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Abstract—Traditional malware detection methods struggle to
quickly and effectively keep up with the massive amount of newly
created malware. Based on the features of samples, machine
learning is a promising method for the detection and classification
of large-scale, newly created malware. The current research trend
uses machine-learning technologies to rapidly and accurately
learn newly created malware. In this paper, we propose a
malware classification framework based on Graph Contrastive
Learning (GraphCL) with data augmentation. We first extract
the Control-Flow Graph (CFG) from portable executable (PE)
files and simultaneously generate node feature vectors from
the disassembly code of each basic block through MiniLM, a
large-scale pre-trained language model. Then four different data
augmentation methods are used to expand the graph data, and
the final graph representation is generated by the GraphCL
model. These representations can be directly applied to down-
stream tasks. For our classification task, we use C-Support Vector
Classification (SVC) as a classification model. To evaluate our
approach, we made a CFG-based malware classification dataset
from the PE files of the BODMAS Malware Dataset, which we
call the Malware Geometric Multi-Class Dataset (MGD-MULTI),
and collected the results. In addition, we added a new public
malware graph dataset called MALNET-TINY. We also employed
Local Degree Profile (LDP) to generate node representations for
the graph data. The evaluation results on two malware graph
dataset show that our proposal has great potential. According to
our experimental evaluation, the self-supervised learning method
can also achieve superior results, even surpassing the supervised
learning method.

Keywords—malware classification; graph contrastive learning;
data augmentation; self-supervised learning.

I. INTRODUCTION

In our previous work [1], we implemented self-supervised
representation learning on the self-built MGD-Multi dataset,
and used the representation to carry out the downstream mal-
ware classification task. In this work, we added a new public
dataset to further verify the effectiveness of self-supervised
contrastive learning, and evaluated different data augmentation
combination.

Fueled by the progress of software technology and the
internet’s development, thousands of malware are created
every day due to the proliferation of malware creation and
obfuscation tools. Such a massive flood of data poses a con-
siderable challenge to malware analysts and security response
centers (SOCs). Traditional malware detection methods cannot
continue to quickly and effectively detect such a massive
amount of newly created malware. In past decades, machine
learning has played an important role in information security,

especially in malware detection and classification tasks. It is
also a promising method to detect and classify large-scale
newly created malware using the features of samples.

In the field of static malware detection, the feature extraction
method of portable executable (PE) files used in the Endgame
Malware Benchmark for Research (EMBER) dataset [2] has
been widely applied. This feature extraction method directly
provides consistent feature vectors to researchers, allowing
individuals in the same field to compare their respective pro-
posed methods. The information related to software structure,
such as CFG, is rarely extracted, and most methods are based
on surface analysis for extracting statistical information as fea-
tures. In addition, in most malware detection and classification
scenarios, the model is supervised for end-to-end training.

Supervised learning requires manual labeling of a large
amount of data, and the model effect depends on the quality
of the labels. Therefore, the future research trend, which is ex-
ploring unsupervised learning methods, is critical for malware
detection and classification. In recent years, Graph Neural
Networks (GNNs) have made remarkable progress. We can
exploit their powerful representation ability to better represent
malware and improve the effectiveness of its detection and
classification. However, one remaining difficulty is how to
represent malware in graphical form. CFG is a natural graph
structure, we can generate the graph structure data of malware
by extracting CFG. Therefore, we seek to classify malware by
constructing a graph dataset and using unsupervised learning.
Since no publicly available graph classification dataset exists
for malware classification, we started by creating such a
dataset.

Our contributions can be summarized as follows:

• We propose a malware classification framework based on
graph contrastive learning under self-supervised learning.

• We retain the structural information of the samples ex-
tracted from CFG and embed the text features of each
node with a pre-trained language model.

• We create a special graph dataset for malware classifica-
tion that can be used directly on GNNs.

• Our pre-trained model can effectively represent malware
in low dimensions, and this representation can be used
for various downstream tasks.

• We have achieved promising results in the classification
task of two malware graph datasets, and compared the
effectiveness of different methods.
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The remainder of this paper is organized as follows. Section
II reviews related researches and highlights their methodolog-
ical differences. In Section III, we describe the background
knowledge of our research, as well as the methods of graph
feature extraction and graph data construction. In Section IV,
we discuss the principles of our proposed data augmented
GraphCL-based static malware PE classification system and its
application to malware classification. In Section V, we briefly
discuss the implementation details of our proposal. In Section
VI, we describe the corresponding experiments and evaluate
their feasibility as well as the advantages and limitations of
our proposal. Finally, we discuss our conclusion and describe
future work in Section VII.

