
Implementation of a Software Based Glitching
Detection Mechanism

Jakob Löw
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Abstract—Clock glitching is an attack surface of many micro-
processors. While fault resistant processors exist, they usually
come with a higher price tag, resulting in their cheaper alterna-
tives being used for small embedded devices. After describing the
effects of fault attacks and their application to modern micro-
processors, this paper presents the concept and implementation
of a novel software based approach at protecting programs from
fault attacks. Even though the protection mechanism can be
automatically added to a given program in a special compiler
step, its use case is not to protect the full program. As shown
by the performance analysis in this paper, the approach comes
with heavy performance implications, making it only useful for
protecting important parts of programs, such as initialization,
key exchanges or other cryptographic implementations.

Index Terms—computer security; clocks; microcontrollers; pro-
gram compilers; program control structures

I. INTRODUCTION

Hardening software against glitching attacks manually is a
tedious task and requires a trained developer. Hardware based
glitch detection on the other hand increases cost of production.
Thus the most efficient approach in order to protect against
glitch attacks is with generalized and automated software
mechanisms. The goal of this paper is to introduce and rate
a software based approach, protecting a program from clock
glitching attacks.
In order to introduce this approach, first, the nature and effects
of glitching attacks in general and clock glitching attacks in
particular are described in Section II. Section III discusses
state of the art software based protection mechanisms. Then
an approach at detecting glitch attacks is introduced in Section
IV. This paper is the extended version of Löw et al. [1], it
introduces an implementation of the glitch detection approach
in Section V. The performance impact of the approach is then
rated using this implementation in Section VI.

II. GLITCHING ATTACK MODELS

In embedded IT Security, glitching attacks are a special kind
of side channel attacks. Their target is to trigger misbehaviours
of the target processor in order to alter execution or data flow.
A typical goal of a glitch attack is changing the execution
flow, such that one instruction is skipped. For example, when
glitching the conditional branch instruction of a signature
check, the check is skipped and the program continues even
if the signatures did not match. Triggering a glitch while

the processor is loading a value from memory can cause the
memory load to not finish correctly and often results in a
zero value being loaded instead. Thus, glitching the data flow
is often used to attack cryptographic algorithms by glitching
the load of keys from memory or by glitching arithmetic
operations [3].
The next Subsection will first describe clock glitching attacks,
which this paper focuses on, in detail. Afterwards Section
II-B will cover the exact effects of clock glitches targeting
microprocessors using Atmels AVR microarchitecture.

A. Clock Glitching

Clock glitching is a specific form of glitching attacks. A
glitch in the target processor is triggered by altering the pro-
vided clock signal. Normally a clock signal is generated by an
oscillator with a constant frequency; Rising that frequency is
called overclocking. Each processor has a maximum operating
frequency, if the clock frequency rises above this threshold the
processor starts to behave abnormally.
In a classical clock glitching attack, only a single targeted
glitch is inserted into the clock signal, i.e., a second high signal
is inserted causing the current instruction to not complete
before the next one starts its execution. The effects depend on
various parameters as well as on the processors architecture
and design.
Figure 1 shows the electrical potential of a clock line during a
clock glitch attack. The first Section, labeled as cycle A, shows
a regular clock cycle, while cycle B shows a clock cycle with
a glitch inserted [6].

B. Effects of Clock Glitches on AVR Microprocessors

The research by Balasch et al. [6] goes into detail about
what exactly happens when a microprocessor is attacked by a
glitching attack. They used a Field Programmable Gate Array
(FPGA) to generate a clock signal for ATMega163 based smart
cards. The FPGA allows clock signal modifications, such as
inserting a glitch at a specific location. The ATMega runs
a special firmware, which places all registers in a known
state, executes the instruction targeted by the glitch and then
examines the state of all registers of the microprocessors. From
the transformations between the start state and the result state
the executed instruction can be derived. This, however, is a non
trivial task. For example, when before the instruction the value
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Fig. 1: Injection of a Clock Glitch

