Graph 
Result: Adjacency matrix 𝑀𝑀PPG representing the PPG 
1 for each object 𝑂𝑂𝑥𝑥 and 𝑂𝑂𝑦𝑦 in the system 

1.1 if edge 𝐸𝐸𝑥𝑥𝑦𝑦can exist 
1.2   𝑀𝑀PPG(𝑥𝑥,𝑦𝑦) = 1 
2 Return 𝑀𝑀PPG 

 
 After receiving notification from an IDS, a precise 
damage assessment is performed.  If the damage assessment 
process is unable to make accurate assessment, i.e., in case a 
damaged node is not correctly identified, it and its dependent 
nodes, which are also damaged, will remain unrecovered.  
This will result in valid users or procedures reading them and 
spreading damage by updating other objects, as discussed 
earlier.  For a detailed discussion on damage assessment, one 
may review [9] and [10], which were developed particularly 
for database systems.  However, the methods are still 
applicable to critical infrastructure systems.  Below we 
provide a basic mechanism to carry out the assessment. 
 Damage assessment begins with the APG, which shows 
the actual dependency relationships among the objects in the 
system (Note that the APG can be built as transactions are 
executed and dependencies are established among various 
nodes of the PPG). Given the initial attack point, the 
corresponding node is then marked as damaged.  This is the 
starting node of the DSG. Then by scanning the log from the 
corresponding location of the attack point, transactions that 
read the marked node are identified.  Any objects written by 
those transactions are then marked as damaged in the APG.  
This process continues until the end of the log.  Finally, all 
unmarked nodes and the edges showing their dependencies 
are removed.  The resulting graph is the completed DSG. 
 The APG is constructed in Algorithm 2. This algorithm 
reads the transaction log and creates a node each time a new 
data object is mentioned in the log. The object’s 
dependencies are depicted as the node’s edges in the APG. 
When an existing data object is updated, it becomes a new 
object in the transaction log. As described earlier, this is done 
to prevent recursive dependencies in the APG. 
 Once damage assessment is carried out, recovery 
procedure must begin immediately in order to make the 
system operational quickly.  We use Algorithm 3.1 as the 
main procedure to initialize an object set for repairs. The 
algorithm starts by initializing the set of damaged objects O. 
Each node N within O consists of a system component and its 
relationships with other nodes in O. As mentioned previously 
under Definition 4, some system components may have 
recursive or bidirectional dependencies between each other. 
Therefore, system components can have repeat nodes within 
O to represent their different versions. Each node is assigned 
values for criticality, repair time, and centrality. Using those 
metrics, the algorithm determines an initial target node N0 
based on criticality. If there are two or more nodes with the 
highest criticality, then the node with the lower repair time is 
selected. In the event of another tie, the node with higher 
centrality is selected. Further ties are broken by random 
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selection. N0, along with O and the repair queue Q, are used 
to make the first call to the recursive function Algorithm 3.2 
at step 4.5. Algorithm 3.1 proceeds until O is completely 
empty, and then the repair queue is finalized, and Q is printed. 

As previously discussed, a node must have its parent 
nodes repaired before it can be considered eligible for repairs. 
Algorithm 3.2 ensures that nodes are scheduled for repairs in 
the proper order while still adhering to the rules set for 
determining priority. It does this by using a while loop to 
check the currently selected node N for repair eligibility. If N 
is eligible for repairs, then it is removed from O and Q is 
updated, then returned. If N is not eligible, then O’, a 
subsection of O made up of all dependency paths above the 
currently selected node is created and used to find the next 
highest priority node N’ within O’. Algorithm 3.2 is 
recursively called using N’ and O’, which can either result in 
the node’s repair or another node being selected for repair 
again. The recursive nature of this algorithm ensures that 
each time a decision needs to be made on which node needs 
to be repaired next, it will prioritize criticality and efficiency 
among all the nodes that can be repaired at any given step. In 
this way, the bulk of the work done by the algorithm is 
choosing the next object for repair within each iteration. Each 
function call will result in one object being repaired and 𝑛𝑛 −
1 additional function calls, where 𝑛𝑛 is the number of nodes 
within the set of nodes being passed. Since repaired objects 
need to be removed from the DSG, function calls will need to 
update and return the global DSG and Q. 
 