II. RELATED WORK

Static malware detection allows a sample to be classified as
malicious or benign without executing it. In contrast, dynamic
malware detection is based on its runtime behavior and as well
as its analysis, including time-dependent system call sequences
[3]–[5]. A program that precisely discerns a virus from any
other program by examining its appearance is infeasible, so
static detection is not generally deterministic [6]. Compared
with dynamic detection, the advantages of static detection
are also obvious. Static detection can identify malicious files
before the samples are executed. Since 1995, various machine-
learning-based methods for static PE malware detection have
been proposed [7]–[9].

A. Supervised-learning-based Methods

Saxe used histograms through byte-entropy values as input
features and multilayer neural networks for classification [8].
Raff et al. showed that fully connected and recursive networks
can be applied to malware detection problems [10]. They also
used the raw bytes of PE files and built end-to-end deep
learning networks [9]. Chen proposed robust PDF malware
classifiers with verifiable robustness properties [11]. Coull
explored malware detection byte-based deep neural network
models to learn more about malware and examined the learned
features at multiple levels of resolution, from individual byte
embeddings to the end-to-end analysis of models [12]. Rudd
proposed ALOHA, which uses multiple additional optimiza-
tion objectives to enhance the model, including multi-source
malicious/benign loss, count loss on multi-source detections,
and semantic malware attribute tag loss [13].

B. Unsupervised-learning-based Methods

Yang presented a novel system called CADE, which can
detect drifting samples that deviate from existing classes, and
explained detected drift [14].

C. Graph Representation Learning

The goal of graph representation learning is to preserve
as much topological information as possible when mapping
nodes into vector representations. We can use its to represent
malware, and do the downstream malware classification task.

Graph classification assigns a label to each graph to map
the graph to the vector space. A graph kernel is dominant in
history. It uses the kernel function to measure the similarity
between graph pairs and maps graphs to a vector space with
a mapping function. In the context of graph classification,
GNNs often employ readout operations to obtain a compact
representation at the graph level. GNNs have attracted a lot of
attention and demonstrated amazing results in this task.

1) Supervised Learning: The Dynamic Graph Convolu-
tional Neural Network [15] (DGCNN) uses K nearest neigh-
bors (KNN), builds a subgraph for each node based on the
node’s features, and applies a graph convolution to the recon-
structed graph. The Graph Isomorphism Network (GIN) [16]
presents a GIN that adjusts the weights of the central nodes
by learning, theoretically analyzes the GIN’s expressiveness
better than such GNN structures as the Graph Convolutional
Network (GCN), and achieves state-of-the-art accuracy on
multiple tasks.

2) Unsupervised Learning: Graph2vec [17] uses a set of
all the rooted subgraphs around each node as its vocabulary
through a skip-gram training process. Infograph [18] applies
contrastive learning to graph learning, which is carried out in
an unsupervised manner by maximizing the mutual informa-
tion between graph-level and node-level representations.

3) Self-Supervised Learning: Recently, graph contrastive
learning has received much attention. It has also been applied
in the field of malware detection and classification. EVOLIoT
[19] is a novel approach that combats “concept drift” and
the limitations of inter-family IoT malware classification by
detecting drifting IoT malware families and examining their
diverse evolutionary trajectories. This robust and effective con-
trastive method learns and compares semantically meaningful
representations of IoT malware binaries and codes without
expensive target labels. Graph contrastive learning (GraphCL)
[20] framework for learning self-supervised representations of
graph data. GraphCL design four types of graph augmentations
to incorporate various priors. GraphMAE [21] is a genera-
tive self-supervised graph learning method, which achieves
competitive or better performance than existing contrastive
methods on tasks including node classification, graph clas-
sification, and molecular property prediction. Wiener Graph
Deconvolutional Network (WGDN) [22], an augmentation-
adaptive decoder empowered by graph wiener filter to perform
information reconstruction.

III. BACKGROUND

A. Raw Graph Generation

Most malware samples exhibit polymorphic characteristics,
indicating that even slight alterations in the original malware’s
source code can lead to substantially different compiled code
[23], [24]. Cybercriminals often exploit this phenomenon to
evade signature-based detection, which is a prevalent method
used for malware detection [25]. Fortunately, these subtle
source code changes have minimal effect on the CFG and
FCG of the executable.
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push    ebp 
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Figure 1. Raw Graph Generation for Proposal

1) CFG Structure and Disassembly Code: The CFG in-
formation is extracted from the original PE file samples, the
structure information of the basic blocks is retained, and
the disassembly code of each basic block is extracted. Each
basic block of CFG has a corresponding disassembly code,
and the relationship between each basic block is directional.
Disassembly codes need to be transformed into feature vectors
of specific dimensions to train GNNs. Malware CFG is usually
a very large graph, so it is very time-consuming to extract
CFG. Since the disassembly code in each basic block of CFG
contains rich semantic information, we need to completely
exploit that information and suitably embed it, for example,
using a large pre-trained language model.