0x0f was in register r18 which changed to 0xf0 afterwards
the executed instruction could either be a 4-bit left shift or
an addition with 0x51. Multiple runs with the same glitch
period, the same instruction but different input states have to
be performed in order to be able to identify the actual executed
instruction.
With these methods Balasch et al. [6] show the actual effect
of clock glitches with different glitch periods on a target
instruction. During instruction fetching the value of the in-
struction to execute next changes from the previous instruction
to zero and then to the value of the following instruction. By
injecting a glitch into this transition, depending on the length
of the glitch period, either a decayed version of the previous
instruction or a decayed, i.e., not yet fully loaded, version
of the current instruction can be executed. Figure 2 shows
this behaviour for a Set all Bits in Register (SER) instruction
followed by a Branch if Equal (BREQ) instruction. In this
specific case, for a glitch period up to 28 ns a decayed version
of the BREQ instruction is executed. From 32ns and upwards
an intermediate value of the transition from zero to SER is
executed [6].

Glitch
period Instruction Opcode (base 2)

TST R12 0010 0000 1100 1100
- BREQ PC+0x02 1111 0000 0000 1001

SER R26 1110 1111 1010 1111
≤ 57ns LDI R26,0xEF 1110 1110 1010 1111
≤ 56ns LDI R26,0xCF 1110 1100 1010 1111
≤ 52ns LDI R26,0x0F 1110 0000 1010 1111
≤ 45ns LDI R16,0x09 1110 0000 0000 1001
≤ 32ns LD R0,Y+0x01 1000 0000 0000 1001
≤ 28ns LD R0,Y 1000 0000 0000 1000
≤ 27ns LDI R16,0x09 1110 0000 0000 1001
≤ 15ns BREQ PC+0x02 1111 0000 0000 1001

Fig. 2: Instruction decay based on glitch period

C. Glock glitching with modern Microprocessors

As microcontrollers such as the AVR tiny and mega series
usually clock between 1 and 8 MHz they tend to have a direct
clock input line, where a oscillator with the desired clock
frequency has to be attached.
On higher clocking microcontrollers such as the ARM Cortex
M0 series operating on a clock frequency of usually around
50MHz to 100MHz a phase locked loop (PLL) is used to
generate the clock signal [11]. A PLL uses an input signal
of an oscillator and is able to multiply that signal allowing
it to generate higher frequencies [4]. This is achieved by
dividing the output of a voltage controlled oscillator (VCO)
and synchronizing this divided voltage with an input voltage
obtained from a quartz oscillator. This way the input frequency
is effectively multiplied achieving a higher frequency.
A PLL output does not immediately respond to changes in
the input frequency, which means a classical clock glitch
has little to no effect on the actual clock frequency of the
microprocessor. Increasing the input frequency for a longer
period of time, does however make the PLL output frequency
rise. This effect is used by B. Selmke et al. in [11] to induce
glitches into an ARM Cortex M0 processor even though it
utilizes a PLL based clock multiplier. Figure 3 shows the
principle of this approach: By increasingt he input frequency
for a specific duration the processor frequency generated by
the PLL increases. While the processor might be able to be
slightly overclocked over the nominal frequency, at a specific
point the frequency becomes too high for the processor to
work correctly, at which point the processor shows faulty
behaviour. The frequency required for entering the CPU fault
zone depends on the chip kind, quality and even on the
instructions executed. This makes glitching processors with
PLLs hard, but [11] proves it is still achievable by attacking
an AES implementation running on an ARM Cortex M0.
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Fig. 3: Glitching a processor with a PLL

III. EXISTING SOFTWARE BASED GLITCH DETECTION
TECHNIQUES

Papers covering fault based attacks on cryptographic im-
plementations date back to 1997, and there are already mul-
tiple papers covering protection mechanisms against fault
attacks using software or hardware based countermeasures.
The software based countermeasures are usually based on
either duplicating instructions or validating computations. The
following sections describe some of the common approaches
at glitch detection by example, before a novel approach is
discussed in Section IV.