Algorithm 2: Initializing the Actual Paths Graph 
Result: Adjacency matrix 𝑀𝑀APG representing the APG 
Parameters: transaction log T, containing the set of edges E that 
were used to make updates 
1 For each edge 𝐸𝐸𝑥𝑥𝑦𝑦 in T 

1.1 𝑀𝑀APG(𝑥𝑥, 𝑦𝑦) = 1 
2 Return 𝑀𝑀APG 

Algorithm 3.1: Initialization for object set repair 
Result: Queue of objects ordered by repair priority 
1 Initialize set of damaged objects O 
2 Preprocess object priority using criticality, repair   
   time, and centrality 
3 Initialize repair queue Q  
4 while O has damaged nodes remaining 
   4.1 Select the highest critical node(s) N within O 
   4.2 if Two or more nodes are tied for highest  
         criticality 
         4.2.1 Select the node(s) N with the lowest repair  
                  time R within O 
   4.3 if Two or more nodes are tied for lowest repair  
         time 
         4.3.1 Select the node(s) N with the highest  
                  centrality within O 
   4.4 if Two or mode nodes are tied for highest  
         centrality 
         4.4.1 Select a single node at random from those  
                  still tied 

   4.5 Update repair queue(N0, O, Q) → Q  
5 Print Q 
Algorithm 3.2: Recursive repair function  
Result: Schedules a node N for repairs and returns the 
updated repair queue Q 
1 Update repair queue(Selected node N, object set O, repair queue 
Q): 
2 while Current object has unrepaired dependencies: 
   2.1 Create subset of damaged nodes O’ of all nodes  
         N’ and edges E’ that N is dependent on 
   2.2 Select the highest critical node(s) N’ within O’ 
   2.3 if Two or more nodes are tied for highest  
         criticality 
         2.3.1 Select the node(s) N’ with the lowest  
                  repair time R within O 
   2.4 if Two or more nodes are tied for lowest repair  
         time 
         2.4.1 Select the node(s) N’ with the highest  
                  centrality within O 
   2.5 if Two or mode nodes are tied for highest  
         centrality 
         2.5.1 Select a single node at random from those  
                  still tied 
   2.6 Update repair queue(N’0 , O’, Q) → Q 
   2.7 Remove the most recent object in repair queue  
         from O 
3 Repair N 
4 Add N to Q 
5 Return Q 

The algorithm produces a list of system nodes in the 
order in which they should be repaired. Recovery procedure 
then continues to the next step to begin repairs on the system. 
It is important to note that while repairs are simulated by the 
algorithm, the process for repairing the actual components of 
the system is not within the scope of this work. 

VI. EXPERIMENTS AND ANALYSIS 

In this section we present the results from simulations 
done using our model. We first describe the setup used for 
our experiment, then present the results from each simulation 
that we ran and explain the implications of the results.  

A. Experiment Description 

We evaluated the efficiency of our method by using it to 
find the number of nodes needed to repair every critical node 
in a DSG simulation with various parameters. The simulation 
constructed a DSG with randomly assigned relationships 
between nodes. The parameters used to build each DSG were 
total nodes, percentage of critical nodes, maximum number 
of parent nodes per node, and maximum number of children 
nodes per node. After the DSG was built, the set of critical 
nodes was randomly picked from the entire DSG for our 
method to compute the repairs required to bring all critical 
nodes back into a good state. For each simulation, 25 
different sets of critical nodes were tested, and the average 
number of required repairs was reported by the simulation. 
We ran four experiments to test the changes to the number of 
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required repairs caused by changing each parameter. For 
every experiment, we set the control variables to be 10,000 
total nodes, 5% critical nodes, and a maximum of 6 parent 
nodes and 6 child nodes per node. We compared our method 
to modified versions of two common traversal algorithms: 
breadth-first search (BFS) and depth-first search (DFS). The 
BFS algorithm repaired nodes starting with all the root nodes, 
then all the children of the root nodes, and then the next set 
of child nodes until it reached the bottom. On the other hand, 
DFS repairs a single parent node, then repairs one of its child 
nodes, and repeats that process until it reaches a node with no 
children. When that happens or if it has already repaired all 
child nodes for a given node, it goes back up to the previous 
node and repairs another child node. The exception to this 
process is if a node has other parent nodes that have not been 
repaired yet. The algorithm will break the traditional BFS or 
DFS order to ensure that the node is eligible for repair. We 
include the results for the BFS and DFS repair algorithms 
with our own method. 