To train the GNNs, we need to produce graph datasets, and
the main task of this module is to convert PE files into raw
graphs. The overview of raw graph generation is shown in
Figure 1.

2) FCG Structure and Function Call: A Function Call
Graph (FCG) is a type of graph representation that captures
the relationships between functions in a software program
or system. It is commonly used in software analysis and
program understanding to model how functions in a program
interact with each other through function calls. In an FCG,
each function is represented as a node, and the edges between
nodes indicate function calls. If function A calls function B,
there will be a directed edge from node A to node B in the
FCG. The FCG provides a visual and structural representation
of the flow of control and data between functions within the
program.

CFG nodes contain disassembly code, while FCG nodes
only include API function names or the starting memory
addresses of functions. Although FCG node information is
less abundant compared to CFG, it tends to focus more on
modeling the graph’s structural aspects. It can even generate
node features without relying on the existing node information
by using graph centrality measures. As a result, compared to
CFG, it can efficiently and swiftly extract the graph informa-
tion from binary files.

B. Non-attributed Graph Classification
Although the CFG and FCG extracted from binary files

contain node information, the extraction of node features and
embeddings is a matter that requires consideration. Further-
more, it is necessary to consider whether these node functions
are effective.

For the task of graph classification, we need to generate
node feature vectors for the graph data. For CFGs, basic blocks
contain abundant disassembly code, which can be leveraged
to generate node feature vectors. However, for FCGs, each
node represents a function call, and there is limited semantic
information available, often only comprising API names or
function memory addresses. Therefore, we can directly use
graph centrality measures and the structural information of the
graph itself to generate corresponding node feature vectors.

Below, we introduce two types of node feature generation
methods that we use.

1) Pre-trained Language Model MiniLM: MiniLM is a
method released by Microsoft based on reducing large-scale
transformer pre-trained models into smaller models [26]. This
Deep Self-Attention Distillation (DSAD) method uses large-
scale data for pre-training. The model we use is called “all-
MiniLM-L12-v2,” which has a 1-billion-sized training set and
is designed as a general-purpose model. MiniLM model is a
12-layer transformer with a 384 hidden size and 12 attention
heads that contain about 33 M parameters. It maps sentences
and paragraphs to a 384-dimensional dense vector space and
can be used for tasks like clustering or semantic search. This
model is the fastest generation of related studies and still
provides good quality. In this step, a 384-dimensional dense
vector is generated for each CFG node using the pre-trained
model. This vector is added to the corresponding nodes of
the directed graph to generate complete graph data with node
feature vectors. These directed graphs are used as our raw
graph data.

2) Graph Centrality: Graph centrality refers to a set of
measures used in graph theory and network analysis to deter-
mine the importance or influence of individual vertices (nodes)
within a graph. Centrality measures aim to identify nodes
that play crucial roles in the network’s structure, functioning,
and communication. Several centrality measures exist, each
capturing different aspects of a node’s importance. Some of
the most common centrality measures include:

a) Degree Centrality: Degree centrality is the simplest
centrality measure, and it is based on the number of edges
incident to a node (its degree). Nodes with higher degrees are
considered more central as they have more connections in the
network.

b) Eigenvector Centrality: Eigenvector centrality mea-
sures a node’s importance based on the centrality of its
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Figure 2. Proposed Malware Graph Contrastive Learning Framework for Graph Representation Generation

neighbors. Nodes connected to other central nodes have higher
eigenvector centrality themselves.

c) PageRank: Originally developed by Google, PageR-
ank is a variant of eigenvector centrality and is used to rank
web pages in search engine results. It assigns a score to each
node based on the number and quality of incoming links.

d) Local Degree Profile (LDP): LDP [27] is a simple
representation scheme, each node feature summarizes 5 degree
statistics information of this node and its 1-hop neighborhood.
We selected LDP method as graph centrality measures.

Different centrality measures are applicable in various con-
texts and provide insights into different aspects of a network’s
structure and dynamics. Researchers and analysts choose cen-
trality measures based on the specific questions they want to
answer and the characteristics of the network under study.

IV. PROPOSED DATA AUGMENTED GRAPHCL-BASED
STATIC MALWARE PE CLASSIFICATION

Our proposal is a data augmented GraphCL-based static
malware PE classification framework, which can obtain a
graph-level representation from malware. We directly extract
malware CFG from PE files and through graph contrastive
learning obtain a representation of the malware with a vec-
tor notation. Finally, malware representations can be per-
formed downstream for various tasks. Graph-level representa-
tion shows good performance on malware classification tasks.
Next we scrutinize the framework.

A. Data Augmentation for Graphs

We used the following four data augmentation methods.
As shown in Figure 2, our proposal uses two of them as a
combination.

1) Node Dropping: Randomly discard some parts of the
vertex and its connections. The underlying prior enforced by
it is that missing part of vertices does not affect the semantic
meaning of the graph.The dropping probability of each node
follows a default Bernoulli uniform distribution (or any other
distribution).