A. Instruction duplication mechanisms

A very common approach at protecting code from glitch
attacks is instruction duplication or even triplication. It is
usually implemented at a very late stage in the compilation
process and works by simply duplicating memory load or
even arithmetic instructions and checking their results for
equality. A simple ARM64 assembly example is shown in
Figure 4. Instead of only loading the value at x0 once into
register w0 it is loaded a second time into w1. If a glitch
occured in one of the two instructions, i.e., a wrong value
was read from memory, the comparison check fails and an
error handler is called.

ldr w1, [x0]
ldr w0, [x0]
cmp w1, w0
bne glitch_error

Fig. 4: Validation using instruction duplication

While this approach is simple to implement it is flawed,
especially when using modern microcontrollers with multi
stage pipelines. As shown by Yuce et al. in [8] injecting a
single glitch can affect multiple instructions. This is possible,
because the two load instructions are not executed one after
another, but rather go simultaneously through various stages
in the processor pipeline.

In general placing the validation of an instruction too close to
the instruction itself renders the validation vulnerable to single
glitch attacks.

B. Loop count validation

In [10], Proy et al. describe an automated compiler based
glitch detection mechanism. Instead of validating arbitrary
expressions as shown later in this paper, the approach from
[10] focuses on validating loop exit conditions and iteration
counts. The goal is to prevent attacks which weaken the
security of cryptographic algorithms by reducing the number
of encryption rounds.
A special compilation pass is added to LLVM, a very
common compiler infrastructure. When encountering a loop
with a iteration variable this optimization pass add a a second
iteration variable which gets incremented or decremented the
same as the original variable and thus allows to validate the
loop exit condition after the loop exited. For example, the
loop shown in 5a is modified to include a second variable and
a condition check turning it into code for the loop shown in 5b.

int i = 0;
while(i < 10) {
// ...
i++;

}

(a) Loop with iteration variable

int i = 0;
int j = 0;
while(i < 10) {
// ...
i++;
j++;

}

assert(j >= 10);

(b) Loop from 5a with validation

Fig. 5: Basic loop validation example

This optimization works best for loops with simple iteration
calculation, i.e., adding or subtracting a constant from the
iteration variable each iteration. Loops which contain break
statements or which use a complex iteration modification
however increase complexity of correct validations. The code
listings in Figure 6 demonstrate these special loop forms.
A glitch attack on the calculation of x in Figure 6b would
affect not only the iteration variable, but also a possible
validation variable. Thus, for glitch robustness not only the
iteration variable needs to be duplicated and recalculated, but
also all variables used to modify it. In [10] this is achieved by
tracing through the expressions used to modify the iteration
variable and recalculating all these expressions.

33

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The following Section describes a similar, but broader ap-
proach, which not only validates loop conditions but rather
all expressions calculated in a function.

int i = 0;
while(i < 10) {

// ...
int x = // ...
if(x == 42)
break;

i++;
}

(a)

int i = 10;
while(i > 0) {
// ...
int x = // ...
i -= x;

}

(b)

Fig. 6: Advanced loop validation examples

C. Mathematical validation of computed values

The paper [5] by Aumüller et al. focuses on protecting
the Rivest-Shamir-Adleman (RSA) cryptosystem. Instead of
classical instruction duplication or expression validation tech-
niques as described in Sections III-A and III-B it makes
modifications and validations on a higher level. Rather than
looking at algorithm implementations or even machine code,
the computation is validated by modifying the RSA CRT
algorithm, a common optimization to RSA using the Chinese
Reminder Theorem (CRT).
Given a message m, two primes p and q, and the exponent
d, the regular RSA CRT algorithm consists of the following
steps to calculate the signature S of a message m:

dp = d mod (p− 1) (1)

dq = d mod (q − 1) (2)

Sp = mdp mod p (3)

Sq = mdq mod q (4)

S = Sq + q · ((Sp − Sq) · q−1 mod p) (5)

Aumüller et al. [5] extend the calculation of Sp and Sq shown
in (3) and (4) with a third, smaller prime t and two random
numbers r1 and r2:

p′ = p · t (6)

d′p = dp + r1 · (p− 1) (7)

S′p = md′
p mod p′ (8)

q′ = q · t (9)

d′q = dq + r2 · (q − 1) (10)

S′q = md′
q mod q′ (11)

The two values S′p and S′q can then be used to calculate Sp

and Sq and thus S using Equation (5).