 
Figure 8a: Required repairs based on Total Nodes 

 
Figure 8b: Required repairs based on Critical Node Percentage 

 

B. Results and Analysis 

We present two graphs for each round of simulations in 
Figures 8 and 9. The former figure is a bar graph highlighting 
the different in required repairs between our algorithm and 
BFS and DFS traversals. Figure 9 shows the changes in the 
percentage of nodes repaired between each parameter of a 

simulation. Our results for required repairs based on total 
nodes is shown in Figure 8. It shows that the required repairs 
maintain a constant ratio between them and the total nodes 
with the given control variables, as each experiment resulted 
in a little less than 25% of the total nodes needing to be 
repaired. Figure 8b shows the results for required repairs 
needed for different percentages of critical nodes. We found 
that while the number of required repairs increases as the 
percentage of critical nodes increases, less additional repairs 
are needed when the percentage is higher. Therefore, a high 
number of critical nodes require less repairs per critical node 
than a lower number of critical nodes. Figures 8c and 8d show 
the change in required repairs for different maximums of 
children and parent nodes per node respectively. We found 
that with a low number of maximum children per node, more 
repairs are required. This is because the system of nodes 
becomes narrower in shape. In contrast, when there is a 
higher maximum of parent nodes per node, the required 
repairs see an increase. This indicates that a critical node is 
more likely to have additional parent nodes, which would 
require more repairs than a critical node with fewer parent 
nodes. Across all graphs, we can see that targeting specific 
nodes for repair drastically shortens the time needed to 
recover critical functions, as the average required repairs for 
the BFS and DFS algorithm in most simulations was slightly 
less than the total number of nodes in the simulation. 

 
Figure 8c: Required repairs based on Maximum Number of Child Nodes 

 
Figure 8d: Required repairs based on Maximum Number of Parent Nodes 
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C. On BFS and DFS algorithms 

Before running our simulations, we expected our 
algorithm to outperform BFS and DFS searches due to it 
specifically targeting critical nodes for repair first. However, 
these two algorithms ended up traversing nearly the entire 
system before repairing all critical nodes. The best way to 
explain this is to consider the order by which each algorithm 
repairs nodes as a static ordered list. Our algorithm sorts this 
list after nodes are assigned criticality, so the final critical 
node that needs to be repaired ends up being close to the front 
of this list. On the other hand, BFS and DFS do not consider 
criticality when sorting this list, so each node’s criticality on 
their lists after sorting is effectively random. What 
determines how many nodes need to be repaired is ultimately 
the final critical node in the list, so the odds of this node not 
being in the final thousand or even hundred nodes are quite 
low. Therefore, BFS and DFS will need to repair almost all 
the nodes except for when the percentage of critical nodes is 
lower. When that happens, it is more likely that the final 
critical node will be closer to the middle of the repair order 
instead. 

 
Figure 9a: Changes in required repairs based on maximum number of 

parent nodes 
 

 
Figure 9b: Changes in required repairs based on the percentage of critical 

nodes 

VII. CONCLUSION 
In this research, we have presented a method to repair 

data objects that prioritizes quick recovery for the most 
important components of a system. This allows for the partial 
restoration of functions during the recovery process with an 
emphasis on restoring service to the most necessary 
functions. This was first done by building out three graphs to 

represent the entire system, what changes the system made 
after an attack, and the cascading damage as a result of those 
changes. Next, we developed an algorithm to optimally 
schedule repairs by using those graphs to find damage paths 
that affect the most critical nodes of a system and calculate 
the fastest repair order to fully restore those nodes. Lastly, we 
presented results from a simulation of our algorithm and the 
effects on changing the parameters of the damage paths. Our 
work is most applicable to protecting critical infrastructure 
systems where services need to be restored as quickly as 
possible to avoid economic or societal disruptions.  

Further work includes considering the frequency at 
which an object is used to update its dependencies. Objects 
that are updated at a higher frequency would be prioritized as 
more important. Additionally, a method to select the order of 
repairs for non-critical objects after all critical objects have 
been repaired is also needed. 

 
 

 
Figure 9c: Changes in required repairs based on the maximum number of 

child nodes per node 
 

 
Figure 9d: Changes in required repairs based on the maximum number of 

parent nodes per node 
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