2) Edge Perturbation: Randomly add or remove a certain
ratio of edges so that the learned representation is consistent
under edge perturbation. The prior information of the represen-
tation is that adding or removing some edges does not affect
the semantics of the graph. The dropping probability of each
node follows a default Bernoulli uniform distribution. We only
used Edge Removing in this evaluation.

3) Attribute Masking: Randomly removing the attribute
information of some nodes motivates the model to use other
information to reconstruct the masked node attributes. The
masking probability of each node feature dimension follows
a default uniform distribution. We only used simple Feature
Masking.

4) Subgraph Sampling: Use random walk subgraph sam-
pling [28] to extract subgraphs from the original graph. The
basic assumption is that a graph’s semantic information can
be preserved in its local structure.

Table I overviews the data augmentation for graphs. The
default augmentation (dropping, perturbation, masking) ratio
is set to 0.1, and the walk length is set to 10.

TABLE I. OVERVIEW OF DATA AUGMENTATION FOR GRAPHS

Data Augmentation Type Default Setting
Node Dropping Nodes, Edges Bernoulli distribution (ratio = 0.1)

Edge Perturbation Edges Bernoulli distribution (ratio = 0.1)

Attribute Masking Nodes Uniform distribution (ratio = 0.1)

Subgraph Sampling Nodes, Edges Random Walk (length = 10)

B. Graph Contrastive Learning

Motivated by recent developments in graph contrastive
learning, we propose a graph contrastive learning framework
for malware classification. As shown in Figure 2, in graph
contrastive learning, pre-training is performed by maximizing
the agreement between two augmented views of the same
graph by contrastive loss in the potential space. The framework
consists of the following four main components:
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1) Graph Data Augmentation: Throughout the GraphCL
framework, given graph data G, two related augmented graphs,
Ĝi, Ĝj , are generated as positive sample pairs by data augmen-
tation.

2) GIN-based Encoder: GIN-based encoder f(·) is used
to generate graph-level vector representation. There are three
layers in the GIN-based encoder, and the hidden layer has 64
dimensions. Through the readout function, the embedding of
all the nodes is summed to obtain initial graph representation
hi, hj for augmented graphs Ĝi, Ĝj . Graph contrastive learn-
ing does not apply any constraint to the GIN-based encoder.

3) Projection Head: Nonlinear transformation g(·), called
a projection head, maps the augmented representations to
another latent space. Contrast loss is computed in the latent
space, and zi, zj are obtained by applying a two-layer percep-
tron (MLP).

4) Contrastive Loss Function: Contrastive loss function
L(·) is defined to enforce the maximum consistency between
positive pairs zi, zj and negative pairs. Here we exploit the
normalized temperature-scale cross-entropy loss (NT-Xent)
[29] [30] and obtain a graph-level final representation of zG.

C. Graph Classification

By pre-training with GraphCL, we can obtain a valid graph
representation zG. To further verify the effectiveness of our
method, different classification models can be chosen for the
process, such as random forest, logistic regression, SVM,
etc. We chose C-Support Vector Classification (SVC) as the
algorithm to validate our pre-trained model’s effectiveness.

V. IMPLEMENTATION DETAILS

We verified the effectiveness of our proposed contrastive
learning framework by implementing it with open-source
libraries. The implementation details are introduced in this
section.

A. Malware Graph Datasets

The publicly available dataset of malicious software graphs
is extremely scarce and does not directly provide the raw
binary files. In order to extract CFG, we have constructed our
own dataset. Additionally, some publicly available malicious
software graph datasets, such as MALNET dataset [31], do not
include node features in their graph data themselves, requiring
us to generate them based on our needs.

1) MGD-MULTI Dataset:
a) PE Files Source: Our PE file sample was obtained

from the BODMAS Malware Dataset [32]. The software types
of all the PE file samples used in our dataset are executable
files under an x86-architecture Windows platform without any
Dynamic Link Library (DLL) type.

b) Dataset Description: From the BODMAS dataset,
we selected eight families of malware and took 500 samples
from each family, for a total of 4000 samples in our dataset.
Our dataset is named MGD-MULTI. The malware family
distribution information is shown in Table II.

Due to the difficulty of collecting benign samples and
the imbalanced data problem, we did not include benign

TABLE II. MALWARE FAMILY DISTRIBUTION OF MGD-MULTI

Family Category Origin Count Selected Count
sfone worm 4729 500

upatre trojan 3901 500

wabot backdoor 3673 500

benjamin worm 1071 500

musecador trojan 1054 500

padodor backdoor 655 500

gandcrab ransomware 617 500

dinwod dropper 509 500

Total - 16209 4000

samples in our multi-class dataset. In our previous malware
detection work [33], the MGD-BINARY dataset contained
benign samples. We used almost the same GIN model to
represent the PE samples, with a slightly different operation
of the READOUT layer this time compared to the GIN model
in our previous work, giving the final representation a higher
vector dimensionality. Based on our previous research, we
believe that the GIN model can effectively distinguish benign
samples from malicious ones.