Sp = S′p mod p (12)

Sq = S′q mod p (13)

This modified algorithm allows validation of the result using
the conditions shown in equations (14) to (19). [5]:

0 ≡ p′ mod p (14)

0 ≡ q′ mod q (15)

dp ≡ d′p mod (p− 1) (16)

dq ≡ d′q mod (q − 1) (17)

0 ≡ S − S′p mod p (18)

0 ≡ S − S′q mod q (19)

While this approach allows to implement a glitch hardened
RSA implementation it only applies to RSA. It is not a gen-
eral approach at hardening algorithms against glitch attacks.
While its principles could be applied to other algorithms
each requires manual work by a developer, rather than e.g.,
automatically applying protection using a compiler pass as
shown in the following section.

IV. DETECTING GLITCHES USING EXPRESSION
VALIDATIONS

Traditionally, glitch detection techniques use instruction
duplication or even triplication. While this works for some
architectures, as described in Subsection III-A, a duplicate
instruction is still vulnerable to a single fault on processors
featuring a multi stage pipeline. Thus, in order to increase the
robustness of glitching detection mechanism, the validation
has to be placed as far away from the original computation
as possible. In compiler engineering functions are divided
into multiple blocks through which execution flows linearly.
Moving validations out of the basic block of the original
computation, means the number of instruction executed be-
tween computation and validation can vary between just a
few computations to multiple calls to other functions. Placing
validations farther away from their original computations
makes it harder for an attacker to glitch both computation
and validation.
The following sections, based on the short version of this
paper [1], describe how to find the optimal locations for vali-
dations and how to validate both computations and conditional
branches.
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A. Identifying Locations for Validations

As described in Subsection III-A glitch detection mecha-
nisms are still vulnerable to a single glitch fault when the
duplicated instruction, in our case the second computation, is
placed close to the original instruction. Placing the validation
as far away from the original computation as possible ensures
its robustness against single fault attacks.
The last possible location for a validation check is usually the
end of the scope a value is defined in. For a value defined
in a conditional or loop body this results in the check being
placed at the end of the conditional or loop respectively. For
a value defined in a function the last possible check is right
before the function returns. Figure 7 shows an example with
these two cases.

int main(int argc, char **argv)
{

int x = argc * 10 - 2;
if(argc > 1)
{

int y = x * 3;

if(argc > 2)
puts(argv[1]);

// <-- validate ‘y‘ here
}

// <-- validate ‘x‘ here
return x;

}

Fig. 7: Example Code

While it is trivial to find the optimal location for immutable
variables in program code, a mutable variable might be
changed between its first initialization and the end of the
scope. In order to correctly validate all values of a mutable
variable the location has to be determined during a later stage
in the compilation process. The Static Single Assignment
(SSA) form is a very common form of representing a program
in compilers. In SSA form each variable is immutable and only
assigned once, variables which are originally mutable and set
multiple times are split up into seperate variables for each
assignment. Additionally, a function in SSA form is usually
represented as basic blocks rather than loops and branches.
Figure 8 shows how gcc represents the code listed in Figure
7 internally after SSA creation.
The validation of x, labeled x_5 in Figure 8, can be placed
in block 5 (B5). But there does not exist a block for the
optimal location to validate y_7. It cannot be placed in B5,
as that block is also reachable from B2 where y_7 does not
exist. Thus a new block has to be created, with B3 and B4 as
predecessors and B5 as successor. The edges B3 → B5 and
B4 → B5 have to be removed. The validation of y_7 can

then be placed inside the newly created block.
In general, a variable x created in block Bx can only be
validated in Bx itself or in a block Bi where all predecessors
prec(Bi) are direct or indirect successors of Bx. The optimal
location for the validation is by definition the block that is
the farthest away from Bx while still meeting the required
condition.
Figure 9 shows the SSA block graph of Figure 7 with
validations. Block B5 is the newly inserted block and B6 the
former block 5.