Among the different types of malware, we chose families
that are more common and have a relatively large number in
BODMAS. Due to some limitations of the CFG extraction
tool for the PE files we used, many samples couldn’t be
recognized, causing extraction failure. In addition, for large
PE file samples, the process of extracting CFG is very time-
consuming. Since the extraction of some samples will fail, we
selected a family with more than 500 samples in BODMAS
and relatively small original PE files. We further improved
the efficiency by only selecting successful samples whose
total extraction time is less than 20 seconds in which the
total extraction time includes the time of the feature vectors
generated by the pre-trained language model.

c) Dataset Splitting: We split 4000 pieces of data in
MGD-MULTI into training, validation, and testing sets of
50%, 20%, and 30%, respectively. Since the results of the
validation set and the test are similar, only the testing set
results are shown.

2) MALNET-TINY Dataset:

a) APK Files Source: The dataset’s authentic APK files
were acquired from the renowned AndroZoo repository [46,
44]. AndroZoo is a growing collection of Android Appli-
cations collected from several sources, including the official
Google Play app market.

b) Dataset Description: MalNetTiny contains 5,000 ma-
licious and benign software FCGs across 5 different types.
Each graph contains at most 5k nodes.

c) Dataset Splitting: The dataset is stratified and divided
into three sets: training, validation, and test, with a split ratio of
70/10/20, respectively. To thoroughly assess both the model’s
performance and the dataset’s quality, we conduct 10-fold
cross-validation on MALNET-TINY, which is distinct from
the MGD-MULTI dataset.
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B. Graph Node Feature Generation

For our self-constructed dataset MGD, it is essential to
transform the disassembly code within CFG basic blocks into
embedded vectors. To achieve this, we opted to utilize a pre-
trained language model to generate node embedding vectors.
However, for the MALNET-TINY dataset, since the graph data
itself does not include node features, we need to extract them
directly from the graphs. Therefore, we selected the Local
Degree Profile (LDP) method to generate node feature vectors.
Next, we will provide a detailed explanation of these two
approaches.

1) Pre-trained Language Model MiniLM: SentenceTrans-
formers is a python framework for state-of-the-art sentence,
text, and image embeddings. The initial work was described
in a paper from the Sentence-Bidirectional Encoder Represen-
tations from Transformers (Sentence-BERT) [34]. We used the
MiniLM model provided by the SentenceTransformers library
with the model name, all-MiniLM-L6-v2. The model details
used in this paper are shown in Table III.

TABLE III. PRE-TRAINED MINILM MODEL DETAILS

Name all-MiniLM-L12-v2
Base Model microsoft/MiniLM-L12-H384-uncased

Max Sequence Length 256
Dimensions 384

Normalized Embeddings true
Size 120 MB

Pooling Mean Pooling
Training Data 1B+ training pairs

2) LDP: PyTorch Geometric (PyG) [35] is a popular
Python library built on top of PyTorch, specifically designed
for deep learning on graphs and other irregular data structures.
PyG provides a wide range of tools and utilities to simplify
the implementation of graph neural networks (GNNs) and
other graph-based machine learning models. We use the graph
transforms to generate the LDP node features.

C. Graph Contrastive Learning

PyGCL [36] is a PyTorch-based open-source Graph Con-
trastive Learning library, which features modularized GraphCL
components from published papers, standardized evaluation,
and experiment management. The Data dataset statistics and
hyper-parameters are shown in Table IV.

VI. EVALUATION AND DISCUSSION

In this section, we apply the GraphCL model and discuss
the experiment results and limitations of our method.

A. Evaluation Metric

We used the following evaluation metrics to assess the
performance of our proposed models:

• The Micro-averaged F1 score is defined as the harmonic
mean of the precision and recall:

Micro F1-score = 2× Micro-Precision × Micro-Recall
Micro-Precision + Micro-Recall

TABLE IV. DATASET STATISTICS AND HYPER-PARAMETERS

Dataset MGD-MULTI MALNET-TINY
# Graphs 4000 5000

# Avg. Nodes 3861.7 1410.3
# Avg. Edges 5494.8 7125.7

# Features 384 5
# Class 8 5

Learning Rate 0.0001 0.0001
Batch Size 128 256

Epoch 100 100
Hidden Size 64 64

Hidden Layers 3 3
Global Pooling Sum Pooling Max Pooling

• The Macro-averaged F1 score is defined as the average
of the class-wise/label-wise F1-scores:

Macro F1-score =
1

N

N∑
i=0

F1-scorei

where i is the class/label index and N is the number of
classes/labels.

B. Evaluation Results

Next we apply the GraphCL model and discuss the exper-
iment results of our method. We selected five different data
augmentation methods: Identical (I), Edge Removing (ER),
Node Dropping (ND), Feature Masking (FM), and Random
Walk Subgraph (RWS).

To compare the different data augmentation approaches
on the GraphCL model, we used both data augmentation
approaches for the input graph itself I + I as the GraphCL
model baseline. We also tried different combinations of data
augmentation, such as ER and ND, FM and ND, FM and
ER, RWS and ER, RWS and ND, and RWS and FM. The
experimental results on two datasets are shown in Table V.

1) MGD-MULTI Classification Results: The best two data
augmentation combinations on MGD-MULTI dataset were
RWS and FM. When the walk length of RWS is 10 and the
ratio of FM is 0.1, we obtained the best Micro-F1 (0.9958)
and Macro-F1 (0.9959).

In the previous set of experiments, we found that the best
data augmentation combination is RWS + FM. Based on this
combination, we also investigated the results on different ratios
on the FM side, and the FM results on different ratios are
shown in Table VI. We set the walk length of RWS to 10 and
adjusted the ratio of the FM. When the ratio of FM is less
than 0.3, the results gradually improve, and as it exceeds 0.3,
the results gradually worsen. The optimal result is achieved
when the FM is set to 0.3.

The RWS + FM method is most effective because neither
method changes the structural information of the original
graph. The RWS method samples a subgraph that is smaller
than the structure of the original graph, but still retains most of
the original graph’s structure. For the FM method, the original
graph structure is not changed at all, but the values of some
dimensions of the node feature vectors are masked, which

121

International Journal on Advances in Security, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE V. EXPERIMENTAL RESULTS OF DIFFERENT DATA AUGMENTATION

Augmentation 1 Augmentation 2
MGD-MULTI MALNET-TINY

Micro-F1 Macro-F1 Micro-F1 Macro-F1

I I 0.9883 0.9883 0.8758 ± 0.0148 0.8753 ± 0.0149

ER1(0.1) ND1(0.1) 0.9925 0.9924 0.8652 ± 0.0129 0.8641 ± 0.0131
FM1(0.1) ND (0.1) 0.9942 0.9942 0.8536 ± 0.0150 0.8520 ± 0.0156
FM (0.1) ER (0.1) 0.9942 0.9942 0.8394 ± 0.0108 0.8384 ± 0.0111

RWS 2 ER (0.1) 0.9950 0.9949 0.7766 ± 0.0152 0.7695 ± 0.0155
RWS ND (0.1) 0.9950 0.9949 0.7834 ± 0.0139 0.7771 ± 0.0152
RWS FM (0.1) 0.9958 0.9959 0.7760 ± 0.0212 0.7715 ± 0.0218

1 Default ratio setting is 0.1.
2 RWS uses a default walk length setting of 10.

makes the node features more robust. On the contrary, the
other two methods (ER and ND) change the original graph
structure more, so the results are lowered.

TABLE VI. BEST COMBINATION WITH DIFFERENT RATIO RESULTS

Augmentation 1 Augmentation 2
MGD-MULTI

Micro-F1 Macro-F1

RWS 1 FM (0.1) 0.9958 0.9959

RWS FM (0.2) 0.9967 0.9967

RWS FM (0.3) 0.9975 0.9976
RWS FM (0.4) 0.9958 0.9958

RWS FM (0.5) 0.9942 0.9941

1 RWS uses a default walk length setting of 10.

2) MALNET-TINY Classification Results: The best two data
augmentation combinations on MALNET-TINY dataset were
I and I . On the MGD-MULTI dataset, we did not attempt to
explore more combinations with the same settings or different
ratios of combinations. To further validate different scenarios,
we applied more identical combinations, such as ND + ND,
ER + ER, RWS + RWS and FM + FM on the new dataset
MALNET-TINY. Additionally, concerning different ratios of
combinations, we experimented with values ranging from 0.1
to 1.0. For the RWS, we tested walk length from 10 to 50,000.
The optimal results are shown in Table VII. The best results
were achieved when the ratio of all augmentation combinations
was set to 0.1. The optimal RWS walk length was found to be
20000.

For the same augmentation combinations, the best results
were obtained with I + I. ND (0.1) + ND (0.1) and ER (0.1)
+ ER (0.1) also showed good performance, but FM (0.1) +
FM (0.1) performed poorly. We believe that the reason behind
the poor performance of FM (0.1) + FM (0.1) is that the
MALNET-TINY dataset has a feature dimension of only 5.
Applying the FM augmentation can lead to the loss of already
limited node feature information, making it difficult for the
model to effectively distinguish node features and resulting in
poor results. In contrast, ND and ER operations primarily focus
on adjusting the graph structure, which is why their results are
more favorable.