Fig. 8: Basic Block graph in SSA form of 7 without validations
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Fig. 9: Basic Block graph in SSA form of 7 with validations

B. Validating Calculations

Without deeper knowledge of the implemented algorithm
validating calculations often boils down to simply recomputing
all values and thus duplicating the entire calculation.
For example, the statement int x = argc * 10 - 2;
from Figure 7, results in the SSA shown in the following
listing:

_1 = argc_9(D) * 10;
x_10 = _1 + -2;

For a full validation both the SSA values _1 and x_10 have
to be recalculated and validated:

_5 = argc_9(D) * 10;
__builtin_validate (_1, _5);
_6 = _5 + -2;
__builtin_validate (x_10, _6);

A simpler approach is to only validate the outermost result
of one or more chained calculations. For the above exam-
ple this is achieved simply by removing the first instance
of __builtin_validate resulting in the code shown
in 9. For larger entangled calculations removing redunant
validations allows to greatly reduce the amount of validations
required. For instance all variables in the following C code can
be validated using a single validation of z instead of having
to validate all variables or even all intermediate SSA values
one by one.

int x = a * 10 + 3;
int y = x / 7;
int z = x * y * 13;

The __builtin_validate function acts similar to an
assert equals function, it continues with execution if the two
values are identical and cancels execution otherwise. In a pro-
duction environment the function can be inlined producing an
inequality check and a conditional jump to an error function,
resulting in code similar to what gcc produces for calls to
assert. Figure 10 shows the validation of x from Figure 7.

Fig. 10: Validation in production

C. Validating Comparisons and Conditional Jumps

In gcc the condition of a branch can not only be a single
SSA value, but also a comparison operation. An example is
the if (argc_4(D) > 1) statement at the end of block
2 in Figure 8. This is because in most processor architectures
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a comparison of two values used for a conditional jump is
done without storing the result in a common register, i.e.,
the comparison result is only stored in a flags register, which
is then immediately used by the following conditional jump
instruction.
As there exists no SSA name for the result of such compar-
isons in gcc it cannot be validated as described in Subsection
IV-B. A block with a conditional branch at the end always
has two successors, one for when the condition is true,
one for when its false. Therefore, in order to validate the
condition, two validations, one for each successor have to be
created. Each validation follows the same rules as described
in Subsection IV-A with their initial blocks being the targets
of the conditional edges.
In general, for a block Bi with multiple successors, the
branching condition can be validated using one validation
placed as if a value j has been created in Bj for all edges
Bi → Bj .
If one of the successors Bj is also a direct or indirect successor
of any of the other successors of Bi a new block between Bi

and Bj has to be inserted. This is usually the case for loops
and if statements without an else block. For example, in Figure
8 the validation for the condition of B2 being false cannot be
placed in B5, as B5 is also a successor of B3.

D. Performance Considerations of Expression Validations

Simple instruction duplication mechanisms as described in
III-A duplicate the runtime of the protected instructions. This
holds true for simple microprocessors where each instruction
takes a fixed amount of clock cycles. For advanced processors,
which incorperate memory caching, a second load of a specific
address will result in a cache hit, which is usually faster than
a load from memory.
The novel glitch detection approach described in Section
IV also duplicates instructions and thus has similar effect
during runtime. The bigger impact, howver, is its prevention
of possible compiler optimizations resulting in the generation
of less performant instructions. Normally a compiler analyzes
the lifetime of variables and the collisions between those
lifetimes. The lifetime of a variable starts when the variable
is first set and ends with its last usage. Two lifetimes collide
when they are both alive at any given point in the function.
When two lifetimes do not collide they can be placed in the
same processor register. With too many lifetime collisions
the compiler might run out of registers to assign and has
to place variables in memory instead [7]. By definition, the
optimal location for validation, as given in Subsection IV-A,
extends the lifetime of variables to the maximum possible.
Thus, with the novel detection approach, the register allocator
of the compiler will have to place variables in memory
more often, resulting in more memory accesses and decreased
performance.
For example, the SSA variable y_12 of Figure 9 would
normally live only for a short time in B3. Its validation in B5

extends its lifetime, making it collide with the SSA variables
_2, _3 and _4.

In order to decrease the performance impact expression val-
idation can only be enabled for security relevant functions
such as cryptographic implementations or credential checks
by disabling validations for all functions and adding a special
compiler attribute to relevant ones.