It seems that among the different data augmentation com-
binations, the combination of ER (0.1) + ND (0.1) yielded
the best performance. This result indicates that using ER (0.1)
+ ND (0.1) in combination provided the most effective data

augmentation strategy for improving model performance on
the MALNET-TINY dataset. It appears that regardless of using
the same data augmentation or different data augmentation
strategies, the performance of the RWS augmentation is not
satisfactory.

This could be due to the specific feature and properties
of the MALNET-TINY dataset, which might be better suited
for the specific augmentation combination rather than other
combinations that involve more complex operations like RWS.
It’s essential to consider the nature of the dataset and the
impact of different augmentation techniques on the model’s
ability to learn meaningful patterns and features from the data.
Depending on the dataset’s characteristics, some augmentation
combinations may be more effective than others in improving
model performance. Further experimentation and analysis can
help to better understand the relationship between data aug-
mentation and model performance on the specific dataset.

TABLE VII. BEST COMBINATION WITH DIFFERENT RATIO RESULTS

Augmentation 1 Augmentation 2
MALNET-TINY

Micro-F1 Macro-F1

I I 0.8758 ± 0.0148 0.8753 ± 0.0149

ND (0.1) ND (0.1) 0.8610 ± 0.0173 0.8595 ± 0.0178
ER (0.1) ER (0.1) 0.8568 ± 0.0110 0.8554 ± 0.0110

RWS1 RWS 0.8504 ± 0.0081 0.8476 ± 0.0084
FM (0.1) FM (0.1) 0.8178 ± 0.0153 0.8138 ± 0.0158

I ER (0.1) 0.8578 ± 0.0112 0.8565 ± 0.0118
I ND (0.1) 0.8536 ± 0.0156 0.8520 ± 0.0158
I RWS 0.8480 ± 0.0116 0.8450 ± 0.0121
I FM (0.1) 0.8346 ± 0.0118 0.8327 ± 0.0127

ER (0.1) ND (0.1) 0.8652 ± 0.0129 0.8641 ± 0.0131
FM (0.1) ND (0.1) 0.8536 ± 0.0150 0.8520 ± 0.0156
FM (0.1) ER (0.1) 0.8394 ± 0.0108 0.8384 ± 0.0111

RWS ER (0.1) 0.8466 ± 0.0110 0.8441 ± 0.0113
RWS ND (0.1) 0.8350 ± 0.0093 0.8322 ± 0.0091
RWS FM (0.1) 0.8304 ± 0.0155 0.8262 ± 0.0161

1 RWS uses the best walk length setting of 2000.

3) Comparison of Results from Different Datasets: As
shown in Table IV, the graph data of the two datasets have dif-
ferent statistical characteristics. Compared with MGD-MULTI
dataset, MALNET-TINY dataset has fewer average nodes and
more average edges. The graph samples of the two datasets
are quite different. When the node feature vector dimension is

122

International Journal on Advances in Security, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE VIII. EXPERIMENTAL RESULTS OF DIFFERENT LEARNING METHODS

Name Method Type Classifier
MGD-MULTI MALNET-TINY

Micro-F1 Macro-F1 Micro-F1 Macro-F1

Baseline 1 GIN-Encoder - SVC 0.9617 0.9620 0.7060 ± 0.0156 0.7012 ± 0.0149
Baseline 2 GIN (Previous work [33]) SL1 MLP 0.9958 0.9957 0.8080 0.8126
Proposal GraphCL SSL2 SVC 0.9975 0.9976 0.8758 ± 0.0148 0.8753 ± 0.0149

1 SL denotes supervised learning.
2 SSL denotes self-supervised learning.
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(a) Baseline 1 on MGD-MULTI dataset: GIN-Encoder
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(b) Proposal on MGD-MULTI dataset: GraphCL (RWS+FM 0.3)

Figure 3. t-SNE projection of Baseline 1 and Proposal on MGD-MULTI Dataset

high and the number of edges is relatively small, FM becomes
more effective. Compared with RWS, the more average edges
of dataset, the more effective ER is.

4) Comparison of Different Learning Methods: Our pre-
vious studies focused on supervised learning. This study is
a graph contrastive learning method in an self-supervised
setting. Baseline 1 involves using GIN as the encoder to
directly perform graph-level encoding on the input graphs,
followed by evaluating the embedding effectiveness using
SVC.

Baseline 2 is our previous work [33] on the malware
graph classification task. We utilized the Graph Isomorphism
Network for training in a self-supervised setting and directly
connected two Multi-Layer Perceptron layers after the GIN
readout layer for classification. The GIN model consists of
three layers with a hidden layer size of 64, and the MLP has
two layers with a hidden layer size of 128. A comparison of
different learning type methods is shown in Table VIII. It is
worth noting that on the MALNET-TINY dataset, Baseline 2
did not use 10-fold cross-validation, and we only reported the
results on the testing set.

On the MGD-MULTI dataset, GraphCL with a setting of
RWS + FM (0.3) achieved the best classification results. On
the MALNET-TINY dataset, GraphCL with a setting of I
+ I achieved the best classification results. The evaluation
results indicate that our approach achieved Micro-F1 scores
of 0.9975 and Macro-F1 scores of 0.9976 on MGD-MULTI
dataset. Similarly, on MALNET-TINY dataset, we obtained

Micro-F1 scores of 0.8758 ± 0.0148 and Macro-F1 scores
of 0.8753 ± 0.0149. According to our experimental evalua-
tion, the self-supervised learning approach outperformed the
supervised learning approach in Graph Neural Networks based
on malware classification. We can see that self-supervised
learning has great potential.

We employed t-SNE technique to visualize the embeddings
of Baseline 1 and our proposed method separately on two
datasets: MGD-MULTI and MALNET-TINY. For the MGD-
MULTI dataset, as shown in Figure 3, the method of Baseline
1 has already clustered some categories, such as the malware
of the “padodor” family, but it cannot cluster the “gandcrab”
family well. On the other hand, our contrastive learning model
proposal can better cluster different categories in the eight
classes, and a large distance between different categories is
maintained. For the MALNET-TINY dataset, as shown in
Figure 4, Compared to the MGD dataset, the visualization
results of the TINY dataset are not satisfactory. We found that
among the four classes of malicious software, the performance
for the “trojan” type is the worst, while the “downloader” type
has the best results. For “benign” samples, it is challenging to
distinguish them from “adware” and “addisplay”.

C. Current Limitations
In this study, the two datasets used were relatively small.

We achieved promising results on the MGD-MULTI dataset.
However, the performance on the MALNET-TINY dataset was
not very satisfactory.
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Figure 4. t-SNE projection of Baseline 1 and Proposal on MALNET-TINY Dataset

1) MGD-MULTI dataset: In the feature engineering stage,
there are two steps that are very time-consuming. Firstly,
extracting the CFG of the PE file is very time-consuming.
Secondly, during the construction of training data, it is also
very time-consuming because it requires embedding represen-
tation of all nodes’ features in the graphs using a pre-trained
model. During the training phase, due to the large graph data
structures and the high dimensionality of each node in the
graph (384 dimensions), the GraphCL model training is slow,
even though the dataset itself contains only 4000 samples. We
desire a better way to generate node features, such as a lower
dimensional in a method that retains its effectiveness.

2) MALNET-TINY dataset: GraphCL (I + I) is a combina-
tion of two Identical, and the effect is equivalent to turning
a training set of N samples into 2N samples. The same data
model is learned twice for the same data, so the obtained result
naturally outperforms GIN-Encoder. Compared to other data
augmentation combinations, the combination of I + I yields
the best results, and a reasonable explanation for this has not
been found yet.

3) Graph Self-supervised Learning: GraphCL is represen-
tative of contrastive methods, but it overly relies on high-
quality data augmentation. We explored the effects of various
data augmentation methods, such as FM, RWS, and ER.
We found that effective data augmentation on graphs often
depends on domain knowledge. For instance, ER is beneficial
for training on the MALNET-TINY dataset, but it has a
negative impact on the MGD-MULTI dataset. However, in
the context of graph contrastive learning, there is still no
universally effective data augmentation method up to now.
Generative self-supervised learning can avoid the aforemen-
tioned dependencies, as it aims to reconstruct the features and
information of the data itself, such as GraphMAE [21] and
WGDN [22] models.

VII. CONCLUSION

We propose using graph contrastive learning for unsuper-
vised learning of different families of malicious software.
We employ SVC for multi-class classification of the graph
representations and achieve promising results. For our self-
built dataset MGD-MULTI, we extract the CFG of malicious
software and embed the disassembly code in CFG basic blocks
using a pre-trained large-scale language model, MiniLM. For
the publicly available MALNET-TINY dataset, as it does not
provide node features for the graph data based on FCG, we
generate node representations using LDP. Through these two
methods, both CFG-based and FCG-based malicious software
are transformed into directed graphs with node features. Us-
ing graphs to represent malicious software offers significant
advantages, as each node carries rich information and pre-
serves the structural details of the samples. Graph models
can learn from both global and local perspectives. Further-
more, self-supervised learning eliminates the need for sample
annotations, learning from self-supervised signals, making it
more efficient to leverage a larger number of samples for
pre-training. On our self-built dataset, the graph-based self-
supervised method for malicious software classification has
outperformed supervised graph learning methods, such as
Graph Isomorphism Networks used for graph classification.
In future work, our focus will shift towards self-supervised
learning.
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