V. PROOF OF CONCEPT IMPLEMENTATION OF EXPRESSION
VALIDATIONS

In order to test the feasability and actual performance
impact of expression validations, the validations as described
in Section IV were implemented into an existing compiler
backend. The compilation library GNU libjit was picked as a
framework for the implementation, as its internal immediate
representation (IR) is simple and it already includes the live-
ness algorithms described in [7]. The liveness information will
also be used in the following sections in order to implement
the validation placement as described in Section IV-A.

A. libjit Immediate Representation

A compilation unit in libjit is a function. Each function
consists of one or more basic blocks. Each basic block contains
instructions, which are executed linearly. Having a call, jump
or conditional jumps ends the current basic block and starts
a new one. This way execution always flows linearly through
a basic block. A block a, which may jump to another block
b, is called bs predecessor and a is called a successor of b.
Each block can have multiple successors as well as multiple
predecessors. The control flow graph (CFG) of a function is
a representation of the functions control flow using a directed
graph G with a node vi for each basic block i and edges vij
for each successor vj of vi.
An instruction in libjits immediate representation consists of
an operator op and up to three values. These values are
named dest, value1 and value2. Thus the usual form of
an instruction is dest = value1 op value2. Complex
mathematical expressions have to be broken down to a series
of such instructions with the use of temporary values. For
example the expression y = 2 * x + 7 in libjit IR uses a
temporary value i0 as shown in the following listing:

i0 = 2 * x
y = i0 + 7

There however exist many instructions where neither dest
nor value2 exist or just one of them. One example for such
instructions are the conversion instructions, such as converting
a 64-bit integer to a 64-bit floating point value denoted as
dest = long_to_float64(value1).
Each instruction includes flags what kind of operation is
performed and which of the three values are used. For the
purpose of expression validations only arithmetic and compar-
ison instructions are relevant. These instructions can simply be
cloned and given a new dest value, which is then compared
to the original dest.
Libjit does not represent instructions in SSA form. This means
a value used as a destination for an instruction might be
used as a destination for other instructions too and thus its
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value might change. This makes determining locations for
expression validations harder, as a cloned instruction might
depend on a value changed between the original computation
and the duplicated one.

B. Liveness Flags in libjit

Libjit implements liveness and dataflow analysis as de-
scribed by Cooper and Torczon in [7]. Each basic block is
fitted with flags about killed, upwards exposed and living out
values. A value k is killed in block vi if its value is changed
inside vi. A value is upwards exposed when it is used without
being or before being killed. A value k lives out a block vi
when one of vi successors has k upwards exposed.
In libjit these three attributes are stored in bitsets for each
block, with one bit for each value that exists in the function.
As libjit expressions are not in SSA form, for expression
validation mainly the kill set of a block is relevant, that is when
trying to validate an instruction in the form of c = a + b
the validation cannot be placed after a modification of a, b or
c.

C. Basic Block Domination

In Graph theory a node vi in control flow graph G is said to
be dominated by another node vj when all possible paths from
the entry point to vi go through vd. Thus in program execution
when vi is executed the instructions in vd have been executed
at least once.
Block domination is easily described in a recursive manner:
A block vj is dominated by itself and the intersection of all
dominators of its preceeding nodes vi:

Dom(vj) = {vj} ∪ (∩vi∈preds(vj)Dom(vi)) (20)

This recursive definition can be implemented using a fix
point algorithm as shown in Figure 11. This direct implemen-
tation has a complexity of O(n2) with n being the number of
blocks in the control flow graph. In 1979 Lengauer et Tarjan
described a faster algorithm for finding block dominators with
a runtime of O(m · log(n)) with m being the number of edges
and n the number of nodes [2].
With m and n staying below 1000 in all test cases and because
the latter algorithm comes with a higher implementation
complexity, the direct implementation, shown in Figure 11,
was chosen for libjit.

dominators[v0] = {};

foreach vi in G:
dominators[vi] = {v0, v1, ..., vn};

while dominators changed:
foreach vj in G:

dominators[vj] = \
{vj} ∪ (∩vi∈preds(vj)dominators[vi]);

Fig. 11: CFG Dominator Algorithm

D. Finding Expression Validation Locations in libjit

Section IV-A described the optimal validation location,
based on program code with the concept of scopes. In libjit
IR the concept of scopes does not exist directly, as it operates
on a lower level than regular program code. In program code
a scope ends when the execution flow of multiple possible
branches join without all branches being created within the
given scope. In the example code in Figure 7 the scope where
variable y was created ends with the end of the outer if
statement. However the scope where variable x was created
does not end at that location, as both the if and else branch
were created within the scope of x.
When mapping the scope lifetime to basic blocks a scope of
variable k is exactly alive in all blocks, which are dominated
by the block creating k. This means a variable k can be
validated in all blocks vi where the creating block vk of k
is dominating vi: vk ∈ Dom(vi).
Additionally, as described in Section V-B, in libjit a block
vj is not a possible validation candidate when k is killed by
one of its direct or indirect predecessors vi, without vi being
the block with the original instruction that is to be validated.
While applying these rules to all blocks gives us the list of
possible validation locations what we are actually looking for
is the last possible location for a validation. A block vi is
the last possible location for a validation of a value created
in vk when not all of its successors vj are possible validation
candidates for k, i.e., when not all successors are dominated
by vk.
When an instruction cannot be validated by any other block
than the creating block itself the validation has to be placed at
the end of the block. When the destination value or one of the
operands is killed later inside the same block the validation
has to be placed inside of the block, before the kill occurs.

E. Placing Expression Validations in libjit

In order to validate an instruction, first the original computa-
tion has to be recomputed and afterwards its result compared to
the original computation result. In case of inequality a branch
to a specific expression validation failure label is performed.
Because of this conditional branch placing a validation actually
starts a new basic block at the validation location. Adding new
blocks invalidates the computed dominating block information
as well as the control flow graph itself. Therefore, all expres-
sion validation locations are first computed and collected in a
list before actually placing them into the libjit IR code.
Validations of instructions can either occur at the start or at
the end of a basic block. Placing them at the start is easier,
as a new basic block can simply be prepended before the first
instruction. Placing validations at the end of a block requires
moving the last instruction to another new block.

VI. PERFORMANCE IMPACT OF EXPRESSION VALIDATIONS

As described in Section IV-D the expected runtime increase
is at least 100%. This section measures the actual performance
impact of the reference expression validation implementation
in libjit. As libjit is simply a library used for compiling

38

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



low level instructions to machine code a higher level lan-
guage called PointerScript is used for implementing the test
algorithms. PointerScript is a language with JavaScript like
syntax, but direct access to C functions through its built-in
foreign function interface. For the purpose of performance
measurements several common algorithms such as array sort-
ing, simple addition loops as well as special worst case
scenarios were implemented and ran both with expression
validations enabled and disabled.

A. Performance Test Setup and Programs

As libjit is a JIT compilation library the total program
execution time normally also includes the compilation steps of
the program code. For the purpose of this paper only the actual
code runtime after compilation was measured. Even though
for programs running multiple seconds compilation time only
takes a small amount of the runtime, this way the additional
compilation time caused by expression validation placement
is ignored.
The POSIX gettimeofday function is called before and after
calling the compiled program code and the difference is used
for measuring the runtime of the programs. Each test program
is run ten times and their runtimes are averaged. As runtime
differs based on processor model and speed, for comparison
not the actual runtime, but rather the runtime increase in
percent is used as a metric.
The first test program is a simple loop calculating the sum of
numbers between 1 and n. Its code is shown in Figure 12
The second test program partly listed in Figure 13 is a textbook
implementation of the bubble sort sorting algorithm applied
to an array of n random integers generated using the rand
function.
The last code snippet shown in Figure 14 is an example crafted
especially to visualize the performance overhead introduced by
expression validations. It includes six variables all initialized
with a random value and used in a tight loop with a high
iteration count. Between the initialization of the variables and
the actual loop is a call to an external function. Because of
this function call all values created before the call have to be
placed either in callee saved registers or in memory. Without
expression validations there are exactly six values used after
the call, which is identical to the amount of callee saved
registers in the System V ABI on the x86-64 architecture.
With expression validations enabled the register allocator has
to spill some of the values, i.e., place them in memory instead.
Figures 15 and 16 show this effect in the disassembly of Figure
14 with validations disabled and enabled respectively.

var sum = 0;
for(var i = 0; i < 10000000000; i++)
{

sum += i;
}

Fig. 12: Non-Gauß Addition

for(var i = 0; i < len; i++)
{
for(var j = 0; j < len - 1; j++)
{
if(parts[j] > parts[j + 1])
{

var tmp = parts[j + 1];
parts[j + 1] = parts[j];
parts[j] = tmp;

}
}

}

Fig. 13: Bubblesort

var x = rand();
var a = x + 1;
var b = x + 2;
var c = x + 3;
var d = x + 4;
var e = x + 5;

printf("");

for(var i = 0; i < 100000000; i++)
{
a++; b++; c++; d++; e++;

}

Fig. 14: Register Allocation Spill Triggering Code

48 ff c3 inc %rbx
49 ff c4 inc %r12
49 ff c5 inc %r13
49 ff c6 inc %r14
49 ff c7 inc %r15

Fig. 15: Disassembly of the loop body from Figure 14 with
validations disabled

4c 8b 4d f8 mov -0x8(%rbp),%r9
4d 8d 51 01 lea 0x1(%r9),%r10
49 8b c2 mov %r10,%rax
48 89 45 f8 mov %rax,-0x8(%rbp)
4c 8b 5d f0 mov -0x10(%rbp),%r11
4d 8d 73 01 lea 0x1(%r11),%r14
49 8b c6 mov %r14,%rax
48 89 45 f0 mov %rax,-0x10(%rbp)

Fig. 16: Disassembly of just two of the increments from Figure
14 with validations enabled
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B. Performance Impact of Expression Validations

Figure 17 shows the relative runtimes of the three code
samples. Each runtime is normalized to the runtime of the
program with glitch detection disabled.
As expected the minimum runtime increase is around 100%,
i.e., the runtime is doubled compared to running the same code
without expression validations. This is especially true for the
code samples listed in figures 12 and 13, where the only impact
of expression validations is the added second computation of
expressions within the loop.
For the code sample listed in Figure 14 however the expression
validations do not only duplicate computations, but also have
an impact on the register allocator and thus result in a signifi-
cantly worse performance decrease. Running the program with
expression validations enabled results in an approximatily 4.5
times as long execution time. The forth pair of measurements
in Figure 17 describes the runtime increase of 14 with libjits
graph coloring register allocator disabled. The execution time
in this case is given relativly to the code running with the
advanced allocator enabled. The overhead factor is reduced
to around 3, which is mainly caused by the non-validated
program also storing and loading values from memory and
becoming nearly two times slower, while the runtime with
expression validations only increases from 4.5 to 5.5 times
slower than the runtime with advanced register allocation and
without expression validations.

Fig. 17: Relative runtimes of 12, 13, 14 and 14 using only a
basic register allocator

VII. CONCLUSION

After giving an introduction to glitching attacks and clock
glitches in particular, we discussed various software based
approaches at hardening against glitching attacks. While the
common protection mechanism discussed in Subsection III-A
can easily be applied to a program via an additional compila-
tion pass, it is also shown to be ineffective [8]. The protection
mechanism discussed in Subsection III-B by Proy et al. [10]
can easily be applied to existing codebases, but only validates

loop conditions and loop iterators.
The approach described in Section IV tries to combine the
best traits of the three described previous mechanisms. It is
similar to the mechanism by Proy et al. [10] as it also comes
in the form of a compiler pass and it also adds validations of
existing computations to the program. However, it not only
validates loop conditions, but rather generalizes validation
of arbitrary computations and branch conditions. This allows
it to also protect the program from glitch attacks targeting
value computations or substitutions, instead of only protecting
against attacks aimed at modifying loop execution counts.
Section V discusses the steps of implementing the glitch
detection technique, first described by Löw et al. in [1], into
existing compiler architectures and gives details about the
implementation into the GNU libjit compiler backend. Section
VI shows the performance impact of this proof of concept
implementation based on three representative code samples.
It shows the assumptions about runtime usually doubles, as
assumed in Section IV-D, but also shows the performance
impact can be way worse in specific scenarios. Thus the
approach is best applied only selectively to specific parts
of a program, keeping performance impact low while still
providing protection to curcial code parts.
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